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ABSTRACT Large-scale disaster occurs all over the world frequently, disconnects telecommunications, and
destroys communication equipment. In recent years, unmanned aerial vehicles (UAVs) network systems have
been studied to work on the reconstruction activities safely and flexibly. The more means of telecommuni-
cation, the better because the UAV networks are used for emergency communication. Therefore, this paper
studies optical camera communication (OCC) systems using RGB-LED-mounted drones and a high-speed
camera for disaster recovery and proposes the RGB-LED-mounted drone’s detection scheme and the signal
equalization technique to suppress the RGB interference. We detect the drone using the algorithm of a deep
neural network (DNN) based object detection called YOLOv3. This paper adds a new function to reduce the
frame rate in object detection. Consequently, the proposed scheme reduces the frame rate to a rate that can
conduct real-time operations less than 20 fps from 600 fps. Moreover, the experimental results indicate the
feasibility of the proposed scheme that can communicate in error-free operation at a 300-m distance.

INDEX TERMS Optical camera communication, visible light communication, unmanned aerial vehicle,
disaster recovery.

I. INTRODUCTION
Catastrophic disasters frequently occur globally [1], [2],
and it is essential to monitor and communicate with
disaster-stricken areas for rapid rescue and recovery. How-
ever, it is challenging to obtain existing communications due
to equipment damage or power supply interruptions caused
by disasters. We currently use moving base stations (BSs)
to restore telecommunications, but it is challenging to use
them for maritime accidents or disasters at levels where
vehicles cannot enter; therefore, more multifaceted recov-
ery systems are required. Drone empowered networks have
been attracting attention. In [3], long-term evolution (LTE)
femtocell BSs on drones to replace collapsed base stations
have been investigated. From an availability and robustness
viewpoint, it is desirable to havemultiple telecommunication.
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Futhermore, the tradeoff between the drone’s weight and the
battery makes it challenging to install additional batteries
or devices for communication, and low power consump-
tion is required. Therefore, this study investigates employ-
ing visible light communication (VLC) using light-emitting
diode (LED) equipped drones because of their ease of intro-
duction and high-power efficiency.

The VLC is divided into two systems: light fidelity
(Li-Fi) [4] and optical camera communication (OCC) [5].
Li-Fi is a high-speed and low-energy consumption method
using existing LED lighting equipment and dedicated photo-
diode (PD) receivers. A 10-Gbps transmission rate has been
reported [6]. Furthermore, the system is easily installed by
attaching PD receivers to existing LED lighting equipment.
Because of using a single PD, the receiver cannot separate the
transmitted light signals from multiple transmitters, and must
adjust the optical axis. Specifically, the transmitter on the
drone moves slightly; it is more challenging to adjust the axis.
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Moreover, a slight deviation of the axis in long-range trans-
mission affects the performance more. However, OCC uses a
commercially supported digital camera as a receiver. A typi-
cal digital camera comprises an optical lens and image sensor
equipped with color filters. Unlike a PD, the lens and color
filter separate the transmitted light signals, and three-channel
wavelength division multiplexing (WDM) can be realized.
As a disadvantage of the OCC, the camera’s frame rate limits
the transmission capacity. To improve the capacity, a method
based on the camera’s shutter mechanism [7] (called rolling
shutter (RS) method) and employing a high-speed camera [8]
have been investigated. The RSmethod in [7] is unsuitable for
long-range VLC because it requires the multiple PD pixels
to demodulate a signal. However, the cost of high-speed
cameras has decreased in recent years with the spread of
smartphones.

This paper proposes a novel OCC scheme with a red,
green, and blue (RGB) LED-equipped drone and a high-speed
camera according to these features. The drone monitors and
lights up the disaster area and transmits the signals (Fig. 1).
The proposed method improves the transmission rate using
WDM with RGB-LEDs and a high-speed camera to increase
the sampling rate.

The contributions of the proposed scheme are as follows.

1) A transmitter introduces the 8B/10B encoding for
flicker-suppressed communication.

2) An algorithm superimposes the multiple images
acquired by high-speed cameras and converts them into
a lower frame rate. The receiver can execute an object
detection algorithm operating with a low frame rate of
20 fps.

3) Amoving average filter (MAF) is introduced to remove
amplitude fluctuations.

4) A constant modulus algorithm (CMA) is employed to
equalize RGB crosstalk.

