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ABSTRACT The development of the Internet of Things (IoT) has shown significant contributions to many
application areas, such as smart cities, smart homes, and smart farming, including aquarium control systems.
Important things in an aquarium system are the level of ammonia in the water and the temperature of the
water. Other research proposes several systems to make the aquarium control system robust for the aquarium
monitoring and control system. However, those systems have weaknesses; namely, the user must actively
access information to the server. This paper proposes a robust aquarium control system using the decision
tree regression (DTR) algorithm. The development of this system was to overcome the problem of aquarium
control by remote users. An accurate and real-time system is needed to monitor the aquarium so that it does
not reach dangerous and critical points, such as in the case of an increase in water temperature. We did tests
by developing an aquarium system connected to a server and an application that acts as a controller. Our
measurements check the delay of sending data from the sensor to the server, process delay, actuator delay,
user delay, and delay in reaching the aquarium’s critical point. Themeasurement of the system’s robustness is
by calculating the probability of the information arrival to the user in the period of the critical point compared
to the time needed to reach the critical point. Furthermore, we also made an analytical model based on the
probability density function of the delay covered in this system. Analytically and experimentally, we show
that the system can meet the needs of aquarium monitoring and control in an IoT-based environment.

INDEX TERMS Internet of Things, analytical model, probability density function, robustness, aquaculture,
decision tree regression.

I. INTRODUCTION
The development of the IoT in recent years has shown a
significant increase. The system advanced with the support of
machine-to-machine (M2M) communication platforms that
have developed in the past decade [1]. These communication
platforms’ development was to connect multiple devices,
sensors, and actuators. At the above level, there are studies
regarding middleware that communicates hardware with IoT
applications [2].

One application developed in the study is a fish mainte-
nance system that requires remote monitoring and control.

The associate editor coordinating the review of this manuscript and

approving it for publication was Aneel Rahim .

Maintenance of fish requires a good system so that the owner
can know the condition of fish even in a mobile position. Not
every time a user canmonitor the condition of ornamental fish
that one has. Monitoring is needed to ensure that the fish’s
environmental and food conditions meet adequacy standards.
Users need certainty that themonitoring and control are going
well. Some considerations are the adequacy of fish feed and
the water conditions where the fish reside. Water temperature
is an important factor to control so that fish can live in a good
water environment. Drastic changes in water temperature can
cause fish to enter crucial and unstable conditions. Under
certain conditions, fish can no longer survive in an environ-
ment with temperatures outside the limits. A system that can
automatically detect and regulate to keep water conditions
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within good limits can actively anticipate the mentioned
conditions.

A fish pet monitoring and control system has been widely
implemented, manually and using the IoT system. The use
of manual systems for aquarium management is very time-
consuming, and vulnerable to human error [3], [4]. For exam-
ple, people neglect maintenance when they forget or are busy.
Human sensitivity to changes in water temperature cannot be
relied upon to ensure water conditions are in good condition.
A system is needed to automatically monitor the aquarium’s
condition precisely to ensure that the condition of pet fish
remains good and cherished.

Besides the manual system, several studies have used the
IoT system for aquarium monitoring and control. In some
previous papers, aquarium control with IoT has been pro-
posed but has a passive system [5], [6]. Users must actively
monitor the condition of the aquarium. This passive system
is not practical, while the user may be unaware of the usual
hectic conditions, so controlling the aquarium’s condition
becomes missed. Users must monitor the aquarium’s con-
dition without knowing the aquarium’s precondition. When
conditions are good, access to aquarium information is not
very useful except for just knowing. Conversely, delays in
accessing information from the aquarium will cause fatal
events in crucial conditions. An IoT system is needed that
provides information and actively informs the aquarium’s
condition, especially in crucial conditions.

This research builds a smart aquarium management sys-
tem, a push and mobile system, and an aquarium monitoring
system. The intended push system is a system that actively
sends information to the server, which forwards it to the
user in critical conditions or normal conditions. With this
push system, the user will obtain information automatically
without actively accessing the web. Another advantage is that
this system can be accessed on mobile so that users can easily
access information on the aquarium’s condition.

Our main contributions are summarized as follows:
1) We present a robust IoT-based aquarium control system

using a decision tree regression (DTR) algorithm that
processes the sensor data in a server, which is impor-
tant to predict the condition of the aquarium system.
The system automatically performs the actions needed
when the fish environment meets critical conditions
such as high temperature. The system actively sends
sensor data to the server to be forwarded to the user in
critical and normal conditions. Users will obtain infor-
mation automatically through this push system without
actively accessing the web.

2) We introduce the critical analysis on the possibility of
information delay from the sensor system to the server,
server processes, and information delay from the server
to the actuator by observing the processes on the server.

3) We suggest a review of the delay in arriving infor-
mation from the system to the user, ensuring that the
aquaculture condition does not meet the critical phase.
Research [3]–[5], and [6] have not discussed this in

detail. We place the details of this analytical model
based on the delay probability density function in
Appendix A.

4) Another advantage of this paper is the server process
delay, which previous studies have not calculated, such
as [6].

The organization of the remainder of this study is as
follows. In Section 2, we discuss the related works. Then
Section 3 explains the testing environment of aquaculture and
reports the results of testing the aquaculture. Section 4 con-
tains the evaluation of the system’s performance. Finally,
Section 5 concludes our research.

II. RELATED WORK
A. APPLICATIONS OF INTERNET OF THINGS
IoT is one of the most trending issues in the ICT field. With
the presence of IoT, the Internet has become increasingly per-
vasive. Recent studies have discussed IoT in various aspects,
including agrarian, air pollution, smart cities, sports, vehicles,
shopping, disasters, and electricity. In the agricultural field,
there is a study of the plant wall system [7] where IoT is used
to automate the monitoring and controlling activities of the
plant wall. In the field of air pollution is a study of air pollu-
tion monitoring systems in a smart city [8] where the IoT sys-
tem in the study involved 2500 devices spread across 29 dif-
ferent countries. An example of IoT research in smart cities
addresses issues regarding vertical IoT platforms [9] where
the research offers a multi-platform concept. This communi-
cation protocol can connect different platforms. In sports is
a study of cycling [10] where accelerometers and gyroscope
sensors in an inertial measurement unit (IMU) sensor provide
various information needed by the cyclist to measure the
quality of a completed exercise. In the field of vehicles is
a study of car parking [11] where the solutions offered by
the research are classified as reinforcement learning because
this paper offers the optimum parking search solution from
the available parking choices. In the field of shopping is a
study of shopping cart [12] where IoT overcomes long queue
problems in supermarkets by doing wireless billing when
shopping carts go to the cashier. In the field of disaster is a
study of flood prediction using IoT [13] where climate sen-
sors from weather agencies around the world work together
and 11 features for machine learning were collected. In the
electric field, one of the studies on Smart Grid is the detection
of damaged Smart Meters with edge computing and anomaly
detection [14].

