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ABSTRACT Wastewater treatment plants are complex, non-linear, engineered systems of physical, biologi-
cal and chemical processes operating at different timescales. Sensor systems are used to monitor wastewater
treatment plants in order to ensure public safety and for efficient management of the plants. However,
parameters of interest for wastewater can require expensive or inaccurate sensors or may require off-site
laboratory analysis. For example, ammonium is important as a prime indicator of treatment efficiency and
is highly regulated in discharge water. But ammonium sensors are also expensive at over $10,000 (AUD)
per sensor. Soft sensors are computational models that accurately estimate process variables using the
measurements from few physical sensors and can offer a cost-effective substitute for expensive wastewater
sensors such as ammonium. In this paper, we propose a hybrid neural network architecture for learning soft
sensors for complex phenomena. Our network architecture fuses sequential modelling with Gated Recurrent
Neural Network units (GRUs) to capture global trends, with Convolution Neural Network (CNN) kernels to
facilitate learning of local behaviours. We demonstrate the effectiveness of our technique using real-world
data from a wastewater treatment plant with two-stage high-rate anaerobic and high-rate algal treatments.
Secondly, we propose a novel data preparation algorithm that enables the deep learning techniques to learn
from a limited data and facilitates fair evaluation. We develop and learn a soft sensor to predict ammonium
and study its generalization. Our results demonstrate fit for purpose accuracy and that the soft sensor model is
able to capture complex temporal patterns of the ground truth sensor time series. Finally, we publicly release
an annotated data set of a secondary wastewater treatment plant to accelerate the research in the development
of soft sensors.

INDEX TERMS Wastewater treatment, high rate algal ponds, ammonium, soft sensors, hybrid model,
recurrent neural network, deep learning.

I. INTRODUCTION

Wastewater treatment plants (WWTPs) like many indus-
trial processes are cyber-physical systems (CPSs) which
are comprised of interconnected internet of things (IoT)
devices, such as sensors and actuators, typically referred to as
the inputs/outputs (I/O) of a programmable logic controller
(PLC). For optimal treatment performance, several process
variables are actively monitored via sensors to make informed
decisions, be it automatically via integrated process control or
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via manual operator intervention. Automatically controlled
process variables typically include easily measured param-
eters related to maintaining an operational condition within
process (e.g. dissolved oxygen level). Whereas, licensed dis-
charge water quality parameters, are not simple to quantify
and monitor automatically [1]. These licensed water quality
parameters often include the concentrations of ammonium,
nitrates, total nitrogen, phosphates, and biological or chemi-
cal oxygen demand [2].

Unlike most industrial processes, wastewater treatment
has minimal control over the feed to the system, hence
expeditious quantification of process state indicators of
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interest is important to allow for timely response to chang-
ing conditions. Broadly, the process state indicators can be
partitioned into difficult to measure (primary) variables and
easy to measure (secondary) variables. Here the level of diffi-
culty is synonymous to the economic limitations, for instance
the instrumentation is expensive, or availability of results
is subject to time-delayed responses (e.g, offline laboratory
analysis) [2]. In contrast to the difficult to measure vari-
ables, the secondary variables are easily captured via range
of affordable and reliable instrumentation. Due to the nature
of the treatment process, primary variables are contingent
upon a range of other variables governed by the interrelated
biochemical reactions occurring within the system. Under
this lens, the easy to measure variables can be seen as weak
surrogates of primary process variables. This naturally moti-
vates us to explore and develop an algorithm that can closely
approximate a primary variable by leveraging a range of
commonly available secondary variables. Thus effectively,
developing a soft sensor i.e. a computer program that can
potentially replace the expensive instruments by easy to tune,
low latency and a low cost solution.

In essence, soft sensors are computational models that
aim to accurately estimate process variables that can either
not be measured directly or require expensive instrumenta-
tion [3], [4]. These sensors are often data driven techniques
that includes statistical and machine learning models and
requires large volume of annotated data set. The existing
approaches in literature include auto-regressive integrated
moving average (ARIMA) [5], logistic regression [6], prin-
cipal component analysis (PCA) [7], partial least square
(PLS) [8], hidden markov model (HMM) [9], support vec-
tor machines (SVMs) [10], random forest (RF) [11], and
artificial neural networks (ANNs) [12], [13]. In comparison,
ANN models have demonstrated superior and robust perfor-
mance by large margins.

ANN models are a specialized subset of machine learning
algorithms that include hierarchical arrangement of numer-
ous universal function approximators called neurons. The
hierarchical arrangement also inspires its popular alias of
“deep model”. Several arrangements i.e., architectures, have
been devised by the wastewater research community for
inferential purposes of several process variables. However,
most of the available works have discarded the temporal
notion of the processes in inference model design [14]-[19],
since the wastewater treatment processes inherently include
a temporal lag in the process (e.g. collection via a distributed
sewer network prior to centralised treatment at a WWTP
with treatment processes lasting for days). We explore this
further, and conjecture that explicit inclusion of time notion
by designing a specialized design of data-driven pipeline can
significantly improve the performance of soft-sensors.

The wastewater research community has explored and
developed a range of soft sensing algorithms using
machine learning and statistical learning. Among these
techniques, variants of recurrent and convolutional neural
networks are popularly used to model wastewater process
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parameters [20]-[23]. In contrast, the proposed architecture
extracts temporal features from an input time series using
GRUs and afterwards iteratively refines them with the aid
of convolutional layers to perform regression. We argue that
local variations in the learnt temporal features improves pre-
diction performance. The GRUs layers encapsulate sequential
information while considering the correlations among dif-
ferent input time series, and then CNN is applied for learn-
ing local correlations on the temporally enriched extracted
features. The intuition behind this hybrid architecture is
motivated by the fact that wastewater treatment processes are
highly non-linear and the associated multivariate time series
have convoluted correlations. Therefore, we need to extract
distinctive features of each of the correlated multivariate time
series. This is achieved by the application of CNNs filters
on the GRUs output. We demonstrate that the combination
of GRU and CNN unveils additional information that aids
accurate and robust predictions.

