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ABSTRACT In this work, we propose a data-driven reduced-order model (ROM) for high dimensional
flow fields by combining flowmodal decomposition and multiple regression. Singular value decomposition-
based (SVD-based) proper orthogonal decomposition (POD) is employed to extract principal spatial modes
representing energy and dynamics level of flow field. The temporal coefficient regression for flow modal
series is realized through intelligent algorithms: light gradient boosting machine (LGBM), long short-term
memory (LSTM), and temporal convolutional neural network (TCN). The performance of the ROMs is
assessed by predicting and analyzing low Reynolds number flow around a circular cylinder and transonic
flow around a airfoil. The experiments show that vortex flow and shock flow are both well predicted with the
POD-LGBM, POD-LSTM and POD-TCN, whereas the prediction result of POD-TCN is the closest to the
numerical solution, with the minimum root mean squared error. Also, it should be noted that the prediction
accuracy depends on the reduced-order results of flow field.

INDEX TERMS Reduced order modeling, series forecasting, proper orthogonal decomposition, deep
learning, neural network.

I. INTRODUCTION
Computational fluid dynamics (CFD) has tremendously
promoted the progress of exploring complex flows such
as multi-scale, instabilities and turbulence with the enor-
mous advantage of being not restricted by environment and
region, which is of technical significance in the fundamental
research and monumental projects in aerospace, civil engi-
neering, wind power generation, marine engineering, and
other fields [1]–[4]. Whereas, data processing and flow anal-
ysis are indispensable parts. Especially, the enormous calcu-
lation scale of CFD and the big data processing with more
data what the human brain cannot grip severely restrict the
progress of CFD. Reduced-order model (ROM) has been
proposed against the backdrop of distilling features from
magnanimity data and studying the physical mechanism of
fluid flow more cost-effectively [5].

There are some prior researches on modal reduction
techniques about ROMs. Proper orthogonal decomposition
(POD), a typical modal-decomposition technique, is to
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project high-dimensional nonlinear data onto orthogonal low-
dimensional ‘‘coordinates’’, resulting in the reduced-order
target. Actually, the reduced dimensional coordinates gener-
ated by POD are consistent with the principal components
of governing fluid flow. POD was extended to fluid mechan-
ics by Lumley et al. in 1967 [6]. Their work verified that
the coherent structure of turbulence could be extracted with
POD and applied to the numerical simulation of flow field.
But the inefficiency of computing at that time hampered its
wider spread. Fortunately, in 1987, Sirovich [7] proposed
the fast snapshot method for processing data matrix, which
provided an efficient computing strategy for POD. Some
other POD-type reduced order methods involving balanced
POD [8], sequential POD [9], TPOD [10], and Spectral
POD [11], have been evolved along with the exploration of
applying POD to analyze the physical mechanism. These
ROMs are employed in characterizing complex fluid flows
and forecasting the future states by constructing dynamical
models about underlying data, where a breakthrough in big
data identification is to fusing ROM with intelligent algo-
rithm in machine learning to better improve the prediction
accuracy [12]–[14].
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For non-intrusive reduced dimension method, POD real-
izes the extraction of dominant modes from high-fidelity
solutions, and intelligent algorithm is employed to deter-
mine the expansion coefficients of POD. Advances of
machine learning and computing performance have promised
the important achievements in the research of POD com-
bined with neural networks (NN) ranging from feedforward
NN (FNN) to convolutional NN (CNN) and recurrent NN
(RNN) [15]–[19]. Hesthaven et al. [20] successfully pre-
dicted the time coefficients of POD using FNN for Poisson
equation problem and driven cavity flow. Swischuk et al.
[21] used four machine learning techniques including FNN,
multivariate polynomial regression, k-nearest neighbor and
decision tree to predict the airfoil pressure field, and analyzed
the advantages and disadvantages of the four methods. Long
short-term memory (LSTM) presented in 1997 [22] and
continuously improved and promoted [23]–[24], as a classical
RNN, has great superiority in the time series prediction and
is also popular here. Deng Z et al. [25]. used LSTM-based
POD to reconstruct the turbulent flow field, proving the good
learning ability of LSTM in reconstruction. Mohan et al.
[26] adopted classical LSTM and bidirectional LSTM in
turbulence control, and their results revealed that the latter
reduces the prediction accuracy due to overfitting. In the
establishment of large-scale finite element model, POD com-
binedwith LSTMwas applied to predict plastic strain and von
Mises stress, controlling the error within 1% [27]. In terms
of wind turbine wake prediction, Zhang et al. [28] estab-
lished a POD-LSTM-based wake model using high-fidelity
data from large eddy simulation, which could pre-
dict the unsteady vortex wake of wind turbines in a
short time.

