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ABSTRACT Regularization plays a crucial role in reliably utilizing imaging systems for scientific and
medical investigations. It helps to stabilize the process of computationally undoing any degradation caused
by physical limitations of the imaging process. In the past decades, total variation regularization played a
dominant role in the literature. Two forms of total variation regularizations, namely the first-order and the
second-order total variation (TV-1 and TV-2) have been widely used. TV-1 has a disadvantage: it reconstructs
images in the form of piece-wise constants when the noise and/or under-sampling is severe, while TV-2
reconstructs natural-looking images under such scenarios. On the other hand, TV-1 can recover sharp
jumps better than TV-2. Two forms of generalizations, namely Hessian-Schatten norm (HSN) regularization,
and total generalized variation (TGV) regularization, have been proposed and have become significant
developments in the area of regularization for imaging inverse problems owing to their performance. While
the strength of TGV is that it can combine the advantages of TV-1 and TV-2, HSN has better structure-
preserving property. Here, we develop a novel regularization for image recovery that combines the strengths
of TGV and HSN. We achieve this by restricting the maximization space in the dual form of HSN in the
same way that TGV is obtained from TV-2. We call the new regularization the generalized Hessian-Schatten
norm regularization (GHSN). We develop a novel computational method for image reconstruction using the
new form of regularization based on the well-known framework called the alternating direction method of
multipliers (ADMM). We demonstrate the strength of the GHSN using some reconstruction examples.

INDEX TERMS Regularization, total variation, total generalized variation, Hessian-Schatten norm, inverse
problems, MRI reconstruction.

I. INTRODUCTION
Images acquired using different imaging devices are
inevitably corrupted due to the physical limitations of the
image formation model. An estimation scheme that employs
knowledge of the image formation forward model to gen-
erate a better quality estimate is known as image restora-
tion/reconstruction [1]. The relative improvement in the
image quality obtained by image restoration/reconstruction is
typically significant in most modalities in general, and in par-
ticular, in modalities such as MRI imaging [2], [3], computed
tomography [4], [5], confocal microscopy [6] and widefield
microscopy [7]. One of the classical approaches to image
restoration is the regularized approach [8]. It formulates the
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required reconstruction as the solution to the optimization
problem as given below:

gopt = argmin
g

J (g) =
[
G(m, g)+ λR(g)

]
, (1)

where G(m, g) is the data fitting functional that measures the
goodness of fit of the candidate image g to the measured
image m, and R(g) is the regularization functional that mea-
sures some kind of roughness of the image. The structure of
the data-fitting term is dependent on the forward model of
the imaging device and the assumed statistical model of the
noise. The regularization functional [9] represents the prior
information we have about the class of images we are trying
to restore. The constant term λ is a user parameter that allows
a tradeoff between the regularization term and the data fitting
term.
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The recent leap in the computing power of desktop comput-
ers led to the application of deep neural networks (DNN) for
image restoration [10]–[16]. Themain argument that supports
the use of DNN is that, while regularization methods impose
ad hoc prior beliefs on the image to be restored, a trained
DNN encompasses a more natural knowledge resulting from
training data. However, a recent work by Hansen et al. [17]
shows that such learned maps can be unstable. Further, the
need for a large amount of training data limits the applicabil-
ity of DNN based methods. In this paper, we limit our focus
to regularization based methods.

Design of regularization functional R(g) is a long-studied
problem in signal and image processing [1]. One of the classic
regularization techniques is Tikhonov regularization [18].
Tikhonov regularization was originally employed for solving
integral equations, but it proved to be successful in imaging
inverse problems as well [19]. The earliest form of Tikhonov
regularization was constructed using sum-of-squares of the
candidate image/signal [18], and then the later forms were
constructed using the pixel-wise sum of squares of l2 norm
of gradients. When the image formation model is represented
by blurring, reconstruction using Tikhonov regularization can
be obtained in a single step using a simple formula expressed
in the Fourier domain, which makes Tikhonov regularization
attractive. However, Tikhonov regularization leads to over-
smooth solutions. Nevertheless, Tikhonov regularization is
still widely used, especially in large scale problems such as
3D deconvolution [20].

Later non-quadratic forms of regularization came into the
picture owing to their better ability to preserve the resolution
in the reconstructed images. Earliest forms of non-quadratic
regularization were based on l1 norm of the wavelet transform
of the candidate image. Representative methods in this cate-
gory include ISTA [21]–[23], FISTA [24] and TwIST [25].
These methods are primarily based on the fact that wavelet
transform of typical images have low l1 norm. The basis used
in the wavelet transform can be adapted to data to give better
performance in image restoration problems [26]. It should
be emphasized that the factor that makes wavelet regulariza-
tion better than the Tikhonov is that the wavelet transform
has inbuilt derivatives and hence wavelet regularization in
some sense becomes equivalent to l1 minimization image
derivatives. This leads to better preservation of structures than
Tikhonov regularization which smooths out edges.

It was then recognized that minimizing non-quadratic
measures of image derivative directly (instead of using the
wavelet transform) gave better results, and this led to the
era of total variation (TV) regularization in solving imag-
ing inverse problems [27]–[36]. TV regularization was con-
structed using the pixel-wise sum of l2-norm of gradients [27]
which was found to yield better reconstructions. TV can
better retain edges [27] in the reconstruction as compared to
Tikhonov regularization [31], and in particular, it can recover
sharp jumps in the reconstruction even in the presence of large
amount of noise and/or undersampling. At the same time,
it has a disadvantage that, in the presence of a large amount of

noise and/or undersampling, it approximates smooth intensity
variations in terms of piece-wise constant segments, which
is known as staircase effect [37]. Higher-order extensions
of TV [37] have been proposed to avoid the staircase effect
and they deliver better restoration. Second-order TV (TV-2)
[38]–[40] was constructed as the pixel-wise sum of Frobe-
nius norm of image Hessians. TV-2 recovers linear inten-
sity variations in the presence large amount of noise and/or
under-sampling; however, it loses the ability to reproduce
sharp intensity jumps that TV-1 can recover. More recently
TV-2 was combined with a modified form of TV-1 regular-
ization involving local averaging of image gradients to obtain
improved image restoration [41]. A similar form was also
applied for image inpainting problem in [42]. Another form
of regularization that combines TV-1 and TV-2 in a spatially
adaptive manner was proposed in [43] for improved image
restoration.

A generalization of TV-2, known as Hessian-Schatten
norm (HSN) regularization is obtained by replacing the
Frobenius norm of the Hessian with the Schatten norm of
the Hessian. Schatten norm is the lp norm of the vector of
eigenvalues of the Hessian [44], and when p = 2, this
regularization becomes identical to TV-2. HSN regularization
is better than TV-2 in the sense that setting p to be less
than 2 typically yields improved results. HSN regularization
has been applied for fluorescence microscopy [45], [46] and
CT [47] imaging modalities. Image restoration with Hessian
Schatten-norm can be solved with wide variety of assump-
tions on the noise model, e.g. Poisson [46], Gaussian [44] and
mixed Poisson-Gaussian [48].

A generalization of total variation to higher-order terms,
named total generalized variation (TGV) has been pro-
posed [49]. It is generalized in two ways: it is formulated
for any general derivative order; for any given order, it is
generalized in the way how the derivatives are penalized.
The second form of generalization is obtained by expressing
the standard total variation regularization in dual form as a
maximization, and then by imposing spatial smoothing con-
straints in the maximization problem. The second aspect of
generalization has a more significant impact from a practical
point of view. In fact, the version of TGV regularization that
has been applied for non-trivial inverse problems (problems
other than denoising) obtained by restricting the maximum
order to be two (TGV-2) [50]; compared to the most widely
used TV-2 regularization, it differs only by the second aspect
of generalization. TGV-2 allows combining the best of TV-1
and TV-2: it allows retrieving sharp jumps as TV-1 does; at the
same time, it gives reconstructions free of staircase artefacts
as TV-2 does.

In this paper, we develop a novel type of regularization
by generalizing the Hessian-Schatten norm regularization
in the same way that TGV-2 regularization generalizes the
TV-2 regularization. The resulting form of regularization
includes TV-2, TGV-2, and Hessian-Schatten norm regular-
ization as special cases. We call this regularization the gen-
eralized Hessian-Schatten norm regularization (GHSN), and
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we develop a novel optimization method for image recon-
struction using the GHSN. Our main contribution can be
summarized as follows:
• We generalize the Hessian-Schatten norm regulariza-
tion in the same way the second-order TGV regular-
ization [49] generalizes second-order TV regularization,
which we call the generalized Hessian-Schatten norm
regularization (GHSN) [38]–[40].

• We develop this generalization in a way that is easily
accessible without requiring the reader to study tensor
calculus as required by the development given in [49].