The main contribution of this paper is the design of a
novel soft sensor framework that quantifies ammonium con-
centration in real time. The soft sensor framework leverages
ensemble of deep neural network architectures for accurate
predictive modelling, and to enable cost-effective monitoring
for these facilities. It is a novel hybrid model in the wastewa-
ter application domain that combines the strength of Gated
Recurrent Neural Network (GRU) [24], and Convolution
Neural Network (CNN) [25], we call it GRUconv. In contrast
with existing techniques, it takes the temporal notion into
account by modeling the process via recurrent units and
further improves upon the features based on the local trends
captured via convolutional layers. We illustrate the supe-
rior performance of our technique by a detailed study over
ammonium - a critical and expensive indicator in wastewater
treatment. Our exploration includes detailed empirical and
qualitative comparison against existing available techniques
in the wastewater literature. This includes CNN, GRU [24],
LSTM [26], Bi-LSTM and Bi-GRU.

Our framework encapsulates the latent temporal variations
in the input time series by hierarchical arrangement of GRU
units. These units are recursive in nature i.e., process sequen-
tial data to learn the salient macro-temporal features. These
temporal features are additionally refined based on the local
information by repeated traversal through convolutional lay-
ers. Thus the model learns an embedding that can be linearly
weighted to estimate a process variable. We empirically study
the performance of our technique over the data gathered from
a two stage high-rate anaerobic and high-rate algal treatment
process as shown in Figure 1. The curated data set is com-
posed of ~ 12 months duration. The shorter duration makes it
vulnerable to seasonality patterns and that yields imbalanced
distribution in the data. In addition, it is also affected from
sensors internal variance, meteorological variation, missing
data and other external perturbations. These practical issues
makes training of soft-sensors a challenging task.

Deep models are known to require huge amounts of data
for training. In presence of restricted amount of data and
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FIGURE 1. Flow diagram of a two stage wastewater treatment process.

In first stage, wastewater passes through the UASB reactor where organic
waste is decomposed, mineralising nutrients whist producing bio-gas as a
by-product. While in the second stage, wastewater is passed to algae
raceway, where a paddle wheel circulates its flow. This stage removes
remaining organic waste and other nutrients via algal and bacterial
growth.

a skewed distribution it is challenging to achieve generaliza-
tion. This problem is particularly aggravated in the wastewa-
ter industry where only few data sets are available that include
non-recurring seasonal patterns and odd anomalies. These
peculiarities make it challenging to divide the data set into
a training, validation and test sets as trivial split in time
can directly result in partitions that have different statistical
distributions. Learning over such data sets may not be a true
demonstration of learned model generalization. We propose
a robust process for sampling small data sets.

The second contribution of this work consists of a first-
of-its-kind simple intuitive data division algorithm that takes
into consideration the seasonal and other data distributional
problems in validating deep models. The technique, locally
preserves the distribution of train, validation, and test splits
and encourages higher generalization of a trained model.
Algorithmically, it iteratively divides the time series in to
N contiguous data splits also termed windows. These tem-
porally aligned windows are then randomly sampled without
replacement and are included in test, train or validation splits.
In this manner, the data splitting algorithm strives to divide
local patterns in to different splits to encourage the training
of model for higher generalization. In case of fixed split,
as done in literature, the training patterns can be significantly
different. While, proposed technique offers a more candid
evaluation of a real world case.

Our third contribution is the release of annotated real-world
secondary wastewater treatment data set in public domain,
and allows for the development of this and other data driven
research projects within the wastewater treatment field where
there is a limited number of freely available data sets. The
data set was curated with a combination of online and offline
data measurements. We defer further discussion about data
curation setup to § V of this article. Finally, we evaluate
our technique using the real-world data set demonstrating
superior performance to state of the art methods.

In summary, the main contributions of this paper are as
follows:

1) We develop a novel soft sensor to reliably estimate
Ammonium concentration (difficult to measure process
variable) using a few inexpensive sensors.
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2) We propose a data division algorithm for the scant
highly imbalanced time series data. This algorithm
enables the evaluation of a deep model’s robustness and
generalization in a fair manner.

3) We release a real-world annotated data set of a sec-
ondary wastewater treatment process also known as
HRAP. This data set can be a stepping stone to boost the
research in challenging practical scenarios of wastew-
ater treatment processes.

4) We provide detailed comparison analysis of proposed
architecture against five previously used methods.
We empirically and qualitatively demonstrate superi-
ority of our scheme. The proposed GRUconv enables
performance gain up to 37% in root mean squared error
over the closest competitor.

The remaining article is organized as follows. In Section II
we review the related literature. We formulate the prob-
lem in Section III. The proposed technique is discussed
in Section IV-A. We present experimental setup details in
Section V and results in Section VI. The article concludes
and discuss some future directions in Section VII.

Il. LITERATURE REVIEW

In the recent years, owing to stringent environmental reg-
ulations, there has been an ever-increasing interest for the
prediction of process state variables. The relevant work has
followed a bifurcated approach that includes kinetic models
and soft sensors. Kinetic models [27] are based on First Prin-
ciple Models (FPM) that are engineered to simulate a mathe-
matical model of an underlying process. Due to this inherent
dependence on representation, they are case-specific, do not
generalize to slight modifications [28] and require experts
domain knowledge for being devised. Besides, they focus on
ideal steady-states of the processes that limits its adoption
for practical scenarios [29]. On the other hand, soft sensing
enables ease of customization to variations [23], less depen-
dence on the domain expertise and are known for their better
generalization.

Soft sensors have been devised for a broad range of
applications in the wastewater industry, using modelling
techniques, such as PCA [30], PLS [31], SVMs [32], and
ANNs [33]. Among these Contemporary methods ANNs
with Feed Forward Neural Network (FFNN) architecture
being the most popular choice [2], [34]. These mod-
els have been explored to predict Biochemical Oxygen
Demand (BOD) [35], Suspended Solids (SS) [36], nutrient
removal [14], and a range of other processes variables [1],
[15]. Recently, [10] has compared FFNN with support vector
machines (SVMs) to predict total Nitrogen concentration.
Interestingly, the study has highlighted that SVM models
outperform FFNN models. Despite the reasonable perfor-
mance of FFNN and SVM, they cannot inherently capture the
temporal notion of processes and assume all samples are inde-
pendent. However, the industrial processes have dynamical
nature where the process data has temporal correlations [37].
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These temporal patterns have inspired the usage of recurrent
neural networks (RNNs) [38].