By combining these techniques, we can ensure stable com-
munication even over long distances. A part of the proposed
scheme has been reported in IEEE Vehicular Technology
Conference (VTC) in spring 2021 [9]. We extend the trans-
mission capacity, employ RGBmultiplexing, and confirm the
feasibility of the proposed method through proof-of-concept
experiments.

As for the following chapters, Section II introduces related
works and Section III describes the proposed method. The
experimental results are in Section IV. Finally, we conclude
in Section V.

II. RELATED WORK
The camera receiver limits the OCC system’s capacity; there-
fore, two methods are typically used: using a high-speed
camera [8], [10] and an RS scheme [7]. In [10], the feasibility
of 10-Mbps real-time communication has been experimen-
tally reported using a 1,000-fps high-speed camera with a
dedicated image sensor. TheRS is a capturemethodwhere the
complementary metal oxide semiconductor (CMOS) image

FIGURE 1. OCC system for disaster recovery.

sensor extracts the pixels row by row in order. The sampling
rate can increase because the capture start time is different for
each row. The RS scheme has been standardized and is valu-
able for short-distance communication, such as indoors [11].
In [12], a data rate of over 100 kbps has been reported using
the RS method and spatial multiplexing scheme. However,
employing the RS scheme on the OCC over long distances is
challenging because it requires a massive number of pixels in
a frame. In long-distance communication for disaster recov-
ery, the light sources are captured on a few pixels; therefore,
we pick the high-speed camera method to improve the data
rate. In recent years, employing artificial neural network
has been also proposed to suppress inter-symbol interference
(ISI) [13]–[16] and color separation [17].

The WDM method is also vital for improving the data
rate. Due to the RGB lights, we secure a three-channel trans-
mission lane. However, crosstalk occurs due to the LED
light’s broad linewidth and the image sensor’s low wave-
length filtering performance. We need the RGB separation
scheme. In [18], the channelmatrix is obtained in advance and
statically equalized to suppress the crosstalk effect using a
multi-input-to-multi-output (MIMO) signal processing tech-
nique. In other words, the receiver must estimate the channel
matrix when it cannot obtain the transmitter’s information in
advance. We assumed that the OCC system is used outdoors.
The transmitter and receiver’s owners might be different.
The camera’s specifications also differ depending on smart-
phones. Moreover, the channel has time-varying character-
istics due to weather effects. Thus, inter-channel crosstalk
compensation by blind adaptive equalization is a curious
solution.

While OCC systems tend to indoor applications [19]–[21],
several experimental results of LED-camera commu-
nication between drones and ground BSs have been
reported [22]–[24]. In these demonstrations, the distance
between the drone and the camera is short. When consid-
ering dispatching to the disaster areas, it is necessary to
establish communication over several hundred meters. The
equalization methods have not been studied intensely and
although the long-range OCC has been reported, it is limited
to communication between fixed BSs [25].

This paper proposes a drone with RGB-LED and a
high-speed camera OCC system, an extension of previ-
ously reported work [9], [26]. A high-speed camera is used
to increase the sampling rate, and a convolution neural
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network (CNN) is used to recognize the LED’s location.
We investigated the proposed system’s feasibility by conduct-
ing field experiments at 300 m between the LED and the
camera.

III. PROPOSED METHOD
This section shows the proposed method divided into
13 blocks. Fig. 2 shows the scheme’s operational sequence.
For the transmitter side, the bitstream is mapped three chan-
nels in parallel at block 1. At block 2, the three-channel bit-
stream obtains a wide bandwidth close to the zero-frequency
component. The low-frequency flicker affects to the human
eyes, and a frequency of more than 100 Hz is required as
much as possible. Thus, we employ an 8B10B encoding
scheme to suppress the lower frequency component [27]. The
number of bits in the same pattern is five (00000 or 11111),
and the signal’s minimum frequency is expressed as,

fmin >
fmax
5

, (1)

where fmax is the signal’s maximum frequency. For example,
Fig. 3 shows the spectrum before and after 8B10B encoding.
In fmax = 200 Hz, the 8B10B encoded signal includes a more
than 40 Hz frequency component. Employing other encoding
schemes with short bits, such as 4B5B, is useful for sup-
pressing the lower frequency component; however, a trade-
off relationship occurs with the frequency usage efficiency.
At block 3, the bitstream is on-off-keying (OOK) modulated,
and RGB-LEDs flash depending on the bit patterns. Mul-
tiple drones are not allowed to overlap by extension from
the camera because signal interference occurs. In addition,
the drones must avoid the obstacles to ensure line-of-sight.
Therefore, we need to introduce additional techniques, and
we have already proposed [28].