With various IoT products hitting the market, a new threat
emerges, the security risk. Unlike other cyber fields, because
IoT is still in its infancy, cyber risk assessment of IoT seems to
be still not ready. Several studies have analyzed to calculate
the performance of existing risk analysis and how to deter-
mine the optimum risk analysis.

B. SMART AQUARIUM
Several papers have researched IoT-based aquaculture using
several sensors and actuators. Chen et al. [3] focused on the
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TABLE 1. IoT solutions for smart aquariums.

Dissolved Oxygen (DO) quality control system in aquariums.
For input to the aquarium system, it uses a DO sensor. For
actuators, the system uses a microbubble device. The sensors
used by Tseng et al. [4] were water level sensors, pH sensors,
and DO sensors.

Other studies on IoT-based smart aquariums utilize more
specific sensors, resulting in expanded findings. Raju and
Varma [5] also used sensors to monitor aquarium environ-
ments. In addition to the pH, DO, and temperature sensors,
the system built is also equipped with nitrate, alkalinity, salt,
and ammonia sensors. However, the system built does not
have actuators that work automatically. Alerts arrive with
instructions that the user must carry out.

Some studies add other useful functions to the aquaculture
system. The theme of research by Angani et al. [15] was
how to recycle water in an aquarium without wasting water.
The sensors used are DO, pH, temperature, and water level
sensors. The actuators used are solenoid valves to open water-
ways and pumps.

Some research conducted a comprehensive evaluation of
the IoT system applied to aquaculture. FishTalk [6] used
pH, EC, DO, total dissolved solids (TDS), water level, and
temperature sensor. The actuators used are a fish feeder,
fan, heater, light, air pump, and reserve osmosis (RO) filter.
In addition to the completeness of sensors and actuators, what
distinguishes this study from other smart aquarium studies is
themeasurement of delay. This research ensures probable and
statistical delay measurement by conducting proper sensing
and actuating. The Erlang and gamma distribution measure-
ments prove that the system delay will not harm fish rearing.

A research opportunity is to add temperature forecasting to
enhance the delay safety of the system further. Table 1 shows
a comparison of all the papers reviewed. The table highlights
the contribution given by the proposed system.

C. WATER TEMPERATURE FORECASTING
Some researchers have implemented forecasting using
machine learning techniques and applied them to environ-
mental fields. East Asia Winter Monsoon (EAWM) forecast-
ing used partial least square (PLS) regression [16]. Global
solar irradiation forecasting used two persistent models with
four types of regression tree [17]. Heatwave forecasting in
Pakistan uses quantile regression forest [18].

In addition, other researchers have also applied forecasting
in energy, economy, and electricity. Electricity price and load
forecasting use an enhanced convolutional neural network
(ECNN) [19]. District heating and cooling (DHC) forecasting
used an online ensemble decision tree-neural network (DC-
NN) learning [20]. Copper price forecasting used the decision
tree classification, a method also useful for economics [21].
Electric power load forecasting used a decision tree type
reduced error pruning tree (REPTree) [22].

Some researchers have implemented forecasting at water
temperature using machine learning. Research can be found
regarding forecasting water temperature using a method
called the non-linear regression model (NRM), which
is superior to RBF and SVM [23]. A hybrid empiri-
cal mode-decomposition-back-propagation neural network
(EMD-BPNN) method is applied to a prawn engineer-
ing culture pond [24]. A genetic algorithm-optimized long
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short-term memory (GA-LSTM) is used for forecasting
urban water quality management [25]. A hybrid support vec-
tor regression-fruit fly optimization algorithm (SVR-FOA)
method is used for forecasting river flow prediction [26]. The
research gap found is to implement a forecasting method for
aquaculture systems.

III. TESTING ENVIRONMENT
A. AQUARIUM SENSORS
The sensors used in this research are a Waterproof Temper-
ature Sensor DS18B20, a TDS Sensor, and A DFRobot: DO
sensor. Waterproof Temperature Sensor DS18B20 is a type
of sensor to detect the ambient temperature in the water,
as seen in Figure 1 section (a). A TDS Sensor measures the
level of cleanliness of the water in an aquarium, as seen in
Figure 1 section (b). DFRobot: Dissolved Oxygen Sensor is
a low-power sensor that is compatible with microcontrollers,
as seen in Figure 1 section (c).

FIGURE 1. The aquaculture sensors: (a) Waterproof temperature sensor
(b) TDS sensor (c) Dissolved oxygen sensor.

B. AQUARIUM ACTUATORS
Actuators used in this research are an HB-100 Waterheater,
an FS-120 Fan, a 5 V Relay, an RO Filter, and a Feeder.
The HB-100 Waterheater is a water heater that can help
heat aquarium water with a volume range of 50-100 Liters,
as seen in Figure 2 section (a). FS-120 Fan is a special fan
for aquariums that has dimensions of 172× 120× 120 mm,
a frequency of 50/60 Hz, and a power of 15 W, as seen in
Figure 2 section (b). A 5VRelay controls high-power devices
with low-power microcontrollers. An RO filter filters water
molecules in contaminated aquariums to yield clearer and
cleaner water. Automatic fish feeders (or briefly, feeders) are
controlled and triggered directly by the system based on need
and is, as seen in Figure 2 section (c).

FIGURE 2. The aquaculture actuators: (a) Waterheater (b) Fan
(c) Automatic fish feader.

C. IoT ENVIRONMENT
The proposed system uses an IoT Architecture in which
the system consists of three layers, namely, the end device,

server, and application [28]. The end device, in this case,
is the aquarium. All sensors, actuators, and the aquarium
are part of the end device. A microcontroller regulates the
control of the aquarium, and in this study, the microcontroller
used is an ESP8266. The end device communicates with
the server and application via a message queue telemetry
transport (MQTT) Broker wirelessly [29]. Wireless commu-
nication is the responsibility of the Wi-Fi module, which is
part of the ESP8266.

The server used is a Python Server. Communication
between the Server and End Device uses MQTT. The task
of the Python server is to receive temperature data, make
predictions, deduce predictions into decisions, and send the
results of decisions. A DTR model carries out the prediction,
where the DTR model goes through DTR training according
to machine learning rules. Data received from and sent to the
server come from the MQTT broker. Application is software
that runs on the user’s smartphone. An overview of the whole
system is viewable in Figure 3.

FIGURE 3. The proposed system block diagram.