Only a handful of studies have explored RNNs [21], [22],
[39], [40]. Bhattacharjeeet and Tollner proposed RNN based
approach to predict BOD and nitrate [40]. In [21], a particular
variant called Long Short Term Memory (LSTM) has been
demonstrated to forecast ammonium and total nitrogen con-
centrations. While Mamandipoor et al. [41] has leveraged a
fully automatic stacked LSTM network for fault detection.
Cheng et al. [23] has provided a detailed analysis of recur-
rent networks that includes GRUs, vanilla-LSTMs and its
flavours for the prediction of process variables. These studies
have demonstrated that deep learning models are capable
to provide higher degree of accuracy. Based on their suc-
cess, we now witness its wide adoption for other prediction
tasks such as trajectory forecasting [42], process control and
automation [43], etc.

For the soft-sensing problem, we propose a novel ensemble
approach that combines GRUs and CNNs to approximate
process primary variable using easy to measure variables.
Our method first utilizes GRUs to extract global features of a
time series while preserving the temporal history of samples.
These temporally rich features are passed onto CNN that
extracts local dependence in the data for prediction purposes.
Our selection of GRUs is motivated by the known vanishing
and exploding gradients [44] issues of RNNs. The detailed
empirical evaluation in § V establishes the superior perfor-
mance of the proposed scheme against other approaches.
In our evaluation, we consider the data issues prevailing in the
HRAP data set, and we carefully prepared the data for training
using data division algorithm 1. We will release our data
division algorithm and GRUconv code, along with annotated
real-world secondary wastewater treatment data set in public
domain to support the paradigm of reproducible research and
for the benefit of research community.

lll. PROBLEM FORMULATION

In this section, we formulate the problem of soft sens-
ing. Let us suppose that we have a set of time-series
[po, ..., Pn»q0, - --,qm] Which is acquired from different
physical sensors on the treatment plant. Here, we have delib-
erately used different symbols to indicate ‘easy to mea-
sure’ variables as ¢, and ‘hard to measure’ as p. We would

like to predict each of the series [po,pi,...,pn] from
g0, g1, -, qm].
For each i, suppose
0 T
pi=0" ., e))
0 T
gi=1q".....q"1, @)

that are sampled at a common interval denoted by 7. Given,
q = (qo,--..,qn) is a subset of easy to measure variables,
we are interested in estimating a prediction function h; for
each p; such that,

v @) = h@ ", )
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where W € N7 is the window of lagged (past) observations,
v,.m(lp) approximates plm and is parameterized by y. These
parameters are stochastically estimated by casting our goal
as an optimization problem to minimize an error function.
We define the error as the mean absolute distance between
the predicted value and the ground truth as,

1 :
5i(Y) = > 1wy =l )
j=W

T-W ~
The soft sensing problem for p; is then to solve,
Y= rr}//in [8:)]. (%)

The above problem can be solved efficiently by a variety
of gradient descent algorithms, we defer the discussion of
particular choice to §V.

IV. PROPOSED APPROACH

We first provide a discussion of the algorithm to prepare test,
train and validation splits from a limited data and then provide
detailed analysis of our proposed neural network architecture.

A. DATA DIVISION
As discussed in § 1, it is imperative to understand the effect
of fixed partitioning when we are restricted by the number
of training samples. Generally, when a data set is small, it is
prone to have an unbalanced statistical distribution. A simple
division of such data into training, validation and test splits
can result in significantly different distributions in the sam-
pled training, validation and test sets. That in turn cast a dif-
ficult learning objective that potentially leads to poor model
generalization. It is known that machine learning techniques
generalize well when there is a similar statistical distribution
of data in the training, test and validation data splits. In order
to make best use of data and circumvent these statistical data
distribution issue, we propose the Data Division Algorithm 1.
The abstract concept of the algorithm is intuitive. It takes
window size W, data samples D, and train/validation
ratio as input and returns the partitioned data respectively.
On line 1 we first initialize Dyy4i,, Dygr and D,y to an empty
set and compute number of possible steps (M) from given
data samples D and window size V. These steps govern the
number of iterations in our algorithm. In a given iteration,
it samples continuous chunk of values w from the source
data D as given on line 8 where the cardinality of this set
is fixed to WW. The values are picked based on the start and
end indices computed on lines 3 — 5. Afterwards, the algo-
rithm decides where does the set w belongs to by sampling
from a generalized multinouli distribution on /ine 10 where
each category has equal probability. Based on this random
selection, it places the selected window in the respective train,
valid, or testing set as given on lines 11 — 22 and increments
the loop iterator. The process is repeated until the maximum
number of iterations have been reached. Thus, in contrast with
fixed partitioning, this approach encourages a similar patterns
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Algorithm 1 Data Division Algorithm

Input: Window Size W, data samples D, training ratio
Niyain, validation ratio N,y

Output: Dirains Dvalidation> Drest -

1: Initialize Dygin to {}, Dyar to {}, Drest to {}, window steps
D

M= L%J’ Mtrain to M x Mraina Mvul to M x Nval,
step m to 0, start index u to 0, end index v to 0, choice ¢
to 0.

2: whilem < M do

3 u<mxW

4 y<—(m+1)xW

5. if v > |D| then

6: v < |D|

7:  end if

8: w<«Dlu...v]l,st|jw =W

99 D<«D—w

10: ¢ ~ Categorical(K = 3,p = 1/3)
11:  if |Dygin] < Mypgin and ¢ = 1 then
12: Dirain < Diain +w

13: m<«m-+ 1

14:  end if

15 if |Dyg| < My and ¢ = 2 then
16: Dyat < Dyt +w

17: m<«m-+ 1

18:  end if

19:  if |Dyegt| < Miesr and ¢ = 3 then
20: Drest <= Diest +w
21: m<«m+ 1
22:  end if
23: end while
24: return

to be included in test, train and validation splits as shown
in Figure 2.

The similarity of distributions in sampled sets of data, i.e.,
train, validation and test can be analyzed by computing the
statistical distance between the available dataset and individ-
ual splits. Kullback-Leibler (KL) divergence [45] is a known
technique in machine learning community that computes the
relatively entropy to estimate differences in distributions.
Figure 2 summarizes the KL divergence of fixed partition-
ing and Algorithm 1 data partitioning. It is evident that
fixed (naive) partitioning of data results in higher KL diver-
gence score between train, validation and test sets. In addition
it is also worth noting that test and validation have a very low
dynamic range in comparison with original data. This may
result in overestimation of performance for some chunks but
may not necessarily lead to generalization. It is also evident
that Algorithm 1 data partitioning results in significantly
lower KL divergence score that indicates higher similarity
among these sets and therefore highlights the suitability of
proposed technique in data partitioning.