Although LSTMhas certain advantages in time seriesmod-
eling, its limitations mainly manifest in gradient vanishing,
complex internal structure, and vast amounts of parame-
ters. Temporal convolutional network (TCN) with relatively
simple internal structure and more stable gradient calcula-
tion was presented by Bai et al. [29] through redesigning
one-dimensional convolutional structure merged with causal
convolution, which can perform convolution calculations in
parallel. Their experimental results also verified that TCN
performs significantly better than LSTM under multiple
sequence modeling. Therefore, we try to adopt a temporal
convolution structure to construct a POD-TCN reduced-order
model.

In order to verify the advantages of POD-TCN, we choose
POD-LSTM that has been proposed by other researchers
and proved to have good results for comparison [30]–[33].
In addition, considering that gradient boosting decision tree
(GBDT) [34] is an enduring model in machine learning and
light gradient boosting machine (LGBM) [35], meanwhile,
is stemming from solving the difficulties encountered by
GBDT in massive data, we design POD- LGBM as another
comparative model. The contributions of this paper are as
follows.

1) The multi-layer convolutional neural network extracts
the trend of coefficient changes through convolution,
pooling and full connection operations, which over-
comes the shortcomings of traditional methods such as
a large number of parameters and limited information
extraction.

2) TCN with causal convolution and dilated convolution
as the main techniques is utilized. TCN can impose
strong time constraints on the flow field coefficients
compared with ordinary CNN, and reduce a large
number of stacking of convolutional layers under the
premise of equal model capacity, thereby reducing the
computational cost.

3) Dropout is used to prune complex network models
to avoid overfitting. Due to the reduction of network
parameters, the time used for inference also drops sig-
nificantly.

4) We conduct comparative tests on themodels under both
steady flow field and unsteady flow field cases, and the
results show that our model is more stable and accurate
than previous work. All models are implemented with
PyTorch library.

The rest of this paper is organized as follows.

• Section 2: Describing the process from dimensionality
reduction to reconstruction of the flow field.

• Section 3: Presenting theories of ROMs and prediction
models involving POD-LGBM, POD-LSTM, and POD-
TCN.

• Section 4: Verifying the performance of thesemodels via
flow prediction around circular cylinder and airfoil, and
demonstrating the advantages of POD-TCN over other
models.

• Section 5: Summarizing our results.

II. PROCESS: FROM DIMENSIONALITY REDUCTION TO
RECONSTRUCTION
This work presents a non-intrusive reduced dimension
method for high dimensional flow field data. The configura-
tion of flow field reconstruction with the proposed method
is illustrated in Fig.1. Firstly, we attain the data u(x, t) as
historical snapshot information by computing low Reynolds
number flow around a cylinder and transonic flow over a
2D airfoil. Secondly, SVD-based POD method, an efficient
reduced-order model, is employed to extract principal spatial
modes ϕi(x) = 1, 2, . . . , r representing the actual flow field
features. And then modal regression is applied to determine
the relational function between modes and measured flow
fields.

We apply TCN to predict temporal coefficients, yielding
the reconstructed flow field u(xp, tp) =

∑r
k=1 ak (tp)ϕk (x) +

ū. In addition to this, we choose LSTM and LGBM as
comparison models. For sequence data composed of flow
field information, the high-dimensional property makes it
difficult for RNNs which are often used in series forecasting
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FIGURE 1. Flow chart of flow field reconstruction with hybrid model of singular value decomposition-based (SVD-based) POD
decomposition and LGBM/LSTM/TCN.

to converge when modeling it. More importantly, under the
condition of a large number of nonlinear relationships in the
flow field information, whether it is a steady or unsteady flow
field, it is difficult to accurately judge whether the data at
the next moment is related to the historical data and how
long ago the historical data is related. The shortcoming of
RNN’s inability to memorize all historical information will
have an unpredictable impact on the prediction. The convo-
lutional structure of TCN determines that each upper-layer
neuron contains a part of historical information. Its unique
structural design ensures that the model can obtain more
periodic information while obtaining the overall trend data
of the series, which reduces the computational cost and
enhances the robustness. The tree-based model LGBM is also
powerful for series forecasting, but the POD coefficients are
derived from orthogonal projection, and there is no correla-
tion between them. LGBM requires a large number of related
exogenous feature to split nodes, so it may be affected by
data characteristics in the flow field prediction task based on
orthogonal decomposition, resulting in a decrease in predic-
tion accuracy, while TCN does not have this defect of tree-
based model. Therefore, in order to prove that TCN is indeed
more effective in practical engineering, we choose LSTM and
LGBM to participate in the experiments.