• We propose a novel variable splitting scheme involv-
ing novel proximal operators for minimization result-
ing cost function using ADMM framework [51], [52],
and develop formulas for these proximal operators. The
resulting reconstruction method gives results that are
better than the method proposed in [53] even if GHSN
is restricted to be identical to the form used in [53].
This confirms the numerical advantage of the proposed
minimization method.

We demonstrate the effectiveness of GHSN regularization
using numerical experiments involving reconstructions from
sparse Fourier samples and sparse spatial samples.
Notations and Mathematical Preliminaries:
1) Vectors are represented by lower-case bold faced letters

with the elements represented by the same letter with a
subscripted index. For example, v denotes a vector and
its ith element is denoted by vi. For a vector v, ‖v‖p
denotes the lp norm given by ‖v‖p = (

∑n
i=1 |vi|

p)1/p.
It can be shown that ‖v‖p with p → ∞ converges to
the component of v that has the largest magnitude, and
hence we write ‖v‖∞ = maxi{|vi| : i = 1, 2, . . . , n}.

2) We will deal with vector images; vector images are dis-
crete 2D arrays where each pixel location has a vector
quantity. It is denoted by lower-case bold-faced letter
with a bold-faced lower-case letter as an argument.
For example, v(r) is a vector image with r = [x y]t

representing a 2D pixel location. Depending on the
context, the symbol denoting the pixel location may be
omitted.

3) For a vector image, v(r), ‖v‖1,2 denotes ‖v‖1,2 =∑
r ‖v(r)‖2. It is the sum of pixel-wise l2 norms, where∑
r denotes the sum across pixel indices. Throughout

the paper, we do not specify the bounds of summation
as it is always the same and ranges from the first to last
pixels. The norm ‖v‖1,2 is a composition of norms, and
is called the mixed-norm.

4) Matrices are represented by upper case bold faced
letters. For a matrix M, ‖M‖F denotes the Frobe-
nius norm, which equals to the square root of sum
of squares of its elements; it can be written as
‖M‖F =

√
Tr(MtM), where Tr(·) denotes the sum-

ming of diagonal elements. Next ‖M‖S(p) denotes the
Schatten p-norm of the matrix, which is the lp norm
of the vector of singular values of the matrix M. For a
symmetric matrix, it is also the same as the lp norm

of the eigenvalues. In other words, if E denotes the
operator that returns the vector of eigenvalues of a
matrix, then ‖M‖S(p) = ‖E(M)‖p.

5) We will also deal with matrix images; matrix images
are discrete 2D arrays where each pixel location has
a matrix quantity. It is denoted by upper-case bold-
faced letter with a bold-faced lower-case letter as an
argument. For example, M(r) is a matrix image with
r representing a 2D pixel location. Depending on the
context, the symbol denoting the pixel location may be
omitted. For a vector image, v(r), its jth scalar image
is given by vj(r). For a matrix image, M(r), its (i, j)th
scalar image is given by mi,j(r).

6) For an matrix image, M(r), let ‖M‖1,S(p) denote
the l1 norm of the pixel-wise Schatten p-norms.
In other words, we have ‖M‖1,S(p) =

∑
r ‖M(r)‖S(p).

Further, let ‖M‖∞,S(p) denote the l∞ norm of the
pixel-wise Schatten p-norms. In other words, we have
‖M‖∞,S(p) = maxr ‖M(r)‖S(p). Note that the norms
‖M‖1,S(p) and ‖M‖∞,S(p) are mixed-norm.

7) For square matrices of same dimension, M, N, let
〈N,M〉 = Tr(NtM). For a square matrix N let N =
N+Nt

2 . Then the following holds for any pair of square
matrices: 〈M,N〉 = 〈M,N〉.

8) If M, and N denote matrix images such that for each
pixel index r, M(r), and N(r) denotes square matrices
of the same dimensions, then, 〈N(r),M(r)〉 denotes
Tr(Nt (r)M(r)). On the other hand, 〈N,M〉 denotes∑

r Tr(N
t (r)M(r)).

9) For a matrix image M(r), the norm ‖M‖1,S(p) can be
expressed as a maximization of inner product of the
form 〈·, ·〉 [44]. Specifically we can write

‖M‖1,S(p) = max
‖N‖∞,S(q)≤1

〈N,M〉, (2)

where q is the real positive number satisfying
1/p + 1/q = 1. The notation max‖N‖∞,S(q)≤1 denote
maximization within the set of matrix images with the
value of mixed norm ‖N‖∞,S(q) upper-bounded by 1.

10) In this paper, * denotes the 2-D convolution operation,
i.e (x ∗ y)(r′) =

∑
r x(r)y(r

′
− r). We extend notion

of convolution to matrix images by using the rules of
matrix multiplication. To be more specific, let X be an
image of m × l matrices and let Y be image of l × n
matrices. Then, (X ∗ Y)i,j(r) =

∑l
p=1(xi,p ∗ yp,j)(r)

for i = 1, . . . ,m. As an example, let both X and Y be
2× 2 matrix images. Then the elements of Z = X ∗ Y,
can be written as

z1,1(r) = (x1,1 ∗ y1,1)(r)+ (x1,2 ∗ y2,1)(r),

z1,2(r) = (x1,1 ∗ y1,2)(r)+ (x1,2 ∗ y2,2)(r),

z2,1(r) = (x2,1 ∗ y1,1)(r)+ (x2,2 ∗ y2,1)(r),

z2,2(r) = (x2,1 ∗ y1,2)(r)+ (x2,2 ∗ y2,2)(r).

11) For a scalar image g and an image of m × l matrices,
M, M ∗ g is defined as (M ∗ g)i,j(r) = (mi,j ∗ g)(r) for
i = 1, . . . ,m, j = 1, . . . , n and any location r.
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12) For an image of m × l matrices, M, we can define a
new matrix image N = Mt by extending the idea of
transpose of a matrix to the case of matrix images. The
(i, j) entry of N can be defined as ni,j(r) = mj,i(r) for
i = 1, . . . ,m, j = 1, . . . , n and any location r.

13) For scalar images u and v, and a scalar filter h, the
convolved inner product 〈u, h ∗ v〉 satisfies the relation
〈u, h ∗ v〉 = 〈h̃ ∗ u, v〉, where h̃ denotes the flipped
filter, i.e., h̃ satisfies h̃(r) = h(−r). This relation can be
easily verified by writing the inner product in Fourier
domain.

14) We will extend the notion of flipping for vector filter in
a straight forwardway. In other words, for a vector filter
h, h̃ denotes the vector filter obtaining by flipping each
of its constituent scalar filters. For a vector image u and
a vector filter h, and a scalar image of appropriate size,
v, we have 〈u,h∗v〉 = 〈h̃t ∗u, v〉. The operation h̃t ∗ (·)
is the adjoint of the operation h ∗ (·).

15) Let N be an m × m matrix image, and let u and v be
m×1 vector filters. Then using the ideas of the previous
point, we can show that 〈u,N ∗ ṽ〉 = 〈u ∗ vt ,N〉.
By a trivial extension of this relation, we can also show
that 〈N,u ∗ vt ∗ g〉 = 〈N ∗ ṽ,u ∗ g〉 for any scalar
image g.

16) Let d(r) = [dx(r) dy(r)]t where dx(r) and dy(r) denote
discrete filters implementing the derivative operators
∂
∂x and

∂
∂y . Then for a scalar image, g, d∗g is the discrete

gradient of g. Its adjoint, d̃t ∗ (·), which is defined for
image of 2×1 vectors, is called the discrete divergence.
For a 2× 1 vector image v, we write div v = d̃t ∗ v.

17) The extension of the notion of gradient for vector
images is called the Jacobian. For a vector image, v(r),
the Jacobian is given by (v ∗ dt )(r). For a 2× 1 vector
image, v(r), and 2 × 2 matrix image, U(r), the inner
product 〈d∗vt ,U〉 satisfies 〈d∗vt ,U〉 = 〈vt ,u〉 where
u is the row vector image obtained by applying the
adjoint of the operation d ∗ (·) on U. u is given by
div U = [div u1 div u2].

II. GENERALIZED HESSIAN-SCHATTEN NORM
REGULARIZATION
Let g(r) be the discrete candidate image, where r = [x y]t is

the discrete pixel index. Let H(r) =
[
dxx(r) dxy(r)
dxy(r) dyy(r)

]
where

dxx(r), dyy(r), and dxy(r) are discrete filters implementing
second order derivatives ∂2

∂x2
, ∂

2

∂y2
and ∂2

∂x∂y respectively. Note
that H(r) is discrete Hessian operator. Convolution of this
operator with g(r) (denoted by (H ∗ g)(r)) is the discretized
Hessian of the candidate image. We regardM(r) = (H∗g)(r)
as an image of 2× 2 matrices; in other words, for each pixel
index, r, M(r) is a 2 × 2 matrix. Using this formulation, the
well-known second-order total variation regularization can
be expressed as RTV2(g) =

∑
r ‖(H ∗ g)(r)‖F . Similarily,

Hessian-Schatten norm regularization [44] of order p applied

on the candidate image g can be expressed as

HSp(g, αs) = αs‖H ∗ g‖1,S(p) = αs
∑
r

‖(H ∗ g)(r)‖S(p).