For the soft sensing problem, as highlighted in the lit-
erature review in § II that most popular approaches utilize
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statistical techniques with the recent shift towards the data
driven neural network models. Our work focuses on deep
learning techniques as they are easy to scale and have demon-
strated superior performance in variety of applications [46].

B. GRUconv

Existing work has primarily taken a bicephalous approach,
where one stream has focused over exploiting global pat-
terns by leveraging the sequential processing models such as
Recurrent Neural Networks (RNNSs), while the other stream
has focused on the local patterns extracted via CNNs to
make predictions. There is need to combine global context
alongside localized features to achieve enhanced soft sensing
ability. In this work, we seek to mitigate this deficiency and
propose GRUconv. It is a novel hybrid algorithm that utilizes
GRUs in combination with CNNs to encode both, short term
and long term representations of the time series. Figure 3
presents schematic of our hybrid GRUconv model.

Gated Recurrent Unit is a modification to RNN that allows
to deal with long-range sequences. It alleviates the vanishing
gradients issue by introduction of hidden state update and
reset. This allows it to filter and retains relevant information.
GRU uses two gates, namely reset (I',) gate and update
(T"y) gate. The (I',) gate determines how much of the past
information is needed for the next state, and the (I",) gate
decides how much of the previous memory to forget.

Our hybrid model first computes the hidden state 4) of a
recurrent unit i.e., GRU at time step # on multivariate input X
as:

Ty = o (W[, X1+ by),

T, = oW, [h""", X"+ b,),

A = ReLUW,[T, © Y1 X 1] + by),

W =T, 0h" + (1 -Tyoh", ©)

where, © is a element wise product, o(.) denotes ReLU
activation, W,,;, are learn-able network weights, and
bj, Vj are the respective biases.

The output of GRU i.e. hidden state ‘") captures the
global features from the input sequence at each time step
and is reshaped into a tensor of target shape 20 x 20, and
then simultaneously fed into a 1D convolutional layer. Each
convolution layer has multiple filters of size w also known
as kernel/window. These kernels sweep through the 4) and
performs a convolution operation as:

w

h =3 "o (W h + b), )

j=1
where, * denotes the convolution operation between the j-th,
Wi filter of size w and input K" Here, b is the kernel bias and
o is a ReLU activation function.

Convolution is an iterative process where in each step
convolutional kernel (W;) is sweeped over the input K such
that output is the sum of kernel filter multiplied with the
corresponding input values. Each convolution filter produces
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FIGURE 3. Schematic overview of our proposed technique. A multivariate time series of an easy to measure variables highlighted as (g9, q;, . ..

a separate output sequence, thus number of filters and kernel
size decide the output feature size. These layers offer several
discriminative properties: sparse interaction, and parameter
sharing [47]. As the convolutional filters sweeps over the
input time series it captures local information on various
scales. This implies that it requires very few parameter to
learn kernel weights and this is known as sparse interaction.
Also, when the same filter sweeps across all the time steps it
shares its weight and this property is called parameter sharing.
The sparse connectivity and parameter sharing significantly
reduce the number of learnable parameters due to their shared
nature. This in turn, improves the efficiency of learning in
comparison to recurrent layers. These discriminative resultant
features are then flatten and finally processed by dense layers
to predict the hard to measure variable.

The proposed hybrid GRUconv model benefits from the
light weight convolution layers in terms of computational
efficiency as well as its refinement of temporal features
through utilization of local correlations. The results indicate
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»qn) are
first processed by GRU layers to encapsulate temporal dynamics enriched information. Afterwards, these temporal features are reshaped into a target
shape of 20 x 20 tensor, and then fed to cascaded 1D convolutional filters to incorporate localized information. The resultant maps are flattened and fed
to a densely connected layers for the final prediction. Different layers and their respective output feature size has been indicated in blue fonts.

that the proposed algorithm provides highly competitive
results in both quantitative and qualitative aspects. We have
provided a detailed discussion over the evaluation in
Section VI and demonstrated that proposed architecture is
able to learn both long and short term trends that is reflected
by its superior performance.

V. EXPERIMENTAL SETUP

We first give details of the data set, its curation, and data
pre-processing pipeline before discussing the experimental
setup details.

A. HRAP-DATASET

Algae raceways are also known as High Rate Algae Ponds
(HRAPs). HRAPs are a secondary wastewater treatment
process that removes nutrients and organic waste via algal
and bacterial growth. The HRAPs are fed form a high rate
anaerobic digestion process known as an Upflow Anaero-
bic Sludge Blanket digestor (UASB), which acts to degrade
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particulate organic matter to release nutrients and organic
matter for further treatment in the HRAPs. Physical sensors
are deployed in algae ponds for monitoring process variables
including pH, temperature, dissolved oxygen and turbidity
and nutrient (ammonium and nitrate) concentrations. Among
these process variables, the concentration of Ammonium is
of significant importance, it is a prime indicator of treatment
efficiency and is highly regulated in discharge water.

The data set was acquired from one continuous algae
raceways (also known as HRAP) and weather station located
at the Luggage Point sewage treatment plant in Pinkenba,
Queensland (as courtesy of Urban Utilities). The online
HRAP measurements (15 minute logging interval) were col-
lected via Xylem WTW VARION®Plus 700 IQ Ammonium
and Nitrate, pH, Dissolved Oxygen, Turbidity, Total Sus-
pended Solids and Oxidation Reduction Potential Sensors.
Meteorological observations were collected at 15 minute
intervals using a Vaisala WXT536 weather station (tem-
perature, humidity, pressure, wind and rain) and a Global
Water WE300 solar radiation sensor. Offline analytical labo-
ratory measurements were taken 2-3 times a week, including
Ammonium (NHZ{) and nitrate concentrations which were
measured using a Lachat Quick-Chem 8000 Flow Injec-
tion Analyser (Lachat Instrument, Milwaukee, Wisconsin).
To ensure consistency of the collected online data, pH, turbid-
ity and dissolved oxygen probes were calibrated at monthly
intervals using appropriate standard solutions and the ammo-
nium and nitrate probe was calibrated using grab samples
to assess both the nutrient levels and water matrix, using
analytical methods described. This allowed for verification
of the logged readings and where substantial probe drift was
observed this data was removed form the analysis.