The system’s workflow is as follows: First, the sensor
on the end device will send temperature data to the MQTT
broker. The server and the application will receive this data.
The application will display temperature information in the
form of monitoring data. The server will receive data and then
make predictions. The prediction results will then determine
a decision. The decision is about which actuators should
activate and which should not. The decision transmits to the
MQTT broker. Both the end device and the application will
receive the decision data. The end device will set the actuator
according to the decision, while the application will show
each actuator’s status according to the decision.

D. DECISION TREE REGRESSION FORECASTING
A Decision Tree is one of the Machine Learning techniques
used for classification and regression. In operating, the Deci-
sion Tree works like a flowchart. The feature values go
through a tree-like model then the branches in the model
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will direct these values towards a final decision. Each branch
contains conditions that resemble the concept of if-else.

The Decision Tree model is a result of training data pro-
cessing. One of the most famous types of Decision Trees,
namely, ID3, conducts training in several stages. The first is
calculating the Entropy of each feature. Entropy is the value
of diversity. The higher the value of Entropy is, the more
diverse the data. The maximum value of Entropy is 1. After
Entropy, the next stage is to calculate the information gain
value. The information Gain value indicates which feature
most influences the output. The higher the value of Informa-
tion Gain, the greater the influence of features. The final step
is to arrange the tree based on each feature’s InformationGain
and Entropy value.

The resulting Decision Tree model goes through a testing
process using the testing data. Testing data is data that has
been collected and has an output. Testing data cannot be
the same as the training data. The Decision Tree model’s
performance measurement is with the model’s accuracy in
producing output from testing data. Accuracy is comparing
the output of the testing data with the actual output.

There are two types of Decision Trees, classification and
regression. If used for classification, the input of the decision
tree is usually the attributes of an event. An example of
classification is determining a person’s sex from the person’s
height, shoe size, weight, and chest circumference. When
used for regression, input data is usually a time series event
or continuous value.

DTR in the proposed system is used to predict the next
temperature data so that the system becomes more responsive
than conventional systems. DTR is a type of supervised learn-
ing, a machine learning trained based on labeled data. The
data used for training and testing are temperature data taken
in real-time for approximately 24 hours. These data separate
into training and testing data by using 80% of the data for
training and 20% for testing. The model is exportable for fur-
ther use. An explanation of the process of Decision Training
is in Algorithm 1. SSE in the algorithm is the sum of squared
error or all differences in the values of array members with
the average value of the squared array members.

The result of DTR training is a model. This model is
then exported and embedded in the Prediction Server, where
the model’s input is data entering the Prediction Server.
The model then processes the input to yield the output. The
model’s output is the predicted temperature, which will then
be classified. There are three classification results classes:
LOW, HIGH, and NEUTRAL. LOW will turn on the heater,
while HIGH will turn on the fan. NEUTRAL will deacti-
vate both. The results of this classification transmit back to
the End Device to control the temperature. Communication
between the End Device and Server uses MQTT. To receive
data from the MQTT Broker, Subscribe is used. The MQTT
Publish protocol sends data to the MQTT broker. The expla-
nation of the complete process of the prediction server is
in Algorithm 2. Based on the tests that have been carried
out, it is obtained a temperature dataset taken for 1 week

Algorithm 1: Decision Tree Regression Training
Data: Training Data
Result: Decision Tree Regression Model

1 Procedure Split(Training Data)
2 n = sizeof(Training Data);
3 for i in (n) do
4 for j in (0,i) do
5 Low[i].append(Training Data[j])

6 for j in (i,n) do
7 High[i].append(Training Data[j])

8 LowLabel = average(Low[i]);
9 HighLabel = average(High[i]);
10 SquaredLoss[i] = SSE(Low[i]) + SSE(High[i]);

11 choice = min(SquaredLoss);
/* recurse split with chosen Low

and chosen High */
12 Split (Low[choice]);
13 Split (High[choice]);

Algorithm 2: Decision Tree Regression Prediction
Server
Data: Temperature
Result: Decision

1 Procedure PredictionServer(Temperature)
2 Temperature = mqttt.Subscribe();
3 Prediction = DTRModel.Predict(Temperature);
4 if Prediction < Min Temperature then
5 Decision = ‘‘LOW’’;

6 else if Prediction > Max Temperature then
7 Decision = ‘‘HIGH’’;

8 else
9 Decision = ‘‘NEUTRAL’’;

10 mqttt.Publish(Decision);

FIGURE 4. DTR forecast.

which shows fluctuations in temperature changes as shown
in Figure 4. The data obtained in this test is used as training
data to predict the next temperature value.
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The performance test compares a generated temperature
prediction data set with real data. Figure 4 shows predictive
data and real temperature data. The model’s accuracy is mea-
sured based on the match between the predicted temperature
data and the real temperature data.

Prediction accuracy is measured using three methods,
namely the Root Mean Squared Error (RMSE) [30], Mean
Absolute Percentage Error (MAPE) [31], and R Squared (R2)
methods [32]. These three methods are well-known methods
to assess the accuracy of predictions. The following are the
formulas for the three methods.

RMSE =

√√√√1
n

n∑
i=1

(yi − ỹi)2 (1)

where n is number of data, yi is observed values, and ỹi is
predicted values, and

MAPE =
1
n

n∑
i=1

∣∣PEi∣∣ (2)

where n is number of data, PEi is the percentage of error of
two variables, and

R2 =
(

n(
∑
xy)− (

∑
x)(
∑
y)√

(n
∑
x2 − (

∑
x)2)(n

∑
y2 − (

∑
y)2)

)2

(3)

where n is number of dataset, x is first variable, and y is
second variable in the context.

The calculation results obtained show the RMSE value of
0.15, MAPE value of 0.52% and R2 of 84.52% which is
shown in Figure 5.

FIGURE 5. R squared value.

The RMSE and MAPE measurement results indicate that
the difference between predictive data and real data is low—
the closer to 0, the RMSE andMAPE value, the better. Mean-
while, the R2 value is 84.52%, which shows the closeness of

the prediction variable with the real value variable. It shows
that the predicted value strongly correlates with the real value.

E. APPLICATION
Applications in the three layers of the IoT architecture are the
user’s domain. The application development in the proposed
system was with Android Studio. Users can monitor the
aquarium through the application. Users can also monitor the
status of actuators. Figure 6 shows the User Interface (UI) of
the created application. The Application UI consists of two
UIs: the main UI and the Setting UI. The main UI is called
the Monitoring UI.

FIGURE 6. Mobile app user interface. (a) Setting. (b) Monitoring.

The main function of the Monitoring UI is to display the
monitoring of aquarium values and the status of the actuators.
The application monitors four aquarium values: temperature,
water quality, water cleanness, and water level. There are two
statuses of the actuator displayed, namely, Fan and Heater.