We show the reduction-prediction process illustrated in
Fig. 1 in pseudocode form, which can not only convey the
procedure of our work, but also provide theoretical guidance
to similar physical problems to a certain extent. Algorithm 1
shows the core algorithm of the reduced-order predictive
model and lists the main inputs and outputs with formulas.

III. METHODOLOGY
This section provides a theoretical basic for subsequent
numerical experiments by establishing POD mathematical
models and three intelligent learning algorithms eminently
suitable for time-series analysis.

A. PROPER ORTHOGONAL DECOMPOSITION
Proper orthogonal decomposition (POD) [6], [7] is a math-
ematical approach to the extraction of feature representing
energy and dynamics level from discrete data. Here, these
discrete data are flow field data calculated based on finite
volume method under structural grid. We collect historical
data of flow physical quantity (e.g., density, pressure, veloc-
ity) at times t1, t2, . . . , tm over spatial locations x = xi, i =
1, 2, . . . , n as samples.

[u(x, t1),u(x, t2), . . . ,u(x, tm)]

=



u1(t1) u1(t2) · · · u1(tm)

u2(t1) u2(t2) · · · u2(tm)

...
...

. . .
...

un(t1) un(t2) · · · un(tm)


(1)

A time transient corresponds to a dimension, so this matrix
involves dimensional random variables. There may be some
correlation and information overlap between these variables.
Naturally, in algebra, the correlation and overlap of these
variables mean that the original high-dimensional system can
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Algorithm 1 The Stages of Reduced-Order-Predictive Mod-
els
Require: Specific flow field parameters under known con-

ditions j, k, l: v(1)j , v(2)j ,. . ., v(T )j , v(1)k , v(2)k ,. . ., v(T )k , v(1)l ,

v(2)l ,. . ., v(T )l , truncation coefficient r , training snapshots
n, prediction steps Tp, frontier parameters v(1)x , v(2)x ,. . .,
v
(T−Tp)
x , under predicted conditions x, historical raw
information u.

Ensure: temporal coefficients a
(T−Tp+1)
x , a

(T−Tp+2)
x ,. . ., a(T )x

under predicted condition x, parameters v
(T−Tp+1)
x ,

v
(T−Tp+2)
x ,. . ., v(T )x

1: Select n snapshots u to combine into snapshot matrix Xj,
Xk , Xl , n− Tp snapshots form a snapshot matrix Xx ;

2: Calculate X̃j = Xj − X̄j, X̃k = Xk − X̄k , X̃l = Xl − X̄l ,
X̃x = Xx − X̄x ;

3: Given truncation coefficient r , use SVD to decompose
X̃j, X̃k , X̃l , X̃x ; to get spatial mode ϕj, ϕk , ϕl , ϕx ;

4: Use a(t) = 〈v(x, t), ϕk (xi)〉 to calculate temporal coeffi-
cients a(1...T )j , a(1...T )k , a(1...T )l , a

(1...T−Tp)
x ;

5: Recombine temporal coefficients a(1...T )j , a(1···T )k , a(1···T )l ,

a
(1···T−Tp)
x into training data for mode f̃ ;

6: for i = T − Tp→ T do
7: a(i+1)x = f̃ (a(i−m), a(i−m+1), . . . , a(t−1), a(t))
8: v(i+1)x = ϕxa(i+1) + X̄x
9: end for

be substituted with low-dimensional system reserving most
of the information of the original variables, which actually an
idea of dimension reduction. For the flow field, we refer to
the low-dimensional variables as the main flow modes whose
linear superposition constitutes the main characteristics of the
flow field. The benefits are as follows.

i. If this main flow mode can be captured, we can inves-
tigate what kind of flow has similar flow mode.

ii. We can acquire whether this unique flow mode is
amplified or attenuated with time.

iii. These dominant flow modes can express most of the
flow behavior, so the complex flow problem can be
transformed into the evolution of several main flow
modes with time.