The deployed physical sensors sample the process vari-
ables every 15 minutes and log them into the database.
We have utilized the data that was logged between
25 July 2020 and 7 July 2021. Table 1 describes the sensors
and their details that have been used to curate time-series
data utilized in this work. Along with the above mentioned
time-series data (see Table 1), we have explicitly modelled
time of the day (ToD) to segregate the night and day time
readings of the sensor. For this purpose, we utilized a ramp
function whose value gradually increases every 15 minutes
and once it reaches the day end, it drops to zero. The modelled
time and easy to measure process variables are then used as
an input for training of our data driven models. The objective
of our model is to approximate the Ammonium sensor with
sufficient accuracy to make the $10K sensor redundant.

Figure 4 (see § VI) highlights the diverse scales in the
original time-series of ammonium. We bound the diverse
range of the time series by performing ‘min-max’ normal-
ization that in turn is vital for the training of deep models.
Further, the acquired data from the wastewater treatment
plant has a duration that is roughly a year, thus it essentially
lacks recurring seasonal patterns. Machine learning models
generalize well when there is a similar statistical distribu-
tion of data in the training, test and validation data splits.
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All these considerations make the development and learning
of a data-driven model on such a data set a challenging task.

B. DATA PRE-PROCESSING AND EVALUATION METRICS
Synthetic data is usually free of any noise and therefore it is
often utilized for training purposes. However, real life data
suffers from a range of external perturbations that results in
noisy [48] or missing entries [49]. Presence of noise in real
data causes the deep learning models to learn an incorrect
representation and this results in sub-optimal outcomes. Thus
pre-processing of data is an essential step in training data
driven models.

C. MISSING ENTRIES

K-nearest neighbours algorithm is widely used to impute the
missing entries [49]. However, they may add process depen-
dent biases in the training data. We have therefore adopted a
conservative approach and resorted to remove all the entries
where any sensor data was missing in the available data. After
removal of missing entries, we have 25, 812 samples in total.

D. NOISE REMOVAL
For noise removal several approaches have been proposed.
For example, in [23] exponential smoothing filter was used to
de-noise real world WWTP data. Similarly, we followed the
popular approach smoothdata and utilized its implementation
available in Matlab [50]. In essence, this technique has a mov-
ing average filter that estimates the window size heuristically,
such that it maintains x percentage of input energy.

All the input/output features were normalized to [0,1]. The
normalization enabled us to fairly compare prediction results
in a scale independent manner.

E. EVALUATION METRICS

We evaluate the performance using Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and coefficient of
determination (R?). For details on advantages and disadvan-
tages of each metrics, we refer readers to [51] paper.

F. DATA SET PARTITIONING

The empirical evaluation includes the HRAP data set that
has been discussed in Section V-A. The available data
of &~ 12 months includes seasonal variations and other non-
stationary trends. It is not trivial to divide such data set into
a training, validation and test sets since a naive split in time
can directly result in partitions that have different statistical
distributions. This may result in under or overestimation of
the trained model. To circumvent this issue, we prepare data
divisions using Algorithm 1. It create windows of 24 contigu-
ous data samples. These windows are then randomly sampled
(80%) to create the training split, while the test and validation
split includes 10% each. Following the machine learning
norm, the model that had the best score over the validation
split was saved. Further, its score over the test split was then
evaluated and reported.
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TABLE 1. List of relevant physical sensors for wastewater monitoring. The first column indicate the sensor name, the second column provides the
measurement units and the last column indicates the instrumentation cost. It is evident that Ammonium and Nitrates are associated with very high

sensing costs.

| Physical Sensors |

Description (units)

| Instrumentation Cost (~<AUD) |

Galvanic Dissolved Oxygen | Measurement of Dissolved Oxygen (mg/L) $ 2000

pH Single-rod measuring cell for wastewater (-) $ 1500

Turbidity Scattered Light Measurement (NTU) $ 3500

Temperature Algae pond’s temperature (°C) Included with other sensors
Ammonium and Nitrate Ammonium and Nitrate concentrations (mg/L) > $ 10,000

Rain Rain intensity (mm) $ 2000

G. MODELS TRAINING

In our experiments, we employ CNN, LSTM, GRU, Bi-GRU,
Bi-LSTM and GRUconv for the regression task. We observed
that our framework performs similar for the choice of history
samples between 4 and 8. In this study, we have fixed the
size of history as 4 samples (1 hour) for every input feature.
All models are trained with Keras package [52] on top of
TensorFlow [53] in python. Maximum epochs were set to
200 with early stopping mechanism. Adam [54] optimizer
was selected for the learning of model parameters with a
dropout probability of 0.2. We set learning rate between
10~* to 1073 to train the models. We set the batch size
of 32 and use NVIDIA GeForce RTX 3080 GPU to run
our experiments. Our code implementing data division algo-
rithm, GRUconv architecture, pre-trained models and HRAP
data set will be released on acceptance of this research
paper from https://github.com/MairaAlvi/AmmoniumSensor
Approximator.

H. MODEL PARAMETERS

The number of parameters of a neural network model governs
the performance, its memory foot print as well as the run
time efficiency of an algorithm. To ensure fair comparison to
promote reproducible research paradigm, we have included
model parameters in the Tables 1 — 6 of the Supplementary
Material. All of the models were trained in a similar fashion
that includes fixed batch size of 32, dropout probability of 0.2,
and learning rate of .0010. Please note that for all the models,
the best hyper-parameters were identified by varying the
number of layers between 2 — 6, the learning rate between
10~* to 1073, dropout probability between 0.1 — 0.5. Sim-
ilarly, several choices of activation function were explored.
This includes ‘ReLU’, ‘Tanh’, ‘SELU’ as well as no activa-
tion. In addition, the number of neurons in different layers,
including recurrent layer and convolutional layers were also
varied in a broad fashion. The reported results include the best
performing representative model.

VI. RESULTS AND DISCUSSION

We have conducted a detailed empirical study over the HRAP
data set to investigate the performance of our proposed tech-
nique. For comparison purposes, the accuracy of each algo-
rithm is measured over popular metrics including RMSE,
MAE, and R2. The best results are summarized in Table 2.
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TABLE 2. Comparison of techniques over different evaluation metrics.
The first column indicates the description of training algorithm. The rest
of columns indicates the average error alongside standard deviation over
training 10 models from scratch on a single sampled data. The error
metrics include RMSE in second column, MAE in third column,

and R? in last column. The results in bold highlight the

best performing model scores.