In addition, there is the status of each aquarium value.
A ‘‘Good’’ text will appear for each value if all values are
within the threshold range. If all values are good, there will
be large ‘‘Good’’ text at the top of the Monitoring UI. If the
aquarium value goes out of the threshold range, the text will
change to ‘‘Bad’’ on monitoring the concerned value. If there
is at least one monitoring value in the Bad status, then the
large status text above will change to bad, then there will be
an alert to the user.

Display Settings are for connecting to the MQTT broker.
The settings view consists of each server, port, username, and
password field that the user can fill in. Server and port are
the IP address and port number of the MQTT broker used.
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Username and password comprise an authentication system
set up to access the MQTT broker securely.

All data obtained from the application are the contents
of the MQTT broker published by the end device or server.
The end device sends monitoring data, and the server sends
actuator states.

F. TESTING
Aperformed testing is tomeasure the regression tree forecast-
ing performance. Betta fish are in the test environment during
testing, where the water condition of the betta fish becomes
the test parameter. Betta fish live in water with a minimum
temperature of 25 ◦ C and a maximum of 27 ◦ C. So the rules
will be arranged to follow these restrictions. The methodol-
ogy is as follows. First, the IoT system is set up and activated.
Sensing data begins to collect, the computer network system
will also be active, communication will establish, and sensing
data will enter the forecasting system—the testing process
applies testing data to the model. The output data from the
model is named the prediction data. The prediction data is
then entered into inference to determine the actuator action
at the intended forecast time. The output of the inference is
named decision data. Performance measurement is the next
step. The measurement parameter is accuracy. The way to
measure accuracy is to compare the forecast decision data
with the actual decision data. The accuracy is 99.82 %.

IV. SYSTEM PERFORMANCE EVALUATION
A. IoT SYSTEM DELAYS AND MEASUREMENT
The system has gone through the previous test, which is a
field testing by an empirical approach using an aquarium
system connected to the IoT system. The protocol used in
this test is MQTT using a Wi-Fi network. The test results
show that the system can monitor and control the aquarium
following the user requirements. The server response time to
changes in the aquarium environment is good and can send
information to the actuator following the processes carried
out on the server. Likewise, information that reaches the user
is still within the system’s tolerance.

In addition to empirical testing, this section also discusses
the development of an analytical model to measure the worst
possible system failure in monitoring and controlling the
aquarium from the user’s perspective. In this case, there are
several parameters used concerning time. The parameters are
the time required for sending data from the sensor to the
server (tw) as a warning from the system to the user and the
processing time on the server (tp) (i.e., the time needed by
the server to define the information received and determine
the next action). The time the data are sent from the server
to the actuator (tr ) in response to the information the server
receives. Another delay analyzed is the time of sending data
from the server to the user (tu) and the deadline between
the warning time and the critical point (tC ). The mentioned
time is required to raise the aquarium water temperature from
the initial warning point until it is critical. Figure 7 shows a

FIGURE 7. The proposed system time diagram.

timing diagram from the trigger sensor to the actuator and the
user.When the τt,0 sensor first detects that the system is enter-
ing a critical condition. For example, a damaged equipment
event (such as a heater that turns on suddenly, which increases
the water temperature). The sensor will notify the server by
sending warning information. The server receives a warning
when τt,1 and then processes the information up to τt,2.
The server makes a decision and sends information to two
destinations: the actuator and the user system. The actuator
works when τt,3, for example, the system turns off the heater.
The deadline required from the start of the system to detect
the possibility of a critical login system (τt,0) to the time the
active actuator (τt,3) is shown as ti time. At approximately
the same time, the server sends the information to users,
which reaches the user at τt,u. The deadline required from
the system to detect the possibility of a critical login system
(τt,0) until the information reaches the user application (τt,u)
is tj time. While the system sends information to servers
and users, the aquarium’s condition will continue to lead to
critical conditions. Critical conditions, which are undesirable,
will be completely exceeded when it reaches the point τt,4.
Resulting in a controlled condition so that the system can
restore normal conditions before a critical condition occurs.

Analytical models explore the worst possible conditions in
IoT network connections and the effect on aquarium moni-
toring systems. The model creation is by looking at empirical
delay data generated in the communication process between
entities in the IoT system. The approximation of delay data
is by a Probability Density Function, proven by using the
Kolmogorov-Smirnov normality test. The developed analyti-
cal model references and compares empirical data on testing
results. This model is important to ensure the system runs
well by considering various possible system failures due
to message delays and packet loss sent from one entity to
another IoT entity. The theoretical proof is more reliable than
just testing empirical data on the results of testing in the lab.
By calculating these worst conditions, the system provides
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a certain level of confidence to overcome problems in the
IoT communication network. The worst condition in question
is the uncontrolled delay when a congested network occurs,
or some functions are not running well, causing packet loss
so that information does not arrive properly from one entity
to another IoT entity.

Two situations become important concerns in this evalua-
tion: the time needed to activate the actuator and the arrival
of information to the user compared to the time needed to
achieve critical conditions. Assuming good network condi-
tions and worst network conditions, certain important vari-
ables that become a reference for this goal are the time
for sending data from the sensor to the server (tw), server
processing time (tp), time from the server to the actuator (tr ),
and time from the server to the user (tu). Unfortunately, there
has been no testing for server time and information delivery to
the user in previous studies, even though both are very impor-
tant. Fortunately, as value added from our research, we have
considered all delay variables, including server process time
and sending message delay from the server to the user. The
delay formula is as follows.

τt,3 = tw + tp + tr (4)

and

τt,u = tw + tp + tu (5)

The testing process assumes that the server used is active
with several running tasks. Server busyness is important to
show that the system is running in a natural environment with
many other tasks running on the server. This processing time
is not negligible because it can affect the overall processing
time, unlike the previous system that ignores it. The next
evaluation explores the worst conditions in systems where the
network is not running smoothly and there is a long delay in
sending data. In this study, an analysis ensures that the worst
process time can still guarantee a good control process.

The second situation is the arrival of information to users
in different locations. Under certain conditions, the user can
be in a complicated situation and not have time to check the
aquarium system; therefore, that information must transmit
from the system to the user. A push information system to
users is an advantage of the system we have developed that
previous papers have not discussed. There are several time
components to consider: delay in the transfer of data from
the sensor to server (tw), server processing (tp), and delay
from the server to user (tu). There is a comparison of this
overall time to the probability of an aquarium environment
critical condition. The evaluation of this second situation is
under normal conditions and poor network conditions.

B. ANALYSIS OF THE WORST EFFECTS OF MESSAGE
DELAY ON THE IoT NETWORK
The following is an analysis of the results of the test for the
delay caused in sending data from one entity to another on
the IoT network. For example, tw is the delay of sending
data from the sensor to the server, tp is the processing delay

FIGURE 8. The delay tp histogram.