The mathematical model of POD is given below. His-
torical snapshot information u(x, t) denotes a vector field
(e.g., density, pressure, velocity) in formula (1) with its tem-
poral expectation ū(x), and then the vector field u(x, t) −
ū(x) can be expanded in the manner of space and time
splitting

u(x, t)− ū(x) =
∑
i

ai(t)ϕi(x) (2)

where ϕi(x) are spatial orthogonal modes which are orthog-
onal basis functions and ai(t) are temporal coefficients. POD
of the field data is mainly performed by three methods: space,
snapshot and SVD methods.

1) SPATIAL POD METHOD
To stress the column vector as the snapshot at t moment,
we set

x(t) = u(x, t)− ū(x) ∈ Rn (3)

and then form a covariance matrix∑
= XXT

∈ Rn×n (4)

where

X = [x(t1), x(t2), . . . , x(tm)] ∈ Rn×m (5)

According to the idea of POD extracting principal features,
the larger the variance Var(ϕTi X) of the vector ϕTi X, the
more information it contains. The vector ϕi that is also the
basic functions in formula (2) can be obtained by solving the
orthogonal eigenvectors ϕi and the corresponding eigenval-
ues λi of matrix 6.

6ϕi = λiϕi, ϕi ∈ Rn, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (6)

Obviously, the eigenvalues are the variance, namely

λi = Var(ϕTi X), i = 1, 2, . . . , n (7)

Hence, the larger eigenvalues λi represents the more fea-
ture captured by the eigenvector ϕi. We refer to the eigen-
vector ϕi as POD mode. In velocity field, for instance, the
eigenvalues λi represent the kinetic energy contained by the
matching POD modes. The objective of POD is to select a
small number of base functions that can best express the given
flow field data by ignoring the components corresponding to
the smaller variance. We can utilize the cumulative contri-
bution rate to determine the mode number of modes. When
the cumulative contribution rate approximately reaches the
overall energy value as follows.

r∑
i=1

λi/

n∑
i=1

λi ≈ 1 (8)

We believe that the reconstruction is successful and keep
modes ϕi, i = 1, 2, . . . , r to express the given flow field.
As the principal modes are determined, the flow field can be
expressed by the truncated series

u(x, t)− ū(x) ≈
r∑
i=1

ai(t)ϕi(x) (9)

The coefficients ai(t) are calculated by

ai(t) =
〈
u(x, t)− ū(x), ϕi(x)

〉
, i = 1, 2, . . . , r (10)

2) SNAPSHOT POD METHOD
In the actual flow calculation, the number of computing nodes
is much larger than the sample size, that is n � m. Thus,
the large size of matrix 6 = XXT

∈ Rn×n challenges
memory resources and makes it very hard to solve the main
modes when using the spatial POD method. The snapshot
POD presented by Sirovich [7], as an alternative and tractable
approach, determines the flow field modes from the temporal
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variance matrix 6̃ = XTX ∈ Rm×m. Based on the idea of
snapshots, we firstly solve the eigenvalue problem for 6̃ of
size m× m instead of 6 = XXT of size n× n as follows

6̃ψ i = λiψ i, ψ i ∈ Rm (11)

Here, we might as well suppose eigenvalues λi > 0, i =
0, 1, . . . ,m, considering that the modes corresponding to the
eigenvalues greater than zero may become the main modes.

Matrices 6̃ = XTX and 6 = XXT have a transpose rela-
tionship, and then they have the same eigenvalues, and their
eigenvectors can be transformed into each other. Therefore,
the next step we implement is to determine the POD modes
by the formula

ϕi =
1
√
λi
Xψ i ∈ Rn, i = 1, 2, . . . ,m (12)

which relations can be expressed in thematrix form as follows

8 = X93−1/2 (13)

with 8 = [ϕ1,ϕ2, . . . ,ϕm], 9 = [ψ1,ψ2, . . . ,ψm], and
3 = diag(λ1, λ2, . . . , λm).
At present, the constructive role of this snapshot-based

method in processing big data makes it widely used and
developed in the CFD field.