\ Model \ RMSE \ MAE \ RZ |
Stacked CNN 05717 £ .0258 | .0236 & .0082 | .9189 & .0607
Stacked LSTM 05243 £ 0188 | .0182 £ .0050 | .9321 & .0474
Stacked GRU 04862 £ 0143 | 0164 £ .0033 | .9429 & .0360
Stacked Bi-GRU 05212 £ .0159 | .0179 £ .0061 | .9399 & .0272
Stacked Bi-LSTM | .06252 £ .0206 | .0199 £ .0060 | .9090 £ .0446
GRUconv 03062 £ .0072 | .01261 +.0031 | .9791 + .0095

To avoid the impact of random initialization [55], the reported
scores are averaged over 10 runs. The Table 2 highlights that
proposed technique of GRUconv outperforms all other meth-
ods and achieves the lowest 0.03062 value of RMSE, which
provides a W x 100 = 37% gain over the closest
competitor. GRUconv maintains superior performance over
the other metrics with a gain of 23% for MAE, and 4%
for R2. We conjecture that our approach’s main strength
is attributed to its superior feature extraction that extracts
both, macro and micro temporal information, in contrast with
other methods. GRUconv encodes global dynamics of a time
series via temporal modelling through the GRU layers and
afterward enhances it by repeated application of convolution
filters. Finally, these features are weighted to produce final
regression value.

Although quantitative evaluation is important to measure
the performance of a scheme, a qualitative study is vital to
analyze the performance of a scheme at specific regions such
as flat, spikes or crevices. We have included qualitative com-
parison of different techniques in Figure 4 that reveals several
interesting insights. It can be observed that, CNN predictions
suffer from significant temporal misalignment that exhibits
severe oscillatory behaviour between days 15 to 30, 80 to 90,
and 150 to 170. However, its predictions on the other regions
of the time series are relatively reasonable. We conjecture
that the transition of ammonium time series for the above
mentioned days may be improved via inclusion of a global
context available in the previous time steps. CNN utilize local
features over a narrow input window for decision purposes.
Although they can capture local features, the inherent absence
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FIGURE 4. Qualitative comparison of predictions by different deep learning algorithms. Proposed algorithm (GRUconv) results are indicated as red line,
while the reference Ground truth values are indicated in black. The top subplot compares the performance of each representative models, while bottom
subplot compares GRUconv with its closet competitors (BiGRU and GRU) for clear visualization. Note: this figure is best visualized in the digital format.

of memory limits their ability to capture a global context to
perform well in challenging wastewater prediction.

We turn next to recurrent neural networks that are spe-
cialized for processing sequential data [47], [56]. It can be
observed that its variants including GRU, LSTM, Bi-GRU,
and Bi-LSTM often suffer from temporal misalignment and
overshooting. LSTM predictions follows correct shape of
ground truth time series, but with some temporal misalign-
ment on days 11, 18, 106 to 108, and on day 180. It under-
predicts with an error of approximately 30% on day 11, and
regions between days 106 to 108 are over predicted with a
margin of 70%. While GRU predictions are precise and tem-
porally localized except for day 18, 30, 80, 102, 180 and from
110 to 115. Both, LSTM and GRU provides adequate approx-
imation of the temporal variations in ammonium. However,
certain regions in the ammonium time series are either under
or over predicted that may provide false information to the
plant operator. Reliable and robust estimates of processes is
vital for the process management and control of wastewater
treatment plants.

The recent variants of RNNs includes the bidirectional
processing units and have substantially outperformed unidi-
rectional neural networks in several applications like speech
recognition [57], and hand-writing recognition [58]. In terms
of operations the information flows forward and backward
through time. So effectively, one RNN moves forward from
start to the end of sequence, and another RNN moves back-
ward through time (i.e., from the end of sequence). In context
of wastewater treatment plant, the community has adopted it
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for p-step ahead prediction of flow rate [42] with significant
improvement over other methods. However, in context of
discussed application, our empirical and qualitative results
unfolds a different story. We have included additional com-
parisons with the bidirectional models to validate the supe-
rior performance of GRUconv. Despite highly competitive
R? score of Bi-GRU, the model’s predictions are imprecise
with a margin of 60% at day 18, 20% at day 80, 80% at
day 102, and 18% between days 160 to 180.

A close inspection of qualitative results, indicates that
Bi-LSTM predictions are non-sharp, with possibly large tem-
poral misalignment. It is emphasized that, wastewater treat-
ment plant is a causal system, and any information of the
system at time ¢ is only dependent on the information from the
past therefore the features from future to aid the previous time
steps as done in bi-directional recurrent neural networks may
not be helpful and may potentially harm the generalization
ability. In contrast, our method embeds both, global and local
temporal dynamics by hierarchically applying GRU and CNN
respectively. As illustrated in Figure 4, it has some temporal
misalignment’s at day 40 and 175, but the error margin is
less than 5%. It also over-predicts by an error of 30% on
day 102, and 8% on days between 130 to 135. Overall,
it demonstrates precise temporal localization throughout the
different regions of the time series. In Figure 5, we include
the visualization of R2 (correlation of coefficient) score for
top four best performing algorithms over different train-test
splits (for cross-validation) of available data. These splits
were controlled by setting random sampling in Line 10 of
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FIGURE 5. Coefficient of determination (R2) for different algorithms over different train-test splits of data sampled by random seed. The algorithm is
indicated in the top row and the seed values are indicated in the last column respectively. These correlation of coefficients indicates match between model
predictions and the ground truth, where higher scores imply a better fit. For brevity, only top four best performing model scores have been included.

Algorithm 1. In practice it is achieved by setting the seed
value of the sampling algorithm. R? scores illustrate how
well the respective model predictions approximate to the
true values. As can be seen, our method outperforms other
methods by a significant margin. This justify the noticeable
gain achieved by the proposed architecture over the state-of-
the-art methods.