FIGURE 9. The delay tr histogram.

of the server, tr is the delay when the server sends data to
the actuator, and tu is the delay when sending data from the
server to the user. We assume that the four tw, tp, tr , and tu are
random variables with density functions fw(tw), fp(tp), fr (tr ),
and fu(tu). We have obtained histograms for tw, tp, tr , and tu
with the results of 3000, 3041, 3000, and 3022 measurement
data for Wi-Fi transmission delays, respectively. Based on
the data obtained from the sample measurement, the results
t∗N ,w, t

∗
N ,p, t

∗
N ,r , and t

∗
N ,u obtained by Erlang distributions are

the expected value E[t∗N ,w] = 0.27704 ms and the variance
V [t∗N ,w] = 0.00135, expected value E[t∗N ,p] = 0.05223 ms,
and the variance V [t∗N ,p] = 0.0005491, expected value
E[t∗N ,r ] = 0.28036 ms and the variance V [t∗N ,r ] = 0.00131,
expected value E[t∗N ,u] = 0.28036 ms and the variance
V [t∗N ,u] = 0.00131. The histogram for each PDF with an
Erlang distribution for each function fw(tw), fp(tp), fr (tr ),
and fu(tu) are shown in Figure 11, Figure 8, Figure 9, and
Figure 10, respectively.
The Erlang density function with the shape parameter m

and the scale parameter β is formulated as follows.

fE (t,m, β) =
βmtm−1e−βt

(m− 1)!
(6)

and ∫ t

τ=0
fE (τ,m, β)dτ = 1−

m−1∑
k=0

βk tke−βt

k!
(7)

where E[t] = m
β
and V [t] = m

β2
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FIGURE 10. The delay tu histogram.

FIGURE 11. The delay tw histogram.

FIGURE 12. The delay tC histogram.

From equation (6) an estimate fw(t∗N ,w) can be obtained
as fE (t∗N ,w,m

∗
N ,w, β

∗
N ,w), where the shape parameter is

m∗N ,w = 56 and the scale parameter is β∗N ,w = 0.00487.
We approximate also some data as follows: fp(t∗N ,p) as
fE (t∗N ,p,m

∗
N ,p, β

∗
N ,p), where the shape parameter is m∗N ,p =

4 and the scale parameter is β∗N ,p = 0.01051, fr (t∗N ,r ) as
fE (t∗N ,r ,m

∗
N ,r , β

∗
N ,r ), where the shape parameter is m∗N ,r =

29 and the scale parameter is β∗N ,r = 0.00933, and fu(t∗N ,u)
as fE (t∗N ,u,m

∗
N ,u, β

∗
N ,u), where the shape parameter is m∗N ,u =

59 and the scale parameter is β∗N ,u = 0.00469. The PDF curve
estimate is validated by the Kolmogorov-Smirnov suitability
test.

As explained in the previous discussion, four units of time
are taken into account in monitoring and controlling the
aquarium system, namely, tw, tp, tr , and tu. For example,
in certain situations, the water temperature shows a gradual
increase resulting from faults, such as activating the heater or
hot weather conditions from outside. This condition makes
the water warmer, and the temperature continues to rise to
a certain extent that is no longer good for the fish, called
a crucial point; in this case, the water temperature reaches
25o C. The system must be able to send information before
it exceeds this crucial point. For example, at a temperature
of 24o C, the first time, the sensor detects the conditions that
allow the necessary conditions in the aquarium (τt,0). Then,
the system sends a warning to the server with a tw travel
time. The server receives data from the aquarium when τt,1.
Upon receiving this information, the server then processes
the information and determines the next action in a time
of tp, and the server sends a response on time τt,2. Then,
the response data sent reaches the aquarium system within
tr and arrives at the actuator when τt,3. Simultaneously, the
server also sends information to the user through a mobile
phone application. The time it takes to send a message to the
user is tu. The message arrives at the user’s mobile phone
application when τt,u. Meanwhile, the time needed by the
system to reach a critical point is, for example, tC , which
is at τt,4 time point. The time needed to achieve this critical
condition is tC = τt,4− τt,0. This control system is important
to guarantee and ensure that the value of tC > tw + tp + tr
or τt,4 > τt,3 and that the value of tC > tw + tp + tu or
τt,4 > τt,u. The system can control the aquarium’s condition
by activating the actuator, as important as the arrival of the
information to the user. Therefore, there are two controls by
the system that is controlling the actuator directly and giving
awareness to the user. On the other hand, the time needed
to reach the crucial point we call tC is the time when the
system starts going towards the critical point (τt,0) and to the
critical point (τt,4). Let fC (tC ) be the density function for tC .
We have empirically tested the temperature rise time to a
critical point and obtained 100 data points with a histogram
shown in Figure 12. The mark of the measured value is t∗C .
From thesemeasurements, we can approach t∗C with aGamma
distribution with an expected value E[t∗C ] = 712.14s and
the variance V [t∗C ] = 3.902. Therefore, fC (t∗C ) has the shape
parameter α = 130.69 and the scale parameter Âµ = 5.464.
The Kolmogorov-Smirnov suitability test validates the PDF
curve estimate.

One important thing is to ensure that the system stays under
control before it reaches a critical point that is dangerous
for the fish. The deadline to reach the tipping point is tC ,
while the time needed to get the information and activate the
actuator is ti, and the deadline for information to the user is tj.
A model is needed to determine the probability value to reach
that critical point. The smaller the probability is, the better the
system. So that the system does not reach a critical point that
is dangerous for fish, it is necessary to ensure that τt,4 > τt,3
or tC > ti and that τt,4 > τt,u or tc > tj. In Appendix B,
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FIGURE 13. Effect of network delay to probability of Pr [tC > ti ] and
Pr [tC > tj ].

we have derived the probability Pr[τt,4 > τt,3] or Pr[tC > ti]
as follows.

Pr [tC > ti] = 1−
mw+mp+mr−1∑

k=0

(
α+k−1

k

) [
βkµα

(β+µ)α+k

]
Moreover, for the probability ofPr[τt,4 > τt,u] orPr[tC > tj]
is as follows.

Pr [tC > tj] = 1−
mw+mp+mu−1∑

k=0

(
α+k−1

k

) [
βkµα

(β+µ)α+k

]
As part of the proof of the analytical model developed, test-

ing has been performed by sampling empirical data to prove
the two equations. After several calculations with the time
parameters tC , ti, and tj, the conclusion is that the probability
is extremely small and under 0.01%. It is the empirical and
appropriate proof of the developed analytical model of the
test environment. This test shows that the system is quite
good at monitoring and controlling the aquarium system in an
IoT environment. The next test is to anticipate poor network
conditions that are assumed to be with a high increase in
delay with expected values of E[ti] � E[t∗i ] and variance
V [ti]� V [t∗i ], as well as the expected value of E[tj]� E[t∗j ]

and variance V [tj]� V [t∗j ]. We have tested by increasing the

value of the delay significantly, as shown in Figure 13. The
test results show that the new system is affected after the delay
is increased 800 times with the values Pr[tC > ti] = 99.99%
and Pr[tC > tj] = 84%. This shows that the opportunity
for the system to remain under control is still very high, even
though the network condition is not good as indicated by a
significant increase in delay. The system will continue to run
well even if the IoT network condition is having problems
increasing the message delivery delay.