3) SVD-BASED POD METHOD
The aforementioned POD is carried out through eigenvalue
decomposition for a square matrix. Singular value decompo-
sition (SVD) is a convenient tool suitable for a rectangular
matrix decomposition, which can compress data in matrix
form, and provide an effective and robust modal extracting
technique. Thus, SVD has been widely applied to image
compression, semantic extraction, and flow field analysis
involving large data. Here, we can experience its advantages
first-hand through employing SVD to find the POD modes.

In fact, SVD is applied to directly decompose the given
flow data matrix X ∈ Rn×m by the formula (14), as shown at
the bottom of the next page, following by the matrix form

X = 83̃9T (15)

Both of8 and9 are orthogonal matrices meeting88T
=

I and 99T
= I. We refer to their column vectors ϕi, i =

1, 2, . . . , n and ψ i, i = 1, 2, . . . ,m as left and right sin-
gular vectors of X, respectively. Singular values σi, i =
1, 2, . . . ,m in the generalized diagonal matrix 3̃ are related
with the above eigenvalues by σ 2

i = λi, i = 1, 2, . . . ,m.
It can be observed that SVD-based POD has the ability to
quickly determine the principal modes.

B. INTELLIGENT ALGORITHM
1) LGBM
Light gradient boosting machine (LGBM) is a boosting algo-
rithm framework based on the gradient boosting tree (GBDT)
[30], which has good training effects and less prone to over-
fitting. Fig. 2 shows an overview of LGBM structure. LGBM

FIGURE 2. An overview of LGBM work flow.

introduces two new technologies on the basis of GBDT:
gradient-based one-side sampling (GOSS) and exclusive fea-
ture bunding (EFB). GOSS selects the samples with larger
gradient to calculate the information gain, while the sam-
ples with smaller gradient is not considered, avoiding the
influence of long tail effect. EFB can bind many mutually
exclusive features into one feature, thus achieving the purpose
of dimensionality reduction. In addition, LGBM also uses
histogram algorithm to discretize continuous floating-point
eigenvalues into integers and counts all the data with the
histogram. Leaf-wise strategy is enforced to find the optimal
split node by traversing. The combination of these technolo-
gies improves the computational efficiency of LGBM by ten
times compared to the GBDT algorithm without reducing the
algorithm capability, and reduces the memory usage by one-
third, making LGBMmore suitable for a large amount of data
and parallel calculation.

2) LSTM
Recurrent neural networks (RNNs) often have problems such
as gradient disappearance and gradient explosion during
training, resulting in the difficulties of training underlying
parameters in network. Long short-term memory (LSTM)
[22] alleviates the gradient problem by adding three gate
structures (input gate, forget gate, output gate), a cell state,
candidate state and memory state to control the update and
circulation of valid information. Fig. 3 shows the LSTM
structure. The input gate represents the new information
added to the memory. The output gate represents the informa-
tion output by the current cell state. The forget gate selectively
forgets the useless information in the cell state. The cell
state represents long-term memory, and the memory state
represents short-term memory.

The input gate, forget gate, and output gate can be
expressed by

it = σ (Wi[ht−1, xt ]+ bi),

ft = σ (Wf [ht−1, xt ]+ bf ),

ot = σ (Wo[ht−1, xt ]+ bo) (16)

while the cell state, memory state, and candidate state can be
written by

Ct = ftCt−1 + it C̃t ,
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FIGURE 3. LSTM structure.

FIGURE 4. Causal convolutional layers.

ht = ot tanh (Ct ),

C̃t = tanh (Wc[ht−1, xt ]+ bo) (17)

3) TCN
Temporal convolutional network (TCN) [29] is a time series
forecasting model based on convolutional neural network.
It is mainly composed of three components: causal convo-
lution, dilated convolution, and residual connection.

Causal convolution with only one-way structure between
layers can be visualized in Fig. 4. Different from traditional
1D-CNN that can see the future value, convolution output at
time t only depends on the cells before time t at the previous
layer. Therefore, causal convolution builds a severe time-
constrained model.

Assume filter F = (f1, f2, f3, . . . , fK ) and sequence X =
(x1, x2, x3, . . . , xT ), the causal convolution about xt can be
written as

(F ∗ X )(xt ) =
K∑
k=1

fkxt−K+k (18)

The simple causal convolution structure is still subject
to the receptive field, that is, the modeling length of the

FIGURE 5. Dilated convolution diagram.