A. FAILURE CASES

One important aspect of analyzing the algorithm’s perfor-
mance is to consider the failure cases of poor predictions.
Figure 4 shows that some days are consistently hard to predict
for all the models including GRUconv. The predictions of the
top 3 performing models and ground truth for reference are
shown in Figure 6 and Figure 7. As can be seen, in Figure 6 on
days between 108.75 to 109.25 Bi-GRU, GRU, and GRUconv
suffer from overshooting with a magnitude of 90%, 80%,
50% error respectively. This is anomalous behaviour. For
the remaining days GRUconv predictions are close to the
groundtruth. We inspected the input features and noticed that
during the days with anomalous predictions a wet weather
event was reported with a maximum rainfall accumulation
between 27 40 mm. The rainwater associated with the
wet weather events dilutes nutrients which in turn affects pH
and turbidity. Consequently, the pH reduces more than usual
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FIGURE 6. lllustration of qualitative results of hard to predict days by all
the models (For brevity only top 3 best performing models are plotted).
Each model overshoot between day 108 to 109, and GRU model
predictions are also anomalous between the end of day 109 to quarter
past day 110. Overall, GRUconv models predictions in comparison to GRU
and Bi-GRU are less erroneous.

and turbidity also drops due to dilution and limited sunlight
associated with the wet weather event.

The soft sensor models approximate an algal system where
the processes are dominated by pH and turbidity. These mod-
els are unable to predict accurately on rainy wet weather
days. All models predict more (i.e. overshooting) ammonium,
while in reality, it does not change much due to the dilution
of the nutrients by the rainfall event. The poor behaviour
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FIGURE 7. Qualitative analysis of anomalous days that are hard to
predict. All the models under predict between days 164 to 166 with
roughly same magnitude of error. Alongside, Bi-GRU predictions are also
imprecise before day 164, on day 168, and 170. Overall, both GRU and
GRUconv have highly competitive performance on these days.

of models on these days can be attributed to the low num-
ber of training samples for the extreme wet weather days.
This in turn highlights the importance and need for larger
and more comprehensive wastewater data sets. Alternatively,
wet weather events could be addressed using oversampling
techniques. Interestingly, among all the models GRUconv
prediction had a relatively smaller overshoot and thus indi-
cates superior performance in the challenging scenario of
infrequently observed wet weather events.

Furthermore, Figure 7, illustrates additional outlier days
that are not predicted well by any of the models. As shown,
all the models are under-predicting with approximately 17%
of error. To investigate the cause of this under-prediction,
we look at the model inputs and observe that pH is over-
shooting these days and hence we predict a lower nutrient
concentration. It is sufficient to note that Bi-GRU model
predictions are off-beam on various regions between days
164 to 172. This establishes that in the wastewater treatment
process, variables are driven by the causality of the system.
Therefore, bi-directional traversal between future and past
confuses the model that leads to erratic model predictions.

To consolidate the effectiveness of our technique
as summarized in Table 2, we additionally performed
cross-validation on 10 different train, validation and test splits
of data sampled by random seed values using Algorithm 1.
The results of GRUconv and the best performing other
approaches are indicated in Table 3 and the respective box
whisker plots are indicated in Figure 8. It can be seen that
GRUconv performs on-par or better than the existing state-of-
the-art methods and hence is a reliable model that learns the
complex global and local temporal dynamics of a ammonium
time series.

In Figure 8, it can be seen, both bidirectional recurrent
neural networks do not achieve low RMSE in comparison
to their unidirectional variants. It is noteworthy that LSTM
model is erratic with large variance. However, CNN, GRU,
and Bi-LSTM have very small variance. GRUconv model
has marginally higher variance than GRU but overall supe-
rior performance on 10 random sampled data distributions.
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\ Model \ RMSE \ MAE RZ |
Stacked LSTM 07081 £ .0127 | .02095 & .0027 | .7763 & .0266
Stacked GRU 106305 £.0090 | .01931 £ .0016 | .8970 & .0318
Stacked Bi-GRU 06654 £ .0103 | .02165 £ .0033 | .8778 & .0413
Stacked Bi-LSTM | .07477 £ .0073 | .02259 + .0017 | .8579 + .0286
GRUconv 04909 £ .0106 | .01655 £ .0022 | .9305 £ .0318
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FIGURE 8. Comparison of prediction errors (i.e. RMSE) of different
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Figure indicates that GRUconv's median is nearly equal to the minimum
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efficacy of our technique for a contemporary practical problem.
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FIGURE 9. Comparison of residuals of GRUconv and GRU (closest
competitor) over four random sampled data distribution sets. In second
subplot the performance of both GRU and GRUconv models is highly
competitive. However, in first, third and final subplot GRUconv has
minimal residual that explicitly ascertain its superior performance.

Figure 9 shows the residuals of GRUconv and its closest
competitor GRU over 4 different cross-validation sets chosen
from our experiments. It can be seen that the residuals in
GRUconv are consistently lower than those of GRU and
that GRU has a few outlier residuals that do not occur in
the GRUconv model.
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When considering the use of a soft senor in an industrial
process sharp changes in values are of particular concern as
they are likely to lead to undesirable operational responses.
In the case of process monitoring sudden changes are likely to
generate false alerts, particularly out of range alerts, resulting
in wasted operator time and effort. This is of even more
concern if the soft sensor is to be used for process control
as the sudden jump in value would generate a large instanta-
neous error value which may result in a large operating point
change. This in turn can lead to increased operation costs, and
in extreme cases can cause damage to equipment. In order
for a soft senor to provide value in an industrial operational
context, it needs to provide sufficient information for actions
to be taken which requires both long term and short term
accuracy. Therefore, our model meets the practical challenges
of soft-sensing in WWTPs.

B. FEATURE IMPORTANCE RANKING

In addition to our comprehensive qualitative and quantitative
analysis, we investigate the relative importance of each input
feature for the predictive modelling problem. This explo-
ration is for better understanding of the data, model, selection
of optimal input features, and in the discovery of key factors
in this specific domain. In this analysis, we utilized the same
best performing models as indicated in Table 2. The input for
each of these models was suppressed, one feature at a time.
That is, for all input times each input feature was replaced by
its mean value. This, allows us to keep the input shape same
for the neural network models.

In Figure 10, we summarize the importance of each feature
by analyzing the RMSE of the GRUconv model, where high
RMSE represents the relative importance of the feature. For
clarity, we have only included GRUconv results in this figure.
Alongside, we observe a similar trend of feature importance
for all other models (see Figure 1 in Supplementary Mate-
rial). As shown in Figure 10, when pH input is suppressed,
the model performance drops significantly and RMSE
is & 25%. This highlights that pH has the biggest impact on
the prediction of ammonium. This is associated with the bio-
logical phenomenon where algal activity (and ammonia gas
stripping) are related to the pH. Elevated pH coincides with
high algal activity (i.e. fast carbon dioxide (CO;) uptake).
Similarly, turbidity has a significant impact on the perfor-
mance of ammonium prediction. Turbidity is linked to algal
biomass quantities so it represents the magnitude to which
the system can respond. More algae allows chemistry in the
system to change faster, with more ammonium uptake, and
pH and dissolved oxygen (DO) increase.