In the section so far, the system testing has been presented
empirically and mathematically. Both show consistently that
the system can run stably to monitor and control the aquarium
by using the IoT network, even with poor network conditions.
In addition to the achievements we have found, there are sev-
eral system limitations. This system is designed specifically

for a certain aquarium size and for the temperature of a certain
environment. External air conditions also affect the system.

Our tests have proven that the proposed system runs with
an understandable delay, but there is still room for improve-
ment in the future. The cutting-edge concepts offered are edge
computing, where in the cloud-powered IoT architecture,
intelligent computing shifts from the cloud to end devices.
This concept demands a compact intelligent model solution.
Several studies on the quantization of machine learning mod-
els already exist and can be adopted.

V. CONCLUSION
Our research proposes a novel IoT system with predic-
tive functionalities to enhance the environment control of
an aquarium and ensure delay tolerance, where the system
adopts a decision tree regression (DTR) algorithm for predic-
tion. The equipment involved, among others, are water tem-
perature sensors, TDS sensors, DO sensors, a water heater,
a fan, a relay, and an RO filter. The system also equips
a Python server and an android-based application, where
MQTT is the communication protocol. The test results show
that the system can effectively send messages from sensors to
the server, perform server processes to respond to information
from sensors, and actively provide the necessary actions by
controlling actuators. The advantage of this system is that
the system can actively push information to the user when
conditions are near critical. In addition, we have developed
an analysis model to ensure data transmission between sen-
sors, the server, actuators, and the user continues running
well in high network delay conditions. It is a model of the
sensor to the server, the server processing, the sensor to the
actuator, and the user delay measurement. Abundant data is
collected, namely, 3000, 3041, 3000, and 3022 delay data
for tw, tp, ta, and tu, respectively. This analysis model shows
that the possibility of the system entering a critical condition
without control is quite little. It means that, most likely, the
system can control properly even though the network delay
conditions are quite high. For a delay of 800 times normal
conditions, the chances of a controlled system remain high,
namely, Pr [tC > ti] = 99.99% and Pr[tC > tj] = 84%.
Under high delay conditions, the system can still activate
the actuator and convey information to the user’s application.
The system works well in a static environment at a certain
temperature with a certain aquarium water volume. Finally,
the contributions of our research are a robust IoT-based aquar-
ium control system using a DTR algorithm and a critical
analysis of server process delay that previous studies have
not calculated.

APPENDIX A
In this appendix, the probability formula is derived Pr [τt,4 >
τt,3] or Pr [tC > ti]. Here, it is clear that Pr [tC > ti] =
Pr [tC > tw + tp + tr ], as follows.

Pr [tC > tw + tp + tr ]
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=

∫
∞

tC=0

∫ tC

tr=0

∫ tC−tr

tp=0

∫ tC−tp

tw=0
fC (tC )

× f (E)(tr ,mr , βr )× f (E)(tp,mp, βp)

× f (E)(tw,mw, βw)dtwdtpdtrdtC (8)

In equation (8), if βw 6= βp 6= βr it is assumed that βr >
βp > βw, we have∫ tC−tp

tw=0
f (E)(tw,mw, βw)dtw

= 1−
mw−1∑
k=0

[
βkw(tC−tp)

ke−βw(tC−tp)

k!

]

= 1−
mw−1∑
k=0

[
βkw(tC−tp)

ke−βw(tC−tp)

k!

] k∑
i=0

(
k
i

)
tk−iC (−tp)i

= 1−
mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
tk−iC e−βwtC (−tp)ieβwtp (9)

Substitute (8) and (9)

Pr [tC > tw + tp + tr ]

=

∫
∞

tC=0

∫ tC

tr=0

∫ tC−tr

tp=0
fC (tC )f (E)(tr ,mr , βr )

× f (E)(tp,mp, βp)dtpdtrdtC

−

∫
∞

tC=0

∫ tC

tr=0

∫ tC−tr

tp=0
fC (tC )f (E)(tr ,mr , βr )

× f (E)(tp,mp, βp)

×

[ mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
tk−iC e−βwtC (−tp)ieβwtp (10)

This equation is divided into two parts to make it easier,
namely, the partsM and N , so

Pr [tC > tw + tp + tr ] = M − N

Equation formulaM

M =
∫
∞

tC=0

∫ tC

tr=0

∫ tC−tr

tp=0
fC (tC )f (E)(tr ,mr , βr )

× f (E)(tp,mp, βp)dtpdtrdtC (11)

From equation (11), if βp 6= βw and it is assumed that βp >
βw, then∫ tC−tr

tp=0
f (E)(tp,mp, βp)dtp

= 1−
mp−1∑
k=0

[
βkp (tC−tr )

je−βp(tC−tr )

j!

]

= 1−
mp−1∑
k=0

[
βkp e
−βp(tC−tr )

j!

] k∑
i=0

(
k
i

)
tk−iC (−tp)i

= 1−
mp−1∑
k=1

(
βkp
k!

) k∑
i=0

(
k
i

)
tk−iC e−βptC (−tp)ieβptp (12)

Substitute (12) and (11)

M =
∫
∞

tC=0

∫ tC

tr=0
fC (tC )f (E)(tr ,mr , βr )dtrdtC

−

∫
∞

tC=0

∫ tC

tr=0
fC (tC )f (E)(tr ,mr , βr )

×

mp−1∑
k=0

(
βkp
k!

) k∑
i=0

(
k
i

)
tk−iC e−βptC (−tp)ieβptpdtrdtC

(13)

The equation M is divided into two parts, namely, P and Q,
so that the following equation is obtained

M = P− Q

with

P =
∫
∞

tC=0

∫ tC

tr=0
fC (tC )f (E)(tr ,mr , βr )dtrdtC (14)

and Q is the remainder.
Look for the value of P based on equations (14) and (6)

P =
∫
∞

tC=0
fC (tC )

[
1−

∑mr−1
k=0

βkr t
k
Ce
−βr tC

k!

]
dtC

= 1−
∫
∞

tC=0
fC (tC )

[∑mr−1
k=0

βkr t
k
Ce
−βr tC

k!

]
dtC

= 1−
mr−1∑
k=0

(
βkr
k!