FIGURE 6. Residual connection block diagram.

network for time series depends on the size of the convolution
kernel. In order to obtain the dependence between values or
features of a long period of time ago, many layers need to
be stacked, which greatly increases computing cost. To solve
this problem, TCN applies dilated convolution. Fig. 5 shows
the dilated convolution diagram. Dilated convolution allows
interval sampling in convolution input, and sampling rate is
controlled by d in the Fig.5. d = 1 means that each node
is sampled during input, and d = 2 means that each two
nodes are sampled as input. In general, a larger d is set in
a higher layer. Therefore, dilated convolution makes the size
of the receptive field exponentially increase with the number
of layers, so that the network can obtain a large receptive field
with fewer layers.

Residual connection [36] has proved to be an impor-
tant approach to training deep networks, which enables
cross-layer connections as information flows between layers.
It contains side effects such as smoothing and optimizing
terrain, which are very effective for training. Fig. 6 shows the
framework of residual connection. A layer of temporal block
is used to replace a layer of convolution, which contains two
layers of convolution and activation functions, and Dropout
is added to regularize the network.

IV. PERFORMANCE EVALUATION
The coefficients are generated in the process of POD
reduced-order decomposition for the experimental flow field.


x1(t1) x1(t2) · · · x1(tm)
x2(t1) x2(t2) · · · x2(tm)
...

...
. . .

...

xn(t1) xn(t2) · · · xn(tm)

 =

ϕ11 ϕ21 · · · ϕn1
ϕ12 ϕ22 · · · ϕn2
...

...
. . .

...

ϕ1n ϕ2n · · · ϕnn



σ1

σ2
. . .

σm



ψ11 ψ21 · · · ψm1
ψ12 ψ22 · · · ψm2
...

...
. . .

...

ψ1m ψ2m · · · ψmm


T

(14)
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FIGURE 7. Computational grid for the flow around cylinder.

FIGURE 8. The changing curve of velocity with time at a monitoring point.

How to use neural network model to predict the coefficient of
flow modal series is one of the key points of this research.
In this section, two examples are used to test the models:
unsteady flow around cylinder and steady flow around airfoil.

In the method proposed in this paper, twomachine learning
libraries, Scikit-learn and PyTorch, are applied to construct
LGBM, LSTM, and TCN. Root mean squared error (RMSE)
is used as the loss function to update gradients during model
training. The loss function is shown in formula

RMSE =

√∑n
1(u

t
i − u

t
pre,i)

2

n
(19)

where n is the number of grids, uti is the ith component of the
truth value at time t , and utpre,i is the ith component predicted
by the POD-LSTM, POD-LGBM, POD-TCN reduced-order
models at time t .
The three predictive models are integrated into the

reduced-order model in the same way. The snapshot data of
flow around a cylinder in this paper are calculated through
OpenFOAM, and the snapshot data on airfoil flowfield
are acquired with our Fortran demo. The reduced-order
models based on intelligent algorithms are implemented
in Python environment. These operations are performed
on a computer equipped with a Core i7-7700H CPU and
16G memory.

TABLE 1. Parameters for numerical simulation of flow around a circular
cylinder.

FIGURE 9. POD energy ratio on velocity field for the flow around cylinder.

FIGURE 10. The first four temporal coefficients of velocity field based on
POD for the flow around cylinder.

A. EXPERIMENT 1: LOW REYNOLDS NUMBER FLOW
AROUND A CIRCULAR CYLINDER
Flow around a circular cylinder is one of the basic flows in
fluidmechanics, and it is also an important example for study-
ing reduced-order models. OpenFOAM software is employed
to numerically calculate the flow around cylinder in unsteady
state to verify the proposed method. The calculation grid is
shown in Fig. 7.We simulated the flowfield under the incom-
ing flow conditions of three velocities: v1 = 0.8m/s, v2 =
1.0m/s, v3 = 1.2m/s. The main parameters of numerical
simulation experiments are given in Table 1.

In this paper, X-velocity component U , a representative
physical quantity, is used for analysis. The changing curve of
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FIGURE 11. Predicted velocity field in X direction with POD-LGBM, POD-LSTM and POD-TCN under incoming flow velocities v = 0.9m/s and v = 1.1m/s.
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U at a monitoring point behind the cylinder with time is given
in Fig. 8. We can observe that the velocity begins to be stable
at 260s, and the period after stabilization is 10s. In order to
capture the dynamic characteristics of cylindrical wake more
accurately, we collect the snapshot information when the flow
reaches the limit cycle state. The snapshots collected after
400s were selected and the time step 1t = 0.2s. A total
of 251 snapshots in 5 cycles were selected as the research
objects, and combined into a 36800 × 251 matrix for POD
method analysis.