For the receiver side, first of all, a GPS roughly obtains
the drone’s position information. The receiver points the
camera to the location and adjusts the zoom rate. Then, the
camera uses a deep learning-based object detection for fine-
tuning. The camera films the RGB-LED-mounted drones at
block 4. The camera’s color filter divides the input light’s
RGB wavelength. The color filter’s configuration is typically
Bayer arrangement; however, its wavelength resolution is
low, and the RGB-LED’s linewidth is broad, causing the
crosstalk between the RGB. Thus, we employ the adaptive
MIMO equalization to suppress the crosstalk. The details are
in block 10.

For the digital signal processing, we first describe the
region-of-interest (ROI) detection corresponding to block
6. The demodulator must search and detect each LED’s
position from the filmed image because the LED trans-
mitters are mounted on the drones, and their positions
fluctuate over time. We employ YOLOv3 [29] as the
ROI detection algorithm. The YOLOv3 is a popular algo-
rithm with the high-speed and precise performance, and
real-time performance with 20 fps of the frame rate has been
reported.

FIGURE 2. Functional block diagram of proposed scheme.

FIGURE 3. Example of the spectrum before and after 8B10B encoding.

After filming the video, we conduct the two digital sig-
nal processing (DSP). We obtain the drone’s most precise
positions using all the video frames. Furthermore, real-time
ROI detection is difficult when using a high-speed cam-
era of >30 fps. Therefore, we reduce the frame rate when
conducting ROI detection at block 5. It is possible to fail
the LED detection for the frame rate adjustment because
the LED flashes and no bright time exists when the simple
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downsampling method is employed. Here we employ the
image synthesis method for LED detection. Let P be the set
of pixels in an image. p(i, j, t) ∈ P is the pixel of the t-th
frame. i and j are the image’s vertical and horizontal pixel
numbers, respectively. The downsampling rate is Rd , and the
pixel p′(i, j, t) is expressed as,

p′(i, j, t)=max{p(i, j,Rd t), · · · , p(i, j,Rd (t + 1)− 1)}. (2)

We extract each pixel’smaximumvalue and obtain the images
that the LEDs turn on when the signal’s symbol rate is higher
than the ROI detection frequency. This algorithm assumes
that the drone does not move between the image frames. For
example, if the frame rate is 1, 000 fps and the downsampling
rate is 100, the algorithm synthesizes the images using Eq. 2,
and the adjusted frame rate is 10 fps. The time between the
frames is 100 ms. For 100 ms, we assume that the drone does
not move immediately.

Block 6 detects the LED boundary boxes (BB). YOLOv3
outputs the BB and its label simultaneously. Furthermore, the
label’s posterior probability is also an output. YOLOv3 out-
puts many BBs when including the low posterior probability.
Thus, we set a BB detection threshold when using YOLOv3.
The proposed system can set a low threshold because we
can remove the false-positive result using the signal’s pilot
sequence. The time waveform is generated from each BB’s
brightness. Block 7 expands the BB to increase the signal
power. Let h and w be vertical and horizontal pixel lengths
in the initial BB, respectively, then the n-fold expanded BB
size is nh × nw. At block 8, we summarize the expanded
BB’s brightness and obtain the timewaveformB1(k, t, b). Let
p′(i, j, k, t, b) ∈ P be the pixel set in the expanded BB where
k ∈ {r, g, b} is the RGB indicator and b ∈ {1, 2, · · · } is the
BB indicator. The time waveform B1(k, t, b) is,

B1(k, t, b) =
nh∑
i=1

nw∑
j=1

p′(i, j, k, t, b). (3)

At block 9, we employ the MAF and remove the drone’s
long-term fluctuation. The waveform B2(k, t) after the MAF
is expressed as,

B2(k, t) = B2(k, t)−
1
L

L∑
l=1

B1(k, t −
L + 1
2
+ l), (4)

where tap length l is an odd number. Next, we suppress the
RGB crosstalk at block 10. The channel matrixH is given by,p(r, t)p(g, t)

p(b, t)