) ∫ ∞
tC=0

tkC fC (tC )e
−βr tC dtC (15)

Based on the Laplace transformation formula for the f (x)
function, the Laplace transformation f ∗(s) is obtained as
follows ∫

∞

t=0
tk f (t)extdt = (−1)k

[
d (k)tk (x)

dkx

]
(16)

Based on equations (15) and (16), we obtain

P = 1−
mr−1∑
k=0

(
βkr
k!

)
(−1)k

[
d (k)f αC (x)

dkx

α] ∣∣∣∣
x=βr

= 1−
mr−1∑
k=0

[
−βkr
k!

] [
d (k)f αC (x)

dkx

α] ∣∣∣∣
x=βr

(17)

Moreover, with Q from equation 13

Q =
∫
∞

tC=0

∫ tC=0

tr=0
f (C)tC f (E)(tr ,mr , βr )

×

[∑mp−1
k=0

(
βkp
k!

)∑k
i=0

(
k
i

)
tk−iC e−βptC (−tp)ieβptp

]
× dtrdtC

Q =
mp−1∑
k=0

(
βkp
k!

) k∑
i=0

(
k
i

)∫
∞

tC=0
fC (tC )

×

∫ tC

tr=0
f (E)(tr ,mr , βr )

tk−iC e−βptC (−tp)ieβptpdtrdtC
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=

mp−1∑
k=0

(
βkp
k!

) k∑
i=0

(
k
i

)
(−1)i

∫
∞

tC=0
fC (tC )t

k−i
C eβptC

×

∫ tC

tr=0
f (E)(tr ,mr , βr )t ire

βptr dtrdtC (18)

Based on (18) it is obtained∫ tC

tr=0
f (E)(tr ,mr , βr )t ire

βptr dtr

=

∫ tC

tr=0

[
β
mr
r tmr+i−1r tmr−1r e−βr tr

(mr−1)!

]
t ire

βptr dtr

=

∫ tC

tr=0

[
β
mr
r tmr+i+1r e−(βr−βp)tr

(mr−1)!

]
dtr

=

[
β
mr
r (mr+i+1)!

(βr−βp)mr+i(mr−1)!

]
×

∫ tC

tr=0

[
(βr−βp)mr+it

mr+i−1
r e−(βrβp)tr

(mr+i−1)!

]
dtr

=

[
β
mr
r (mr+i+1)!

(βr−βp)mr+i(mr−1)!

]
×

[
1−

∑mr+i−1
l=0

(βr−βp)l t lCe
−(βrβp)tC

l!

]
(19)

Substitute (19) and (18)

Q =
mp−1∑
k=0

(
βkp
k!

) k∑
i=0

(−1)i
∫
∞

tC=0
fC (tC )t

k−i
C eβptC

×

[
β
mr
r (mr+i−1)!

(βr−βp)mr+i(mr−1)!

]
×

[
1−

∑mr+i−1
l=0

(βr−βp)l t lCe
−(βr−βp)tr

l!

]
dtc

Q =
mp−1∑
k=0

(
βkp
k!

) k∑
i=0

(
k
i

)
(−1)i

[
β
mr
r (mr+i−1)!

(βr−βp)mr+i(mr−1)!

]
× (R− S) (20)

with

R =
∫
∞

tC=0
fC (tC )t

k−i
C e−βptC dtC (21)

and

S =
∫
∞

tC=0
fC (tC )t

k−i
C e−βptC

×

mr+i−1∑
l=0

(βrβp)l t lCe
−(βr−βp)tC

l!
dtC

S =
mr+i−1∑
l=0

∫
∞

tC=0
fC (tC )t

k−i
C e−βptC

×

[
(βr−βp)l t lCe

−(βr−βp)tC

l!

]
dtC (22)

Equation (21) in a different form

R =
∫
∞

tC=0
fC (tC )t

k−i
C e−βptC dtC

= (−1)k−i
[
dk−if α(µ)C

dk−ix

] ∣∣∣∣
x=βp

(23)

Equation (22)

S =
mr+i−1∑
l=0

[
(βr−βp)l

l!

]
(−1)k+l−i

[
(dk+l−if ∗(x)C

dk+l−ix

] ∣∣∣∣
x=βr

(24)

Based on equations (20), (23) and (24),

Q =
mp−1∑
k=0

[
(−βp)k

k!

] k∑
i=0

(
k
i

)[
β
mr
r (mr+i−1)!

(βr−βp)mr+i(mr−1)!

]
×

{ [
d (k−i)f αC (x)

dk−ix

] ∣∣∣∣
x=βp

−

mr+i−1∑
l=0

[
(βp−βr )l )

l!

] [
(dk+l−if α(x)C

d (k+l−i)x

] ∣∣∣∣
x=βr

=

mp−1∑
k=0

k∑
i=0

(mr+i−1
i

) [ (−βp)kβ
mr
r

(βr−βp)mr+i(k−i)!

]
×

{[
dk−if αC (x)

d (k−i)x

] ∣∣∣∣
x=βp

−

mr+i−1∑
l=0

[
(βp−βr )l )

l!

] [
(dk+l−if α(x)C

d (k+l−i)x

] ∣∣∣∣
x=βr

(25)

Based on equations (13), (17) and (25), we obtain

M = P−Q

= Pr [tC > tr + tp]

= 1−
mr−1∑
k=0

[
(−βr )k )

k!

] [
(d (k)f α(x)C

dαx

] ∣∣∣∣
x=βr

−

mp−1∑
k=0

k∑
i=0

(mr+i−1
i

) [ (−βp)kβ
mr
r

(βr−βp)mr+i(k−i)!

]
×

{ [
d (k−i)f αC (x)

dk−ix

] ∣∣∣∣
x=βp

−

mr+i−1∑
l=0

[
(βp−βr )l )

l!

] [
(dk+l−if α(x)C

d (k+l−i)x

] ∣∣∣∣
x=βr

(26)

From equation (10), we obtain

Pr [tC > tw + tp + tr ]

= M−N

N =
∫
∞

tC=0

∫ tC

tr=0

∫ tC−tr

tp=0
fC (tC )f (E)(tr ,mr , βr )

× f (E)(tp,mp, βp)

×

[ mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
tk−iC e−βwtC (−tp)ieβwtp

dtpdtrdtC

=

mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)∫
∞

tC=0
fC (tC )

∫ tC

tr=0

× f (E)(tr ,mr , βr )

×

∫ tC−tr

tp=0
f (E)(tp,mp, βp)t

k−i
C e−βwtC (−tp)ieβwtp
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dtpdtrdtC

=

mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i

∫
∞

tC=0

∫ tC

tr=0
fC (tC )

× f (E)(tr ,mr , βr )

×

∫ tC−tr

tp=0
f (E)(tp,mp, βp)t ipe

βwtp tk−iC e−βwtC

× dtpdtrdtC

N =
mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i

∫
∞

tC=0

∫ tC

tr=0
fC (tC )

× f (E)(tr ,mr , βr )t
k−i
C e−βwtC

×

∫ tC−tr

tp=0
f (E)(tp,mp, βp)t ipe

βwtpdtpdtrdtC (27)∫ tC−tr

tp=0
f (E)(tp,mp, βp)t ipe

βwtpdtp

=

∫ tC−tr

tp=0

[
β
mp
p t

mp−1
p e−βptp

(mp−1)!