(3)

To develop the novel regularization by extending Hessian-
Schatten norm, we use the dual form of the Schatten norm.
Specifically, we write Hessian-Schatten norm on g as

HSp(g, αs) = max
‖N‖∞,S(q)≤αs

〈N,H ∗ g〉, (4)

where q is the real number satisfying 1/p+1/q = 1. Note that
the above maximization is within the space of 2 × 2 matrix
images. As shown by Lefkimmiatis et al. [46], the maximizer
will be a symmetric matrix image, because the Hessian,
H ∗ g, is symmetric. Hence,HSp(g, αs) will also be equal to
the result of maximizationwithin the space of 2×2 symmetric
matrix images. This is again equivalent to writing

HSp(g, αs) = max
‖N‖∞,S(q)≤αs

〈N,H ∗ g〉. (5)

To formulate the generalization, we write the above expres-
sion in expanded form given below:

HSp(g, αs) = max
‖N‖∞,S(q)≤αs

∑
r

〈N(r), (H ∗ g)(r)〉. (6)

Note that imposing an upper bound on maximum value on a
vector/image is the same as applying the same upper bound
on its components independently. Hence the above equation
can be written as

HSp(g, αs) =
∑
r

max
‖N(r)‖S(q)≤αs

〈N(r), (H ∗ g)(r)〉. (7)

From the above form, it is clear that the maximization is
carried out for each r independently. Suppose Bs(q) denotes
the set of 2 × 2 symmetric matrices such that, for each A ∈
Bs(q) we have ‖A‖S(q) ≤ 1. Then the above minimization
is carried out within a set that has a size that is L2 times the
size of Bs(q), where L × L is the size of g(r). We propose to
generalize HSp(g, αs) by restricting the maximization space
in the sameway the second order TGV generalizes the second
order total variation regularization (TV-2) [49]. To this end,

letN(r) be of the formN(r) =
[
nxx(r) nxy(r)
nxy(r) nyy(r)

]
, and let div (·)

for a matrix image be as defined in the previous section. Note
that (div N)(r) is a vector image. With this, we express the
generalization as given below:

GHSp(g, αs, αf ) = max
‖N‖∞,S(q)≤αs
‖div N‖∞,2≤αf

〈N,H ∗ g〉. (8)

By using the fact that (div N) = d̃t ∗ N and transposition
does not affect norm, we can write GHSp(g, αs, αf ) as given
below:

GHSp(g, αs, αf ) = max
‖N‖∞,S(q)≤αs
‖N∗d̃‖∞,2≤αf

〈N,H ∗ g〉. (9)
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Note that GHSp(g, αs, αf ) is a generalization in the sense
that HSp(g, αs) is special case of GHSp(g, αs, αf ), i.e.,
GHSp(g, αs,∞) = HSp(g, αs). The above form is not
usable as a regularization for image recovery as it involves
symmetrization operation. Interestingly, the above form can
be translated into a form that appears very close to the form
TGV-2 given in [49]. The following proposition gives this
expression.
Proposition 1: The generalized Hessian-Schatten norm

GHSp(g, αs, αf ) can be expressed by

GHSp(g, αs, αf ) = min
u

αf ‖d ∗ g− u‖1,2

+αs‖0.5(u ∗ dt + d ∗ ut )‖1,S(p). (10)

Note that, in terms of pixel-wise summations, the above
form of regularization can written as

GHSp(g, αs, αf )
= min

u
αf
∑
r

‖(d ∗ g)(r)− u(r)‖2

+αs
∑
r

‖0.5((u ∗ dt )(r)+ (d ∗ ut )(r))‖S(p). (11)

It can be verified that this form resembles with TGV-2 given
in [49], [50], except the fact that ‖ · ‖F is replaced by ‖ · ‖S(p).
By noting the fact that ‖·‖S(p) with p = 2 becomes the same as
‖ · ‖F , we conclude that the proposed regularization includes
TGV-2 as a special case. Further note that GHSp(g, αs, αf )
becomes the Hessian-Schatten norm regularization as
αf →∞. Moreover, it becomes the TV-2 regularization with
p = 2 as αf →∞. Because of the minimization with respect
to the auxiliary image u(r), GHSp(g, αs, αf ) gains spatial
adaptability. Near edges, u(r) can become zero leading to
TV-1-like behaviour which allows sharp jumps in the edges.
On the other hand, in smoother regions, u(r) can approach
d∗g(r) leading to the structure-preserving ability of Hessian-
Schatten norm.

III. IMAGE RECONSTRUCTION USING GHSN
REGULARIZATION
A. THE COST FUNCTION
In our development, we will use an image measurement
model that is a composition of convolution followed by a
spatial sampling operation. We do this as this model can
be used to describe most the imaging modalities such as
MRI, blurring, and sparse sampling for super-resolution. Let
h(r) denote the impulse response of the imaging system
and suppose that the noise is Gaussian. We allow the pos-
sibility that h(r) can be complex, and hence the measure-
ment can have complex values. Let Ts denote the spatial
sampling operator that samples an image from a predefined
set of points and returns the vector of samples. With
this, we consider the following form of data-fitting
functional,

Ḡ(g, h, Ts, m) = ‖Ts(h ∗ g)−m‖22, (12)

wherem denotes the vector of measurements. By introducing
the notation G(c, Ts,m) = ‖Ts(c) − m‖22, we can write
Ḡ(g, h, Ts,m) = G(h ∗ g, Ts,m). For the ease of implemen-
tation, we restrict the sample locations of Ts to be a subset
of the regular cartesian grid. Specifically, let the elements
of m, denoted by {mi, i = 1, . . . ,N }, be the samples from
locations {ri, i = 1, . . . ,N } that forms a subset of the reg-
ular cartesian grid. Then the above cost can be expressed
as

G(h ∗ g, Ts,m) =
N∑
i=1

((h ∗ g)(ri)− mi)2 (13)

The above summation over N samples can be equivalently
expressed as summation over all pixel of the L × L image as
given below,

G(h ∗ g, Ts,m) =
∑
r

W (r)((h ∗ g)(r)− m(r))2 (14)

where m(r) represents the image obtained by embedding the
measured spatial samples {mi, i = 1, . . . ,N } in an array of
zeros, and W (r) a binary image in which ones represents
the points at which measurements were taken. Note that this
model is more general than the simple blurring model in
the sense that, if the whole blurred image is measured, then
Ts(c) will simply denote the operation of lexicographically
scanning the pixels of the image c into a vector form. It is also
equivalent to say that, in this case, W (r) becomes an image
of all ones. With this, GHS regularized image reconstruction
can be expressed as

gopt = argmin
g

G(h ∗ g, Ts,m)+ GHSp(g, αs, αf ). (15)

By accounting for the fact that GHSp(g, αs, αf ) itself is
expressed via a minimization, we can also write the above
problem as,

(gopt ,uopt ) = argmin
g,u

G(h ∗ g, Ts,m)

+PGHSp(g,u, αs, αf ), (16)

where

PGHSp(g,u, αs, αf )
= αf ‖d ∗ g− u‖1,2
+αs‖0.5(u ∗ dt + d ∗ ut )‖1,S(p). (17)

For notational convenience in developing the minimization
algorithm, we re-express the cost in terms of the combined
variable v(r) = [g(r) ut (r)]t . To this end, we define the
following:

h(r) = [h(r) 0 0]t , (18)

Tf (r) =


dx(r) 0 0
dy(r) 0 0
0 1 0
0 0 1

 , (19)
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Ts(r) =


0 dx(r) 0
0 dy(r) 0
0 0 dx(r)
0 0 dy(r)

 , and (20)

Af =

[
1/
√
2 0 −1/

√
2 0

0 1/
√
2 0 −1/

√
2

]
. (21)

We will overload the notation ‖ · ‖S(p), such that when used
with a 4 × 1 vector y = [y1 y2 y3 y4]t as the argument, it
represent the following:

‖y‖S(p) =
∥∥∥∥[ y1 y2

y3 y4

]∥∥∥∥
S(p)

.

LetK be thematrix such thatKy = [y1 0.5(y2+y3) 0.5(y2+
y3) y4]t . With these, the overall cost to be minimized can be
expressed as

J (v, αs, αf , p) = G(h ∗ v, Ts,m)+ αf
√
2‖Af (Tf ∗ v)‖1,2

+αs‖K(Ts ∗ v)‖1,S(p). (22)

Note that definition of Af creates an additional scale factor
of
√
2 in the middle term in (22). But, this does not create any

difference in the formulation as αf is an independent parame-
ter, which is tuned for optimum reconstruction quality. Hence
we absorb the scaling

√
2 into the parameter αf . Henceforth,

the weight parameter in the middle term will be αf instead
of αf
√
2.