The energy proportion of the first ten-order modes is cal-
culated by formula (8). In Fig. 9, it can be seen that the first
two-order modal energy accounts for 92.63%, and the energy
ratios of the first four-order, six-order, and eight-order modes
are 98.48%, 99.7%, and 99.94%, respectively. We choose the
first four-order modes that have captured most of the energy
to reconstruct the velocity field. Three groups of temporal
coefficients after POD are calculated under three working
conditions. The set of temporal coefficients is then trained
using intelligent methods. The time series of the velocity field
based on POD decomposition is plotted in Fig. 10. We can
observed that the temporal coefficients ai, i = 1, 2, 3, 4 are
periodic, and their periods are different, as well as their max-
imum and minimum values are significantly different. These
differences, we estimate, should be related to the important
degree of the corresponding mode.

The well trained models with POD-LGBM, POD-LSTM
and POD-TCN are applied to predicting the flow field under
the conditions of inflow velocity v = 0.9m/s and v = 1.1m/s,
respectively. Actually, the snapshots on velocity field of U
from t = 400s to t = 440s are selected for training. The
ordered spatial modes (r = 4) well approximately represent-
ing the real field features are used to predict the construction
of corresponding field. Here, we predict the velocity field
from t = 440.2s to t = 450s. Thus, the number of training
snapshots n = 251, and the number of prediction steps
Tp = 50.
The 251 training snapshots after POD reduction are trans-

formed into a matrix form of [251 × m], where is the num-
ber of modalities we use. Since POD order reduction uses
the orthogonal projection technique, there is no linear and
nonlinear relationship between different modes, so during
training and prediction, we can train and predict different
time coefficients separately without affecting the final result.
In this experiment, a constant 7 is selected as the sequence
length of the input data, which is gradually organized at an
interval of 1 time step. Finally, the input data dimension of
the training and verification of a single time coefficient in
each working condition is [244 × 1 × 7]. Combine all the
data under three similar working conditions and the first T
data of the predicted working conditions as the final training
and validation set, and the data dimension is [926 × 1 × 7].
For the prediction case, the dimension of each input data is
[1×1×7], the data from timestep T−6 to T is used to predict
the (T +1)th data, and then the input is recursively organized,
with the data from timestep T − 5 to T and the (T + 1)th

FIGURE 12. Comparison of the first four temporal coefficients predicted
by POD-LGBM, POD-LSTM and POD-TCN and real value under incoming
flow velocity v = 0.9m/s.

FIGURE 13. Comparison of the first four temporal coefficients predicted
by POD-LGBM, POD-LSTM and POD-TCN and real value under incoming
flow velocity v = 1.1m/s.

data predicted in the previous step is used to predict the
(T + 2)th data, and so on, until the (T + 50)th data prediction
is completed.

After more than 100 times of hyperparameter tuning,
we selected three different sets of hyperparameters that made
the predictions of the three models the best as the final
settings, and compared the prediction effects of the three
models under this setting. To show the prediction effect,
a spatial modality with a timestamp is randomly selected for
reconstruction (t = 447.6s), which results are illustrated
in Fig.11. We can see that POD-LGBM, POD-LSTM and
POD-TCN well predict the position and structure of vortex
wake at the inflow velocities v = 0.9m/s and v = 1.1m/s.
This indicates that our ROMs combining SVD-based POD
and intelligent algorithms are reasonable and reliable.

Moreover, the predicted temporal coefficients with three
POD-ROMs in two cases of incoming flow velocity v =
0.9m/s and v = 1.1m/s are shown in Fig. 12(a) and 13(a),
compared with the real values. In the POD process, the first
several temporal coefficients and spatial modes have a major
impact on the prediction of overall flow field. Fig. 12(b) and
Fig. 13(b) show the predicted values of coefficient a1 for
further observation. In comparison, the predicted values with
POD-LGBM deviate from the actual values in some stages,
which does not affect the overall prediction effect of POD-
LGBM. The predicted results of POD-LSTM and POD-TCN
are in good agreement with the real data. When the tem-
poral coefficient becomes stable, the accuracy of predicted
value also accordingly increases, which may be related to
the periodicity of temporal coefficients, whereas the periodic
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FIGURE 14. Error curves under incoming flow velocities v = 0.9m/s (left)
and v = 1.1m/s (right) for the flow around cylinder.