 = H

q(r, t)q(g, t)
q(b, t)


=

hr,r hr,g hr,b
hg,r hg,g hg,b
hb,r hb,g hb,b

 q(r, t)q(g, t)
q(b, t)

 , (5)

where q(k, t) is the LED’s brightness, and p(k, t) is each
pixel’s brightness. For simplicity, we omitted the pixel posi-
tion and the BB indicator. The LED spectrum’s emission and

FIGURE 4. Configuration of MIMO equalizer.

the camera’s photosensitivity determine the RGB crosstalk.
The proposed system must estimate the channel matrix H
because the transmitter and receiver cannot share the infor-
mation in advance. The proposed system communicates using
the OOK binary signal; therefore, we employ a CMA on
an adaptive filter for the channel estimation. Fig. 4 shows
the configuration of the MIMO equalizer. The tap matrix is
expressed by,

W =

wr,r wr,g wr,b
wg,r wg,g wg,b
wb,r wb,g wb,b

 . (6)

The equalizer updates the tap coefficient based on the CMA.
When W−1H ' 1, then the RGB crosstalk can be sup-
pressed. The equalizer has the possibility of causing the noise
emphasis; however, the OCC system can ignore the issue
because the SNR is high enough. After the equalization, the
bit decision is performed, andwe obtain the binary signal. It is
difficult to synchronize the camera and transmitter’s clock
rate; a sync error occurs. We applied the simple symbol sync
(Algorithm 1). We cannot adjust the clock error even when
employing Algorithm 1 under a high bit error rate (BER).
Meanwhile the OCC system extracts the ROI; therefore, the
ROI detection requires a high signal-to-noise power ratio
(SNR). Thus, Algorithm 1 can be applied to the common
OCC case. After symbol synchronization, we conduct the
down sampling and obtain the bitstream.

Algorithm 1 Symbol Sync. Algorithm
Require: A is 3× oversampled.
1: if A[i] 6= A[i+ 1] && A[i+ 1] = A[i+ 2] then
2: j,Count = 0
3: while j < 6 do
4: if A[i+ 3j] = A[i+ 3j+ 1] = A[i+ 3j+ 2] then
5: Count = Count + 1
6: end if
7: j = j+ 1
8: end while
9: if Count < 4 then

10: A[i] = [ ]
11: end if
12: end if
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FIGURE 5. Experimental setup.

IV. EXPERIMENT
A. SETUP
This paper evaluated four items. The first item is the altitude
of an RGB-LED-mounted drone. The signal quality depends
on background noise. We set the altitude to 6 m and 15 m
because the drone’s background was trees in the 6-m case
and sky in the 15-m case. The background noise in the 15-m
case is larger than that in the 6-m case. The second item is
the distance between the drone and a camera and the distance
was set to 100 m, 200 m, and 300 m, which is the maximum
distance measured in this park. The longer the distance, the
smaller the drone’s pixels on the image. The third item is
reducing the frame rate. The proposed scheme decreased the
frame rate when detecting the ROI, and the camera filmed the
drone with 600 fps. We reduced the frame rate of 600 fps to
1 or 10 fps, and the reduction rate was 1/600 and 1/60. The
lower the frame rate, the worse the signal quality. The fourth
item is the BB expansion rate to increase the signal pixels,
and we changed the BB expansion rate n from 1 to 10.
Fig. 5 shows the experimental setup. The experimental

field was the east plaza on the expo’70 commemorative park
in Osaka, Japan. We ensured the line-of-sight (LOS) envi-
ronment. Fig. 6 shows the RGB-LED-mounted drone used,
which was a DJI Mavic 2 Pro. The LED was SST-10-DR as
red, SST-10-G as green, and SST-10-B as blue, released by
LUMINUS, Inc. We adjusted the intensity of the RGB-LED
by changing the resistance: 47 � as red, 10 � as green, and
10� as blue. We used Arduino UNO as the signal modulator.
Arduino UNO generated a three-channel 213 − 1 pseudoran-
dom binary sequence (PRBS) and conducted 8B10B encod-
ing, and the symbol rate was set to 200 bps/channel. This
experiment used one drone. The practical case is expected
to increase the number of drones. In such a case, our pro-
posed received signal processing algorithm can be employed.
As other related work, we have proposed drone detection
method (see [9], [26], [28]). The receiver’s camera and lens
were STC-MCS43U3V and 3Z4S-LE-SV-10035V released
by OMRON Corporation. Table 1 shows the parameters of

FIGURE 6. RGB-LED-mounted drone.