Note that J (v, αs, αf , p) with p = 2 is the well-known
TGV-2 regularization. Guo et al. [53] developed an algorithm
for image reconstruction using TGV-2 and shearlet regu-
larization. With the shearlet part removed, their algorithm
corresponds to the following constrained formulation of the
reconstruction problem,

(v∗,w∗s ,w
∗
f ) = argmin

v,ws,wf
G(h ∗ v, Ts,m)

+ αf ‖wf ‖1,2 + αs‖ws‖1,S(2) (23)

subject to ws = K(Ts ∗ v),

wf = Af (Tf ∗ v), (24)

except the fact that Ts will simply pick all the pixels of the
image. The main advantage of this form is that the ADMM
algorithm can be constructed using well known proximal
operators. However, the algorithm can be badly conditioned
in some cases as we will demonstrate in the experiment
section.

B. PROPOSED ADMM METHOD
Before specifying the variable splitting scheme for the pro-
posed ADMM algorithm, we first rewrite the cost of the
equation (22) as

J (v, αs, αf , p) = G(h ∗ v, Ts,m)+ αf ‖Af (Tf ∗ v)‖1,2
+αs‖K(Ts ∗ v)‖1,S(p) + B(et ∗ v), (25)

where

B(g) =
{
0 LB ≤ gi ≤ UB ∀i
∞ otherwise

enforces pixelwise lowerbound (LB) and upperbound (UB).
Also, et (r) = [δ(r) 0 0] with δ(r) denoting Kronecker delta,
and hence et ∗ v = v1 = g. We propose to build ADMM
algorithm bymeans of the following constrained formulation:

(v∗,w∗s ,w
∗
f ,w
∗
b,w
∗
m)

= argmin
v,ws,wf ,wb,wm

G(wm, Ts,m)

+αf ‖Afwf ‖1,2 + αs‖Kws‖1,S(p) + B(wb)
subject to ws = Ts ∗ v, wf = Tf ∗ v,

et ∗ v = wb, h ∗ v = wm (26)

The main difference from the previous formulation [53] is
that the matrices Af and K are not a part of the constraints
but, are left as a part of the cost to be minimized. This
leads to some numerical advantages, which we will clarify
after completing the development of the algorithm. On the
other hand, this splitting scheme requires constructing new
proximal operators for implementing the ADMM algorithm.
We do this in the next section, which is one of the important
contributions of the paper. In the remainder of this section,
we complete specifying the ADMM iteration for the splitting
scheme specified above. In order to facilitate developing
the algorithm in terms of compact expressions, we need to
simplify the notations further. To this end, let

w = [wb wt
s w

t
f wm]

t and (27)

T(r) =

 et (r)
Ts(r)
Tf (r)
h(r)

 . (28)

With this, the above problem can be expressed as

(v∗,w∗) = argmin
v,w

R(w, αs, αf , p)

subject to w = T ∗ v, (29)

where

R(w, αs, αf , p) = αf ‖Afwf ‖1,2 + αs‖Kws‖1,S(p)

+B(wb)+ G(wm, Ts,m) (30)

The next step towards developing the ADMM algorithm is
to write the augmented Lagrangian of the above constrained
optimization problem. The augmented Lagrangian is given by

L(v,w,λλλ, αs, αf , p) = R(w, αs, αf , p)

+
β

2
‖T ∗ v− w‖22 + 〈λλλ,T ∗ v− w〉,

(31)

where λλλ is vector image of Lagrange’s multiplier with its
dimension equal to that of w. Also, β is a fixed positive real
number. The ADMM becomes series of minimizations with
respect to v and w and updates on λλλ. Given the current set
of iterates, {v(k),w(k),λλλ(k)} the ADMMmethods proceeds as
follows:

w(k+1)
= argmin

w
L(v(k),w,λλλ(k), αs, αf , p), (32)

v(k+1) = argmin
v

L(v,w(k+1),λλλ(k), αs, αf , p), (33)
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and

λλλ(k+1) = λλλ(k) + β
(
T ∗ v(k+1) − w(k+1)

)
. (34)

Results on covergence of ADMM scheme ensure that
above iteration converges to the minimum provided that the
following conditions are satisfied [54]:
• A1: The function R(w, αs, αf , p) must be proper, closed
and convex.

• A2: The Lagrangian of the problem

L(v,w,λλλ, αs, αf , p)=R(w, αs, αf , p)+〈λλλ,T ∗ v− w〉

(35)

should have a saddle point.
Since all the constituent functions in R(w, αs, αf , p) are
proper, closed, and convex, it is also closed, proper and
convex. This takes care of A1. Next, since we have a linear
constrained problem, any point satisfying the equality is in the
relative interior of the constraint set T ∗ v = w. This implies
all points satisfying the equality satisfy Slaters constrain
qualification [55]. Hence by the saddle point theorem [55],
a saddle point exists for the Lagrangian. This takes care of A2.
In summary, the proposed iterative scheme converges to the
minimum.

IV. SOLVING THE SUB-PROBLEMS OF ADMM
A. THE w-PROBLEM
1) Expressing THE PIXEL-WISE SUB-PROBLEMS
Note that the solution to the minimization problem of equa-
tion (32), w(k+1), is also the minimum of the following cost:

Lw,k (w, αs, αf , p) = R(w, αs, αf , p)+
β

2
‖w− x(k)‖22, (36)

where,

x̄(k) = T ∗ v(k) +
1
β
λλλ(k). (37)

For notational convenience, let x = x(k) and let ŵ = w(k+1).
Note that the cost Lw,k (w, αs, αf , p) is separable across the
subvectors of the variable, w; in other words, it is separable
across the subvectors wb, wm, ws, and wf , and we introduced
the collective variable, w only for notational convenience in
expressing the ADMM loop of equations (32), (33), (34).
As we are focused on this specific sub-problem, we will
now separate the constituent problems. To this end, let xb,
xm, xs, and xf denote the sub-vectors of x conferring to the
partitioning given in the equation (27). Similarly, let ŵb, ŵm,
ŵs, and ŵf be the subvectors of ŵ. With this the solution to
the w-problem can be expressed as

wm-prob.: ŵm = argmin
wm

β

2
‖xm − wm‖22,2 + G(wm, Ts,m)︸ ︷︷ ︸

L̄m(wm,xm)

(38)

wb-prob.: ŵb = argmin
wb

β

2
‖xb − wb‖22,2 + B(wb)︸ ︷︷ ︸

L̄b(wb,xb)

(39)

ws-prob.: ŵs = argmin
ws

β

2
‖xs − ws‖

2
2,2 + αs‖Kws‖1,S(p)︸ ︷︷ ︸
L̄s(ws,xs,αs)

(40)

wf -prob.: ŵf = argmin
wf

β

2
‖xf − wf ‖

2
2,2 + αs‖Afwf ‖1,2︸ ︷︷ ︸

L̄f (wf ,xf ,αf )

(41)

Note that the functions L̄b(wb, xb), L̄s(ws, xs, αs), and
L̄f (wf , xf , αf ) are separable across pixel indices since they
are constructed as mixed norms composed elementary pixel-
wise norms. Hence, they can be expressed as a sum of
pixel-wise elementary functions. The form of these elemen-
tary functions can be clearly deduced from the form of
the functions L̄b(wb, xb), L̄s(ws, xs, αs), and L̄f (wf , xf , αf ).
We can express these functions as

L̄b(wb, xb) =
∑
r

β

2
(xb(r)− wb(r))2 + B(wb(r))︸ ︷︷ ︸

Lb(wb(r),xb(r))

, (42)

L̄s(ws, xs, αs) =
∑
r

β

2
‖xs(r)− ws(r)‖22 + αs‖Kws(r)‖S(p)︸ ︷︷ ︸

Ls(ws(r),xs(r),αs)

,

(43)

and

L̄f (wf , xf , αf )=
∑
r

β

2
‖xf (r)− wf (r)‖22+αf ‖Af (wf (r))‖2︸ ︷︷ ︸

Lf (wf (r),xf (r),αf )

.