On the other hand, DO has less impact than pH or Tur-
bitidy. This is because DO is not as closely linked as pH to the
ammonia volatilisation phenomenon or CO; uptake by alage
biomass growth. There are other processes that will directly
influence the DO concentration such as algae photosynthesis
and respiration bacterial respiration, and exchange with the
atmosphere. We observe that temperature and time of day
have low impact on the model predictions in comparison
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FIGURE 10. Illustration of relative importance of each feature in terms of
Root Mean Squared Error (RMSE). The higher RMSE indicate more
relevance of the input feature with target variable (i.e. Ammonium).

to both turbidity and pH. Temperature does influence the
treatment system activity but there were no large swings in
the original temperature time series and so it does not have
a big impact on the ammonia in the time frames of this soft
sensor. Also, time of day, could be redundant because the pH
profile reflects the time of day with its observed diurnal trend.
Interestingly, rain from wet weather events has the smallest
influence on the model but rain should dilute the system and
change the ammonium concentration. We believe that rain has
a small impact because wet weather events are infrequently
observed in the data set and so the model ignores it most of
the time.

C. COMPUTATIONAL TIME AND MEMORY FOOTPRINTS
Finally, we compare the inference models for their computa-
tional efficiency, and their memory footprints of training and
forward pass. The training duration averaged over 50 runs is
summarized in Figure 11, and memory usage during train-
ing and forward pass are elaborated in Figure 12. In terms
of computations, the CNN model is the most efficient and
requires approximately 2 minutes for training. This is because
the convolutional layers are easily parallelized and hence
naturally suitable to hardware acceleration available in the
GPUs. Next, we observe that in comparison, GRUconv takes
almost twice the time as CNN’s. It is inherently slow due to
its sequential nature of processing time series that cannot be
parallelized. As GRUconv is a combination of both GRUs and
CNN:s, so it is somewhat comparable to both of them. How-
ever, interestingly it is twice faster than GRUs and LSTMs
due to fast convergence. Among all models, the bi-directional
techniques are most expensive to train due to their sequential
nature that requires dual traversals in each training example.
Memory footprint of an algorithm is important aspect to
consider in real time deployment in resource constrained
environments such as remote wastewater plants. It depends
on several factors such as specific architectures, their ease
of parallelization and implementation peculiarities. However,
it indirectly indicates algorithmic complexity. We estimated
the memory utilization using the Nvidia utility of ‘nvidia —
smi’ by running each model 10 times and taking the average.
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FIGURE 11. Average training duration of each model over Nvidia GeForce
RTX 3080 GPU. The statistics are calculated for training 50 models over
the batch size of 32, with maximum epochs of 200 with dropout
probability of 20%.
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FIGURE 12. Nvidia GeForce RTX 3080 GPU memory consumption of
training and forward pass, Tensorflow CNN, GRUconv,Bi-GRU, Bi-LSTM,
LSTM, and GRU models with the batch size of 32, with maximum epochs
of 200 with dropout probability of 20%.

The estimates values are summarized in Figure 12. It can
be observed that during training, all models consumes more
memory. This is because both forward and backward passes
are required. However, for the predication operation in practi-
cal deployment, we only require the forward pass on a trained
model which requires significantly less memory. Figure 12
indicates that there is a significant drop in memory consump-
tion for forward pass for all uni-directional, and bi-directional
recurrent layers. CNN and GRUconv have marginally low
memory usage. This could be associated with the implemen-
tation ease that is associated with CNN layers. Optimized
convolution operation often utilizes frequency domain via
Fast Fourier Transform that is multi-fold faster than vanilla
implementation. Overall, CNN and GRUconv consumes less
GPU memory than other models for training and it offers
similar memory consumption for forward pass.

Although the computational, and memory footprints are
an important factor that governs the cost of a developed
soft sensor, however it should be considered alongside the
inference performance of a model. Among all techniques,
GRUCconv provides an acceptable balance between the quality
of inference and the associated training cost. Hence, it is bet-
ter suited for the soft-sensing task and can be further tested in
other similar wastewater treatment parameters and processes.
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The takeaway message of this Section is that the GRUconv
model is obtaining the highest performance while minimizing
the needed computational time and memory resources.

VIl. CONCLUSION AND FUTURE WORK

We presented a novel approach to craft a soft sensor that
can be a cost effective alternate to an expensive instrument
in a wastewater treatment facility. Our technique performs
on-par or better than the existing state-of-the-art models. Our
model exploits the strength of recurrent layers to capture
long-term temporal patterns and uses convolutional kernels
to extract localized short-term trends for prediction pur-
poses. The empirical and qualitative evaluation on real-world
(HRAP) data set ascertain the superiority and effectiveness of
our proposed GRUconv model.

Further, we proposed a data division algorithm when the
time series data is not only scarce, but also lacks recurring
seasonal patterns and suffers from odd anomalies. Fixed par-
titioning of such time series provides an overestimation of
the model’s performance. Our algorithm splits such data in
windows to keep temporal information intact and randomly
samples the windows. This results in data splits that have
almost similar statistical distribution in training and testing
enabling fair evaluation of the generalizability of the models.
Finally, we release a real world annotated data set of a sec-
ondary wastewater treatment plant located at Luggage Point,
Queensland, Australia. The public release of such data set
will support the paradigm of reproducible research, for the
benefit of wastewater research community.

This work inspires several promising directions for future
work. Firstly, we intend to extend this idea for other wastew-
ater treatment process variables such as Chemical Oxygen
Demand (COD) [59] and micro-algal cell counts [60] that
require offline laboratory analysis. Real-time estimates of
these variables can enhance wastewater treatment efficiency
and management. Secondly, we aim to use Bayesian deep
learning [61] to investigate for any further refinements in
predictions. Thirdly, new loss functions can be explored to
improve learning performance. For example, explicitly utiliz-
ing silhouette information or using an ensemble of losses can
be further investigated to improve qualitative and quantitative
aspects.
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