]
t ipe

βwtpdtp

=

∫ tC−tr

tp=0

[
β
mp
p t

mp+i−1
p e−(βp−βw)tp

(mp−1)!

]
dtp

=

[
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]
×

∫ tC−tr

tp=0

[
(βp−βw)mp+it

mp+i−1
p e−(βp−βw)tp

(mp+i−1)!

]
dtp

for example

g = (mp + i− 1) =
[

β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]
×

[
1−

∑mp+i−1
g=0

(βp−βw)g(tC−tr )ge−(βp−βw)(tC−tr )

g!

]
combined with (27)

N =
mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i

∫
∞

tC=0

∫ tC

tr=0
fC (tC )

× f (E)(tr ,mr , βr )t
k−i
C e−βwtC

×

[
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]
×

[
1−

∑mp+i−1
g=0

(βp−βw)g(tC−tr )ge−(βp−βw)(tC−tr )

g!

]
× dtrdtC

N =
mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i

∫
∞

tC=0

∫ tC

tr=0

× fC (tC )t
k−i
C e−βwtC

×

∫ tC

tr=0
f (E)(tr ,mr , βr )×

[
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]
×

[
1−

∑mp+i−1
g=0

(βp−βw)g(tC−tr )ge−(βp−βw)(tC−tr )

g!

]
× dtrdtC

=

mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i × T × O

×

[
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]
×

[
1−

∑mp+i−1
g=0

(βp−βw)g(tC−tr )ge−(βp−βw)(tC−tr )

g!

]
× dtrdtC

T =
∫
∞

tC
fC (tC )t

(k−i)
C e−βwtC dtC

O =
∫ tC

to
f (E)(tr ,mr .βr )dtr

The equation T can be written as follows

T = (−1)k−i
[
d(k−i)f αC (x)

dxk

] ∣∣∣∣
x=βr

(28)

Moreover, theO equation can be written as follows (the same
as equation (19))

O =
∫ tC

tr=0
f (E)(tr ,mr , βr )dtr

=

[
β
mr
r (mr+i−1)!

(βr−βp)mr+i(mr−1)!

]
×

[
1−

∑mr+i−1
l=0

(βr−βp)l t lCe
−(βrβp)tC

l!

]
(29)

Obtaining equation N

N =
mw−1∑
k=0

(
βkw
k!

) k∑
i=0

(
k
i

)
(−1)i

×

[
(−1)k−i

[
d(k−i)f αC (x)

dxk

] ∣∣∣∣
x=βr

]
×

[ [
β
mr
r (mr+i−1)!

(βr−βp)mr+i(mr−1)!

]
×

[
1−

∑mr+i−1
l=0

(βr−βp)l t lCe
−(βr−βp)tC

l!

] ]
×

[ [
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−1)!

]
×

[
1−

∑mp+i−1
g=0

(βp−βw)l (tC−tr )ge−(βp−βw)(tC−tr )

g!

] ]
(30)

If combined with equations (10), (26) and (30), we obtain

Pr[tC > tw + tp + tr ] = M − N

=

[
1−

mr−1∑
k=0

[
(−βr )k

k!

] [
d(k−i)f αC (x)

dxk

] ∣∣∣∣
x=βr

−

[
1−

mr−1∑
k=0

1−
k∑
i=0

(mr+i−1
i

) [ (−βp)kβ
mr
r

(βr−βp)mr+i(k−i)

]
×

{ [
d(k−i)f αC (x)

dxk−i

] ∣∣∣∣
x=βr

−

mr+i−1∑
l=0

[
(βp−βr )l

l!

]
[]
[
d(k+l−i)f αC (x)

dxk+l−i

] ∣∣∣∣
x=βr

]]

−

[ mw−1∑
k=0

(
βkw
k!

) k∑
k!

k∑
i=0

(
k
i

)
(−1)i
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×

[
(−1)k−i

[
d(k−i)f αC (x)

dxk

] ∣∣∣∣
x=βr

]
×

[ [
β
mr
r (mr+i−1)!

βr−βp)mr+i(mr−1)

] ∣∣∣∣
x=βr

×

[
1−

∑mr+i−1
l=0

(βr−βp)l tCe−(βr−βp)tC
l!

] ]
×

[ [
β
mp
p (mp+i−1)!

(βp−βw)mp+i(mp−i)!

]

×

[
1−

mp+1−i∑
g=0

(βp − βw)g(tC − tr )g

× e−(βp−βw)(tC−tr )
]]]

(31)

APPENDIX B
For example, ti = tw + tp + tr . In equation (8), when
βw = βp = βr = β, with the Erlang convolution distribution
approach, then ti also has an Erlang distribution with a density
function as fE (ti,mw +mp +mr , β) so that Pr [τt,4 > τt,3] =
Pr [tC > tw + tp + tr ] = Pr [tC > ti], where

Pr [tC > ti]

=

∫
∞

tC=0

∫ tC

ti=0
fC (tC )fE (ti,mw + mp + mr , β)dtidtC

By looking at the equations (14) and (17), the following
formula can be derived.

Pr [tC > ti]

= 1−
mw+mp+mr−1∑

k=0

[
(−β)k

k!

] [
(d (k)f ∗C (x)

dxk

] ∣∣∣∣
x=β

(32)

Since fC (tC ) is a function approximated by the Gamma dis-
tribution with the shape parameter α and the scale parameter
µ, the results of the Laplace transform are shown as follows.

f ∗C (x) =
∫
∞

x=0
fC (tC ) = e−xtC dtC =

µα

(x + µ)α

Therefore, the equation (32) can be rewritten as follows

Pr [tC > ti]

= 1−
mw+mp+mr−1∑

k=0

(
(α+k−1

k

) [
βkµα

(β+µ)α+k

]
(33)

With the same pattern, we can look for opportunities to
convey a message to the user, Pr [τt,4 > τt,u] = Pr [tC >

tw + tp + tu] = Pr [tC > tj] as follows

Pr [tC > tj]

= 1−
mw+mp+mu−1∑

k=0

(
(α+k−1

k

) [
βkµα

(β+µ)α+k

]
(34)
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