(44)

Now we consider the wm-problem. First we rewrite the
cost:

L̄m(wm, xm) =
β

2
‖xm − wm‖22,2 + G(wm, Ts,m) (45)

=
β

2
‖xm − wm‖22,2 + ‖Ts(wm)−m‖22 (46)

Asmentioned before, we will consider a restricted case where
Ts picks samples from locations that constitute a subset of
a regular grid. In this case, ‖Ts(wm) − m‖22 can written
as

‖Ts(wm)−m‖22 =
1
2

∑
r

W (r)(wm(r)− m(r))2,

whereW (r) is the image that has ones at pixels locations from
where Ts picks samples, and zeros at other location. Further,
m(r) is the image obtained by embedding measured samples
m into an image of zeros. Further, we note that we can express
‖xm − wm‖22,2 can be written as

‖xm − wm‖22,2 =
∑
r

(xm(r)− wm(r))2.
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Hence, the cost L̄m(wm, xm) can be written as given below:

L̄m(wm, xm) =
β

2

∑
r

(xm(r)− wm(r))2

+

∑
r

W (r)(wm(r)− m(r))2 (47)

From the above equation, it is clear that the minimiza-
tion problem is separable across pixels. We denote the
pixel-wise cost by Lm(·, ·) and write L̄m(wm, xm) =∑

r Lm(wm(r), xm(r)) where

Lm(wm(r), xm(r)) =
β

2
(xm(r)− wm(r))2

+W (r)(wm(r)− m(r))2.

We have shown so far that all the sub-problems are sepa-
rable across pixels. Hence the solution to the minimization
problems of equations (38), (39), (40), and (41), can be
expressed as following:

ŵm(r) = argmin
z∈R

Lm(z, xm(r)), (48)

ŵb(r) = argmin
z∈R

Lb(z, xb(r)), (49)

ŵs(r) = argmin
z∈R4

Ls(z, xs(r), αs), and (50)

ŵf (r) = argmin
z∈R4

Lf (z, xf (r), αf ). (51)

2) Solution TO THE PIXEL-WISE SUB-PROBLEMS
The solution to the wm-problem very simple. The solution
ŵm(r) can be expressed as

ŵm(r) =
βxm(r)+W (r)m(r)

β +W (r)
.

The solution to the wb-problem is also simple, and it is the
clipping of the pixels by bound that defines B(wb) [56].
We express the solution as given below:

ŵb(r) = Pb(xb(r)), (52)

where Pb(·) denotes the operation of clipping the pixel values
within the specified bounds. Next, we consider expressing
the solution for wf -problem. Note that, in the absence of
the matrix Af , the solution will be the well-known shrink-
age operation on the l2 norm of xf (r) [56]. Because of the
presence of the matrix, xf (r), the shrinkage operation is not
directly applicable. The following proposition give the solu-
tion to the w(r) problem.
Proposition 2: The minimum of Lf (z, a, αf ) =

β
2 ‖z −

a‖22 + αf ‖Af z‖2 with respect to z is given by P(a, t) =
a−min(‖Af a‖2, t)At

fAf a, where t = αf /β.
Now, considering the ws problem, i.e., considering the min-
imization of β

2 ‖z − a‖22 + αs‖Kz‖S(p), the presence of K
makes the problem more complex. Otherwise, the solution
to the problem in the absence of K is well-known [46]. The
following proposition gives expression for solution to this
problem.

Proposition 3: The minimum of Ls(z, a, αs) = 1
2‖z −

a‖22 + t‖Kz‖S(p) with respect to z is given by P̄s(a, t) =
La+Ps(Ka, t) wherePs(b, t) represents the minimum of the
1
2‖z−b‖

2
2+t‖z‖S(p) with respect to z, and andL is the matrix

such that its operations on a = [a1 a2 a3 a4]t is defined as
La = [0 0.5(a2 − a3) 0.5(a3 − a2) 0]t .
Note that Ps(·, t) is the well-known proximal operator of
Schatten norm (for details see [46]), and the above propo-
sition expresses the required proximal operator—proximal
operator for the modified Schatten norm, P̄s(·, t)—as a sim-
ple modification of Ps(·, t). Note that we just need set
t = αs/β for applying the above proposition for the
problem of equation (50). Although Ps(·, t) is well known,
in Algorithm 3, we provide detailed description of Ps(·, t)
to the level required for implementation along with a self-
contained description of the overall algorithm. Note that,
we have non-iterative exact formula for Ps(·, t) only for
p = 1, 2. Hence, in the experimental demonstration, we only
consider these two values for p.

B. THE v-PROBLEM
Nowwe consider the minimization problem of equation (33).
By taking the dependencies of the minimization variable v, it
can be deduced that, the solution to this problem is also the
minimum of the following cost function:

Lv,k (v) =
1
2
‖T ∗ v− y(k)‖22, (53)

where

y(k) = w(k+1)
−

1
β
λλλ(k). (54)

As done before for notational convenience, we let y = y(k),
and v̂ = v(k+1). Let v(r) = [v1(r) v2(r) v3(r)]t , v̂(r) =
[v̂1(r) v̂2(r) v̂3(r)]t . From the definition of T(r) given in
the equation (28), and from the definition of h(r), it is clear
that the cost Lv,k (v) is separable across the components of
v(r), which are v1(r), v2(r), and v3(r). By letting y(r) =
[yb(r) yf ,1(r) yf ,2(r) yf ,3(r) yf ,4(r) ys,1(r) ys,2(r) ys,3(r)
ys,4(r) ym(r)]t , the costs separated for v1, v2, and v3 are given
by

L̄1(v1) =
1
2
‖h ∗ v1 − ym‖22,2 +

1
2
‖v1 − yb‖22,2

+
1
2
‖dx ∗ v1 − yf ,1‖22,2 +

1
2
‖dy ∗ v1 − yf ,2‖22,2,

(55)

L̄2(v2) =
1
2
‖v2 − yf ,3‖22,2 +

1
2
‖dx ∗ v2 − ys,1‖22,2

+
1
2
‖dy ∗ v2 − ys,2‖22,2, and (56)

L̄3(v3) =
1
2
‖v3 − yf ,4‖22,2 +

1
2
‖dx ∗ v3 − ys,3‖22,2

+
1
2
‖dy ∗ v3 − ys,4‖22,2. (57)

These are quadratic functions involving simple discrete fil-
tering operation. Hence, their minima can be expressed in
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terms of simple Fourier inversion. To this end, we write the
expression for the gradients below:

∇v1 L̄1(v1) = Re(conj(h̃) ∗ h) ∗ v1
+ (v1 + d̃x ∗ dx ∗ v1 + d̃y ∗ dy ∗ v1)

−Re(conj(h̃) ∗ ym)

− (yb + d̃x ∗ yf ,1 + d̃y ∗ yf ,2), (58)

∇v2 L̄2(v2) = (v2 + d̃x ∗ dx ∗ v2 + d̃y ∗ dy ∗ v2)

− (yf ,3 + d̃x ∗ ys,1 + d̃y ∗ ys,2), and (59)

∇v3 L̄3(v3) = (v3 + d̃x ∗ dx ∗ v3 + d̃y ∗ dy ∗ v3)

− (yf ,4 + d̃x ∗ ys,3 + d̃y ∗ ys,4). (60)

In the above equation, conj(·) represents pointwise complex
conjugate operation. Now, the minima v̂1(r), v̂2(r), and v̂3(r)
can be obtained by solving ∇v1 L̄1(v1) = 0, ∇v2 L̄2(v2) = 0,
and∇v3 L̄3(v3) = 0 in Fourier domain. This is the main advan-
tage of the proposed variable splitting: we are able to solve
for v̂1(r), v̂2(r), and v̂3(r) independently by simple Fourier
division. On the other hand, the v-problem encountered in the
splitting proposed in [53], the components v1, v2, and v3 are
coupled, and hence, it requires solving 3× 3 system of equa-
tions each of L×L frequency values where L×L is the size of
the image to be reconstructed. Although the required inverses
can be precomputed outside the ADMM loop, it turns out that
overall numerical conditioning is worse than the splitting that
we propose here, which we demonstrate experimentally in
Section V. In Algorithm 1, we provide detailed expression
of the solutions of ∇v1 L̄1(v1) = 0, ∇v2 L̄2(v2) = 0, and
∇v3 L̄3(v3) = 0 to the level required for implementation.
Algorithm 1 also serves as the self-contained specification
of the overall proposed reconstruction method.

V. EXPERIMENTS
Recall that we have two main contributions in this paper:
(i) a generalization of Hessian-Schatten p-norm [44] with
the resulting form that also generalizes second-order total
generalized variation regularization (TGV-2) [49]; (ii) a
novel ADMM based reconstruction algorithm with improved
numerical behaviour owing to the novel variable splitting
scheme. Implementing the algorithm with novel variable
splitting is enabled by novel proximal operators derived in
this paper. The goal of this section is to demonstrate the
role of both of these contributions in improving the quality
of reconstruction. To this end, we consider two types of
measurement models:
• Quasi-random Fourier sampling scheme for the realiza-
tion of fast MRI imaging

• Blurring followed random spatial sampling as a scheme
for speeding-up scanning electron microscopy

For the first model, suppose T denotes the operation of
obtaining the vector of Fourier samples from Fourier loca-
tions, and let mf be the vector of complex Fourier samples.
Since noise is Gaussian in MR imaging, for a candidate
image g, the cost ‖T g−mf ‖

2
2 is the negative log-likelihood.