TABLE 1. Camera parameter.

the camera. We employed YOLOv3 as the ROI detection.
For the learning process to detect the RGB-LED when using
YOLOv3, we prepared 2,000 photographs of the RGB-LED-
mounted drone as training data. The CMA’s step size for sup-
pressing the interference was set to 0.003. After the symbol
synchronization, we measured the BER. We experimented
five times and obtained 50,000 bits.

B. LED EXTRACTION
Fig. 7 shows the histogram of the confidence score of BB
obtained by YOLOv3 in the RGB-LED (object) detection
period. All the experimental results output a 90% average
score. Furthermore, the mode reached approximately 100%.
The disadvantage of YOLOv3 is to detect incorrect data as
the correct object. Meanwhile, the proposed system con-
ducts the handshake in the link-up period after the object
detection period; therefore, the disadvantage of the YOLOv3
can be eliminated. In addition, the YOLOv3 must detect the
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FIGURE 7. Accuracy of LED detection.

RGB-LED once at least during the object detection period
and has sufficient accuracy in the proposed system from the
experimental results.

C. BIT ERROR RATE TEST
Fig. 8 shows the received waveforms in the 100-m dis-
tance, 15-m altitude, the frame rate reduction of 1/60, and
the BB expansion rate n = 1. Fig. 8 (a) shows each
channel’s waveforms and median without equalization, and
Fig. 8 (b) shows the waveforms after the MAF process. The
long-term amplitude variation and the RGB crosstalk were
removed. Fig. 8 (c) shows the waveforms after removing the
crosstalk. We measured the BER test because it is difficult
to identify changes in the waveform between (b) and (c).
Fig. 9 and 10 show the BER results before and after MIMO
equalization to suppress the RGB crosstalk. The dashed line
in the graphs is the forward error correction (FEC) threshold
at 1.0 × 10−3, which is the limit of the error-free operation.
MIMO equalization improved the BER results. As a com-
parative work, B. Chhaglani, et al. [23] proposed the OCC
systemwith the drone. The camera at the drone films the light
signal transmitted by the LED panel located on the surface.
The concept of the OCC is similar to our proposed system;
however, the related work has not introduced the digital signal
processing functions such as the MAF and MIMO equalizer.
That is, the result of the related work is expected to be worse
than that of Fig. 9.
For the frame rate reduction, the reduction rate results of

1/600 and 1/60 achieved an error-free operation inmost cases.
The 1/60 rate was a better result than 1/600. The change in the
drone position cannot be ignored in the 1/600 case. A frame
rate of 10 fps is needed. The YOLOv3 can be operated in

FIGURE 8. Received waveform when distance = 100 m, altitude = 15 m,
the reduction rate of the frame rate = 1/60, BB expansion rate n = 1.

real-time with a 20-fps frame rate. Thus, the 10-fps operation
is allowed in this system.

For the BB expansion, BER in the 15-m altitude case
occurred when the BB was increased because of the back-
ground noise. The BER in the 6-m altitude case was the

55078 VOLUME 10, 2022



H. Takano et al.: 300-Meter Long-Range OCC on RGB-LED-Equipped Drone and Object-Detecting Camera

FIGURE 9. BER results before the MIMO equalization.

FIGURE 10. BER results after the MIMO equalization.

best in the n = 2 BB expansion because the signal power
increased due to the expansion. Furthermore, when n > 2,
the background noise is larger than the signal, and the BER
deteriorates.

V. CONCLUSION
This paper studied the OCC system using an
RGB-LED-mounted drone and high-speed camera aiming
to the disaster rapid recovery. We employed a CNN-based
object detection algorithm and blind equalizer on the DSP
at the receiver. The experimental results indicated the fea-
sibility of the LED detection and the equalizer. Moreover,
we achieved up to 300-m distance RGB multiplexed trans-
mission. Owing to the image synthesis, the OCC system
conducted an error-free operation even when reducing the
frame rate from 600 fps to 1 and 10 fps at the LED detection.
Our proposed scheme reduced the drone detection frequency
from 600 fps to 10 fps. Meanwhile, we have to study the
separation technique from several hundreds fps video to each
image as a further study.
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