With this, we make a simplifying assumption that Fourier

Algorithm 1 GHSN Regularized Reconstruction:
GHSN -RR(m, h, α0, α1,Niter)
Inputs:
m: N × N measured image
h: Impulse response of imaging system
αf : regularization weight for first order term
αs: regularization weight for second order term
Niter : Number of Iterations
Symbol definitions: dx and dy are first derivative filters
d̃x and d̃y are flipped versions
h̃ is flipped version of h

Initialization :
k ← 0, v(k)← 03×N×N
λ
(k)
b ← 0N×N , λ

(k)
m ← 0N×N ,

λλλ
(k)
f ← 04×N×N , λλλ(k)s ← 04×N×N
x̄(k)b ← 0N×N , x̄(k)m ← 0N×N
x̄(k)f ← 04×N×N , x̄(k)s ← 04×N×N
Qd ← F{Re(h ∗ conj(h̃))}
Qr ← 1+ F(dx ∗ d̃x + dx ∗ d̃x)
for 1 to Niter do

x(k)b ← x̄(k)b + (1/β)λ(k)b , x(k)m ← x̄(k)m + (1/β)λ(k)m
x(k)f ← x̄(k)f + (1/β)λλλ(k)f , x(k)s ← x̄(k)s + (1/β)λλλ(k)s

w(k+1)
b ← Pb(x(k)b ) (Clipping of elements)

w(k+1)
m ← (βx(k)m +Wm)/(β +W )

(w(k+1)
f ,w(k+1)

s )← Prox(x(k)f , x
(k)
s , αf , αs) (Alg. 2)

y(k+1)b ← w(k+1)
b − (1/β)λ(k)b

y(k+1)m ← w(k+1)
m − (1/β)λ(k)m

y(k+1)f ← w(k+1)
f − (1/β)λλλ(k)f

y(k+1)s ← w(k+1)
s − (1/β)λλλ(k)s

B1← F(y(k+1)b + d̃x ∗ y
(k+1)
f ,1 + d̃y ∗ y

(k+1)
f ,2 )

B2← F(y(k+1)f ,3 + d̃x ∗ y
(k+1)
s,1 + d̃y ∗ y

(k+1)
s,2 )

B3← F(y(k+1)f ,4 + d̃x ∗ y
(k+1)
s,3 + d̃y ∗ y

(k+1)
s,4 )

Bd ← F{Re(conj(h̃) ∗ y(k+1)m )}
v(k+1)1 ← F−1((Bd + B1)/(Qd + Qr ))
v(k+1)2 ← F−1(B2/Qr )
v(k+1)3 ← F−1(B3/Qr )

x̄(k+1)b ← v(k+1)1 , x̄(k+1)m ← h ∗ v(k+1)1
x̄(k+1)f ← [v(k+1)1 ∗ dx , v

(k+1)
1 ∗ dy, v

(k+1)
2 , v(k+1)3 ]t

x̄(k+1)s ← [v(k+1)2 ∗dx , v
(k+1)
2 ∗dy, v

(k+1)
3 ∗dx , v

(k+1)
3 ∗dy]t

λ
(k+1)
b ← λ

(k)
b + β(x̄

(k+1)
b − w(k+1)

b )

λ
(k+1)
m ← λ

(k)
m + β(x̄

(k+1)
m − w(k+1)

m )
λλλ
(k+1)
f ← λλλ

(k)
f + β(x̄

(k+1)
f − w(k+1)

f )

λλλ(k+1)s ← λλλ(k)s + β(x̄
(k+1)
s − w(k+1)

s )
k ← k + 1

end
return y = x(k)
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Algorithm 2 Proximal Operations: (â, ĉ) ← Prox(a,b,
αf , αs, p)
Inputs:
a = [a1 a2 a3 a4]t : 4× 1 vector image corresponding to first
order derivative
b = [b1 b2 b3 b4]t : 4 × 1 vector image corresponding to
second order derivative
αf : regularization weight for second order term
αs: regularization weight for second order term

for r ∈ [1,N ]2 do

d1(r)← a1(r)− a3(r), d2(r)← a2(r)− a4(r)

n(r)←
√
0.5(d21 (r)+ d

2
2 (r))

n(r)← 0.5min(1, αf /n(r))
d1(r)← n(r)d1(r), d2(r)← n(r)d2(r)
â(r)← [a1(r)−d1(r), a3(r)+d1(r), a2(r)−d2(r), a4(r)+
d2(r)]t

(b1(r), c(r), b4(r)) ← ProxHS(b1(r), 0.5(b2(r) +
b3(r)), b4(r), αs, p)
d(r)← 0.5(b2(r)− b3(r))
b̂(r)← [b1(r) c(r)+ d(r) c(r)− d(r) b4(r)]t

end
Return â, b̂

Algorithm 3 Proximal Operator for Hessian-Schatten Norm:
(â, ĉ, b̂)← ProxHS(a, c, b, αs, p)
if p = 2 then

n←
√
a2 + b2 + 2c2

n← max(n− αs, 0)/n
(â, b̂, ĉ)← (na, nb, nc)

end
else if p = 1 then

l1← (a+ b)+
√
(a− b)2 + 4c

l2← (a+ b)−
√
(a− b)2 + 4c

v1← [a− l1 c]t

v1← v1/‖v1‖2
v2← [a− l2 c]t

v2← v2/‖v2‖2
l1← sign(l1)max(abs(l1)− αs, 0)
l2← sign(l2)max(abs(l2)− αs, 0)
â← v211l1 + v

2
21l2

b̂← v212l1 + v
2
22l2

ĉ← v11v12l1 + v21v22l2
end

sample locations lie in a subset of the grid points corre-
sponding to the DFT of the image so as to facilitate efficient
implementation. In this case, the cost ‖T g −mf ‖

2
2 becomes

TABLE 1. Comparison of PSNR scores yielded by various method at
various number of iteration.

identical to the cost of the equation (14) in the following
way: (i) h is the inverse Fourier transform of the array having
ones at sampling location of the operator T and zero at other
locations; (ii) W (r) is the image of ones; (ii) m is the inverse
Fourier transform of the image obtained by embedding the
samples in mf in an array of zeros. Note that h and m will
typically be complex.

For the second model, random sampling is applied to the
image resulting from blurring with a point-spread function.
If ri, i = 1, . . . ,N denote the sample locations and mi, i =
1, . . . ,N denote the samples, the quadratic data fitting cost
for a given candidate image g can be written as

∑N
i=1((h ∗

g)(ri) − mi)2, where h is the point-spread function of the
microscope. This cost is not the negative log-likelihood for
the noise encountered in microscopy, the mixed Poisson-
Gaussian noise. However, this approximation of often used
for ease of implementation. Now, in this case also, we assume
that the spatial sample locations lie in a subset of the cartesian
grid. In this case, the cost

∑N
i=1((h ∗ g)(ri) − mi)

2 becomes
identical to the cost of the equation (14) in the following way:
m represents the image obtained by embedding the measured
spatial samples mi, i = 1, . . . ,N in an array of zeros, and
W (r) a binary image in which ones represent the points at
which measurements were taken.

In all experiments, we will use the model images for deter-
mining the regularization parameters αf and αs. Needless
to say, for the practical application of our method, we need
to use a method for determining these parameters from the
measured images that undergo reconstruction. However, the
main focus of our manuscript is to demonstrate the advantage
of the generality of our GHSN regularization and hence we
defer this task for our future work.

A. EXPERIMENT 1
In this experiment, we consider the problem of reconstruct-
ing images from quasi-random Fourier samples. We use
the images given in Figure 1 as the models. To obtain
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FIGURE 1. Images used in experiments.

FIGURE 2. MRI Transfer Functions In Fourier domain a) TF1 (18%)
b) TF2 (10%).

quasi-random Fourier samples, we use the trajectories gener-
ated by solving the travelling salesman problem as proposed
by Chauffert et al. [57]. We use the sampling scheme given
in Figure 2.a, which has a sampling density of 18% (TF1).
We restrict p to be in {1, 2}. As done by Chauffert et al. [57],
we quantize the sample locations generated from such tra-
jectories by the grid corresponding to the DFT of the image.
To demonstrate the relevance of our technical contributions,
we consider three forms of reconstruction methods that dif-
fers from each other in terms of regularization and/or the
minimization methods:
• GHS-1: Reconstruction using the Generalized Hessian
Schatten norm with p = 1 and with proposed ADMM
method for minimization

• GHS-2: Reconstruction using the Generalized Hessian
Schatten norm with p = 2 and with proposed ADMM
method for minimization

• GHS-2(G): Reconstruction using the Generalized Hes-
sian Schatten norm with p = 2 with optimization
method proposed by Guo et al. [53]

Note that, in GHS-2, the regularization is the same as the
TGV-2 [49]. This means GHS-2 has novelty only in terms
of optimization used, whereas GHS-1 has novelty both in
terms of the regularization and the optimization method.
GHS-2(G) entirely corresponds to the method of
Guo et al. [53] with the part corresponding to the additional
wavelet regularization removed. To evaluate these methods,
The Fourier samples were corrupted by additive white Gaus-
sian noise with variance 4. Table 1 compares the PSNR
score of reconstruction obtained from all three methods with

TABLE 2. Comparison of reconstruction PSNR for experiment 2.

500, 1500, and 10000 iterations. It is clear from the table
that GHS-1 gives the best score with all three cases of the
number of iterations for most cases of measured images, and
GHS-2 comes next in PSNR. The PSNR score of
GHS-2(G) is always the lowest. By considering the fact
that GHS-2(G) differs from GHS-2 only by optimiza-
tion, we conclude that the proposed ADMM method is
more efficient than the optimization method proposed by
Guo et al. [53]. We further note that, beyond 1500 iterations,
there is no further improvement in the reconstructed image,
and there is always a difference between the reconstruction
obtained by GHS-2 and GHS-2(G). This again confirms that
the proposed ADMM method is better conditioned numeri-
cally. Note that Table 1 confirms the following:
• GHS-1 attains higher PSNR than GHS-2 within a spec-
ified time duration. Since GHS-2 is identical to the reg-
ularization used in [53], the form of GHS-1 is the result
of our generalization, this demonstrates the advantage of
the generalization.

• GHS-2 attains higher PSNR than GHS-2(G) within a
specified time duration. GHS-2(G) is identical to the
published work [53], and GHS-2 differs fromGHS-2(G)
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FIGURE 3. Comparison of restored images corresponding to image 1, TF1 and noise level 1. Images on the right are the
zoomed-in portions from the images on the left. Location of the zoom-in portion is shown as box in the top left image.

FIGURE 4. Scan lines from the results of Figure 3. The scan line location is shown in Figure 3.

only by the improved minimization method proposed
by us. This demonstrates that the novel optimization
method is faster.

For the first measurement set of Table 1, we also recorded
the time taken by each of the methods to attain the PSNR
of 32.52 dB. This PSNR is was attained in 9s, 21s,
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FIGURE 5. Additional images and MRI transfer functions for experiment 3.

and 32s by the methods GHS-1, GHS-2, and GHS-2(G)
respectively.

B. EXPERIMENT 2
In the second experiment, we demonstrate the importance of
novel regularization and the novel optimization under varied
input settings for the same forward model considered in the
previous experiment. To this end, we simulate measurements
using both transfer functions given in the Figures 2.a and 2.b
and add complex Gaussian noise on the Fourier samples with
standard deviation values 5 and 7, which will be referred to
as noise levels 1 and 2. This makes a total of 24 measurement
sets. We evaluate all three methods listed in the previous
experiment. We also evaluate with two additional methods:
(i) HS-1: reconstruction usingHessian-Schatten 1-norm regu-
larization with ADMMbased minimization; (ii) HS-2: recon-
struction using Hessian-Schatten 2-norm regularization with
ADMM based minimization. Note that Hessian-Schatten 2-
norm regularization is also the same as TV-2 regularization.
We ran the algorithm for 2500 iterations for all the methods
as this was found to be enough to obtain empirical residual
convergence [54] for ADMM scheme. The results are dis-
played in Table 2. From the table, it is clear that GHS-1 is the
best performing method. We also note that, among the three
methods, GHS-1, GHS-2, GHS-2(G), we see the same pattern
of relative performance as in the first experiment. Further,
GHS-1 and GHS-2 are better than HS-1 and HS-2 in most
cases. Moreover, while GHS-2 is consistently better than
HS-2, GHS-2(G) is not always better than HS-2, although
its regularization is the same as that of GHS-2. As GHS-2
differs from GHS-2(G) only by the optimization technique,
this again confirms the importance of our novel optimization
method. The images restored from the measurement simu-
lated from image 1 using the transfer function TF1 with noise
level 1 are displayed in Figure 3.We also display a zoomed-in
region in each of the restored images. It is clear from the
zoomed-in images that GHS-1 and GHS-2 schemes better
recover the edges without any staircase effect. In Figure 4,
we present scan lines from this image. As it is difficult to have
clarity in the plot if several scan-lines are shown, we chose
to show scan-line of reconstructions from three methods
only, along with the scan-lines from the original image; we
chose the best performing variant from the proposed method,
GHS-1, and the closest competitors from the literature,

FIGURE 6. Scanning electron microscopic (SEM) model images.

GHS-2(G) and HS-1. The scan-lines confirms that GHS-1
follows the ground truth better than other methods.

C. EXPERIMENT 3
In the third experiment, we compare the performance of
our algorithm against a method belonging to the class of
plug and play methods. In this class of methods, a splitting
based image reconstruction algorithm that is typically used
for regularized reconstruction is modified by replacing the
proximal operator corresponding to the regularization with
a denoiser. For this experiment, we implemented a plug and
play method with ADMM based splitting [58] and the well-
known BM3Dmethod as the denoiser.We denote this method
by the abbreviation PnP-BM3D. We compare PnP-BM3D
with two variants of the proposed method namely GHS-1
and GHS-2, which are defined in experiment I. We use all
six images used in experiment I together with four additional
images given in Figure 5. To simulate Fourier sampling,
we use two transfer functions given in Figure 5 (labelled TF3
and TF4). TF3 covers 10% of Fourier samples and TF4 covers
20% of Fourier samples. We consider two levels of noise for
each of the transfer functions. For TF4, we considered noise
levels corresponding to standard deviations 0.025 and 0.0125,
and for TF3, we considered noise levels corresponding to
standard deviations 0.05 and 0.025. The results are presented
in Table 3. The table confirms that GHS-1 algorithm produces
a superior restoration in majority of the cases.

D. EXPERIMENT 4: RECONSTRUCTION FROM SIMULATED
SEM SAMPLES
In this experiment, we consider the second forward model
introduced at the beginning of Section V, namely blurring
followed by random spatial sampling. Note that this forward
model matches with the full generality of the data-fitting cost
of the equation (14). For simulating themeasurements, we use
the images given in Figure 6 as model images ( [59]–[62]).
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TABLE 3. Comparison of proposed method with PnP-BM3D for reconstruction from Fourier samples.

FIGURE 7. Blurring kernel and sampling mask used for SEM experiment.

TABLE 4. Comparison of proposed method with PnP-BM3D for
reconstruction from simulated SEM samples.

FIGURE 8. Comparison of reconstructions for model image (a) of Figure 6.

For blurring, we choose a Gaussian kernel with a standard
deviation of 3; for spatial sampling, we used two random
masks with uniform sampling densities of 10% and 20%. The
Fourier modulus of this kernel and the masks are given in
Figure 7. We also add 5% Gaussian noise. For comparison,
we picked ADMM based plug-and-play method with BM3D
denoiser (PnP-BM3D) as done in experiment 3. The plug and
play method was found to be in need of a good initialization.
Therefore, for a fair comparison, we obtained initialization as
follows: each pixel in the initialization image was determined

FIGURE 9. Comparison of reconstructions for model image (c) of Figure 6.

FIGURE 10. Zoom-in region from Figure 8.

by computing the median of the available samples within a
12× 12 window. The results of the comparison are shown in
Table 4. The table clearly shows that GHS-1 performs better
than PnP-BM3D in all cases for this experiment. In Figure 8,
we display the images reconstructed from samples obtained
by applying the blurring and Mask-2 on model image (a).
Further in Figure 9, we display the images reconstructed from
samples obtained by applying the blurring and Mask-1 on
model image (c). The displayed images clearly demonstrate
the superiority of the proposed method. In particular, GHS-1
reconstructions are much sharper and more detailed than
the reconstructions obtained by using PnP-BM3D method.
In Figure 10 we have displayed zoomed-in regions from
Figure 8, which again confirms the superiority of the pro-
posed method.

VI. CONCLUSION
We proposed a new form of regularization named General-
ized Hessian Schatten Norm (GHSN) regularization. GHSN
generalizes all existing forms of second-order derivative-
based regularization.We also developed a novel ADMMopti-
mization method for image reconstruction using the GHSN.
We demonstrated the advantage of generality in GHSN exper-
imentally. We also demonstrated the effectiveness of the
novel optimization method. In particular, even when param-
eters of GHSN is restricted such that it becomes the well-
known form, called second-order total generalized (TGV-2)
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variation, our optimization method yields superior recon-
structions compared to the optimization method proposed for
TGV-2 in the literature. In this work, our focus has been to
demonstrate the advantage of adaptability arising from the
generalization involved in GHSN. To make this advantage
useful in a practical scenario, we need to develop a method
to determine the parameters αs and αf from the measured
data that undergoes reconstruction. This will be an important
future research direction.

APPENDIX
PROOF OF PROPOSITIONS
Proof of Proposition 1: First we reproduce Eq. (9):

GHSp(g, αs, αf ) = max
‖N‖∞,S(q)≤αs
‖N∗d̃‖∞,2≤αf

〈N,H ∗ g〉. (61)

Next, we denote the set {N|‖N‖∞,S(q) ≤ αs} as BS and,
{z|‖z‖∞,2 ≤ αf } as B2. This gives

GHSp(g, αs, αf ) = max
(N,N∗d̃)∈BS×B2

〈N,H ∗ g〉. (62)

Next, we note that dxx = dx ∗ dx , dy = dy ∗ dy, and dxy =
dx∗dy. This means that we haveH∗g = g∗d∗dt . Substituting
this gives

GHSp(g, αs, αf ) = max
(N,N∗d̃)∈BS×B2

〈N, g ∗ d ∗ dt 〉. (63)

By the property inner products with convolution, we can
replace the operation (·) ∗ dt applied on the second argument
of the inner product by the adjoint operation (·) ∗ d̃ applied
on the second argument. This gives

GHSp(g, αs, αf ) = max
(N,N∗d̃)∈BS×B2

〈N ∗ d,d ∗ g〉. (64)

Now, we can replace the maximization by the minimization
of the negated function and obtain

GHSp(g, αs, αf ) = − min
(N,N∗d̃)∈BS×B2

−〈N ∗ d̃,d ∗ g〉. (65)

The above minimization problem can be posed as con-
strained optimization problem as given below:

GHSp(g, αs, αf ) = − min
(N,p)∈BS×B2

−〈p,d ∗ g〉 (66)

subject to N ∗ d̃ = p.

Since the above problem is a convex optimization problem,
GHSp(g, αs, αf ) can be determined using duality theory.
To this end, we construct the Lagrange dual cost function of
the minimization problem as given below:

q(u) = min
(N,p)∈BS×B2

−〈p,d ∗ g〉 + 〈u, p− N ∗ d̃〉. (67)

The above problem can be rearranged as given below by
separating the terms for p and N:

q(u) = min
(N,p)∈BS×B2

−〈p,d ∗ g− u〉 + 〈u,−N ∗ d̃〉. (68)

Next, we note that 〈u,−N ∗ d̃〉 = 〈u ∗ dt ,−N〉 =
〈u ∗ dt ,−N〉. This gives

q(u) = min
(N,p)∈BS×B2

−〈p,d ∗ g− u〉 + 〈u ∗ dt ,−N〉. (69)

By duality theory, since strong duality holds ( [63], Propo-
sition 6.4.2), we have −GHSp(g, αs, αf ) = maxu q(u).
Hence, the cost GHSp(g, αs, αf ) can be expressed
as

−GHSp(g, αs, αf )
= max

u
min

(N,p)∈BS×B2
−〈p,d ∗ g− u〉 + 〈u ∗ dt ,−N〉.

(70)

Next, we rewrite the maximization with respect to u as the
minimization:

GHSp(g, αs, αf )
= min

u
max

(N,p)∈BS×B2
〈p,d ∗ g− u〉 + 〈u ∗ dt ,N〉. (71)

As the part of the cost function with respect to N and p
are separable, we can rewrite the respective maximizations
independently as given below:

GHSp(g, αs, αf )
= min

u
max
N∈BS

〈u ∗ dt ,N〉 + max
p∈B2
〈p,d ∗ g− u〉. (72)

Nowwe apply the definition of conjugate norm. By noting the
fact that the conjugate (dual) norm for the norm ‖ · ‖∞,S(q) is
‖ · ‖1,S(p) with 1

p +
1
q = 1 [64], and for ‖ · ‖∞,2 is ‖ · ‖1,2.

Substituting this gives

GHSp(g, αs, αf )=min
u

αs‖u ∗ dt‖1,S(p)+αf ‖d ∗ g−u‖1,2,

which completes the proof.
Proof of Proposition 2: First we note that AfAt

f = I,
and let Bf be matrix such that the augmented matrix M =[
At
f B̂tf

]t
satisfies MtM = I. Further, let ẑ = Mz, and

â = Ma, and let ẑ =
[
ẑ1
ẑ2

]
and â =

[
â1
â2

]
, where ẑ1

and ẑ2 are sub-vectors of ẑ of size 2 × 1, and similarly
â1 and â2 sub-vectors of â of size 2 × 1. Then the form of
cost function that is easy to minimize can be obtained by
substituting z =Mt ẑ, a =Mt â, and ẑ1 = Af z in Lf (z, a, αf ).
By doing this, we obtain the transformed function as given
below:

L̂(ẑ1, ẑ2) = Lf (Mt ẑ,Mt â, αf )

=
β

2
‖ẑ1 − â1‖22 + αf ‖ẑ1‖2 +

β

2
‖ẑ2 − â2‖22. (73)

Let (ẑ∗1, ẑ
∗

2) denote the minimum of L̂(·, ·). Clearly, ẑ∗2 = â2.
Next, ẑ∗1 is the well-known proximal solution of l2 norm [56],
and it is given by ẑ∗1 =

max(‖â1‖2−t,0)
‖â1‖2

â1, where t = αf /β.

From these, the minimum of Lf (z, a, αf ), denoted by z∗ can

be expressed as z∗ =Mt
[
ẑ∗1
ẑ∗2

]
=Mt

[
ẑ∗1
â2

]
. By replacing ẑ∗1
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by â1− (â1− ẑ∗1), we get z
∗
=Mt

[
â1
â2

]
−Mt

[
â1 − ẑ1

0

]
=

Mt
[
â1
â2

]
− At

f (â1 − ẑ∗1). Next, from the expression

for ẑ∗1, we can deduce the following on the difference
(â1 − ẑ∗1):

(â1 − ẑ∗1) = â1 −
max(‖â1‖2 − t, 0)

‖â1‖2
â1

=
1
‖â1‖

â1(‖â1‖2 − max(‖â1‖2 − t, 0))

=
1
‖â1‖

â1min(‖â1‖2, t)

By using the above relation and by using the fact that

Mt
[
â1
â2

]
= a, we get

z∗ = a−
1
‖â1‖

min(‖â1‖2, t)At
f â1.

Substituting â1 = Af a in the above expressing gives the final
expression.
Proof of Proposition 3: From the definitions of K and L,

we first note that they can be expressed as

K =


1 0 0 0

0 0.5 0.5 0

0 0.5 0.5 0

0 0 0 1

 , L =


0 0 0 0

0 0.5 − 0.5 0

0 − 0.5 0.5 0

0 0 0 0


(74)

From the form given above, we observe thatKt
= K,L = Lt ,

and LK = KL = 0. Hence, 1
2‖z − a‖22 can be written as

1
2‖z− a‖22 =

1
2‖Kz−Ka‖22+

1
2‖Lz−La‖22. As a result, the

minimization problem becomes,

z∗ = argmin
z∈R4

1
2
‖Kz−Ka‖22 +

1
2
‖Lz− La‖22 + t‖Kz‖S(p).

As an additional property, we also observe that K + L = I.
Hence, we have R(K) ⊕ R(L) = R4. This means that the
minimum of Ls(z, a, αs), denoted by z∗, can be written as
z∗ = z∗k + z∗l , where

(z∗k , z
∗
l ) = argmin

zk∈R(K), zl∈R(L)

1
2
‖K(zk + zl)−Ka‖22

+
1
2
‖L(zk + zl)− La‖22 + t‖K(zk + zl)‖S(p).

Next, because of the relation LK = KL = 0, we haveKzl =
Lzk = 0. This means that the minimization subproblem can
be separated as

z∗k = argmin
zk∈R(K)

1
2
‖Kzk −Ka‖22 + t‖Kzk‖S(p) (75)

z∗l = argmin
zl∈R(L)

1
2
‖Lzl − La‖22 (76)

Next, we observe that K2
= K and L2

= L, this means K
and L are orthogonal projections on range spaces of K and
L respectively, which implies that Kzk = zk and Lzl = zl .
Hence the above minimization problems can be written as

z∗k = argmin
zk∈R(K)

1
2
‖zk −Ka‖22 + t‖zk‖S(p) (77)

z∗l = argmin
zl∈R(L)

1
2
‖zl − La‖22 (78)

From the above forms of minimization sub-problems, it is
clear that z∗l = La. We claim that z∗k = Ps(Ka, t) where
Ps(Ka, t) is the proximal of the Schatten-Norm applied on
Ka with threshold t . This is because Ps(Ka, t) is the global
unconstrained minimizer of the cost 12‖zk−Ka‖

2
2+t‖zk‖S(p),

also by definition of Ps(Ka, t) [46] (section III.E), it can be
seen that Ps(Ka, t) ∈ R(K). From the above two statements
it can be concluded that Ps(Ka, t) is the required minimizer.
Hence the required solution becomes z∗ = La+ Ps(Ka, t).
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