FIGURE 15. Local grid of RAE2822 airfoil.

sequences are theoretically more conducive to machine learn-
ing. In order to validate the universality of the proposed
model in this paper, aperiodic time coefficient prediction is
discussed in detail in Section 4.2.

To further evaluate the calculation effect of three methods:
POD-LGBM, POD-LSTM and POD-TCN, we calculate their
RMSE by formula (19), and the results are shown in Fig. 14.
We can observe that RMSE from POD-TCN under two
conditions is between 1% and 1.5%. For the inflow velocity
v = 0.9m/s,RMSE from POD-TCN is higher than that in the
first few seconds of prediction. As the number of prediction
steps increases, the overall RMSE value is lower than those
from POD-LSTM and POD-LGBM. For the inflow velocity
v = 1.1m/s,RMSE from POD-LSTM and POD-TCNwithin
50 steps are significantly lower than that from POD-LGBM,
while RMSE from POD-TCN is again lower than that from
POD-LSTM in multiple time steps. Therefore, POD-TCN
model outperforms the other two models when predicting the
flow around cylinder.

The reconstructed flow fields under two cases have been
represented in Fig. 11 in the form of nephograms. Although
the numerical results of the three models based on the vali-
dation metrics are less different, the plots still clearly show
the differences. Fig. 11 shows that, on ranges of equal size,
the places where the contours change drastically are often the
placeswhere the predictions of the threemodels differ greatly.
POD-TCN is the most similar to the numerical simulation

FIGURE 16. The first four-order coefficients of pressure field based on
POD for RAE2822 airfoil under Reynolds number Re2 = 6.5× 106.

FIGURE 17. POD energy ratio on pressure field for RAE2822 airfoil under
Reynolds number Re2 = 6.5× 106.

results, and it has an ideal prediction effect in the case of
sparse or dense contours. POD-TCN is the most similar to the
numerical simulation results, and it has an ideal prediction
effect in the case of sparse or dense contours. POD-LSTM
performs close to POD-LightGBM and is inferior to POD-
TCN. The three models are all inaccurate with the numerical
simulation results, but since the numerical performance of
the evaluation metric is good, it can be concluded that this
anomaly has been caused in the process of order reduction.

B. EXPERIMENT 2: TRANSONIC FLOW AROUND RAE2822
AIRFOIL
Firstly, we establish the transonic flow database of RAE2822
airfoil. Based on fifth-order WENO-Z scheme, we simulate
the transonic steady viscous flow over RAE2822 airfoil for
each fixed attack angel. The computational grid is com-
posed of C-type grid with a size of 280 × 60, as shown in
Fig.15. Considering that the convergent flow filed under each
attack angle is steady, and the state change of attack angle is
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FIGURE 18. Predicted pressure field with POD-LGBM, POD-LSTM and POD-TCN at the attack angle a = 2.88◦ and Re = 6.45× 106.

isochronous with the time flow, the state of attack angle can
be equivalent to time stamp. Table 2 shows the main calcu-
lation parameters. Flow fields under three Reynolds number:
Re1 = 6.4 × 106, Re2 = 6.5 × 106, Re3 = 6.6 × 106 and
301 attack angles are simulated to constitute the flow field
database.

Then, for each Reynolds number, 301 flow fields are cal-
culated and a snapshot matrix is formed. Without loss of
generality, we focus on pressure field analysis. Theoretically,
taking the pressure snapshots in three different Reynolds
as input, the proposed model can predict the pressure field
with similar Reynolds number. Now, we investigate the
series of pressure field data by POD and extract the main
modes. Specifically, after being processed by SVD-based
POD, the correlation matrix of pressure field is successfully
decomposed into spatial modes and temporal coefficients.
When three field matrixes under three different Reynolds
numbers are decomposed by POD method, there is little
difference in the results of decomposition. So taking the
case of Reynolds number Re2 = 6.5 × 106 as an example,
Fig. 16 shows the first four-order coefficients with angles
of attack ranging from 0◦ to 3◦, which are comparable with
temporal coefficients. We can observe that different from the
periodic temporal coefficient of reduced-order flow around
cylinder, the temporal coefficients of flow over airfoil are
non-periodic.

TABLE 2. Parameters for numerical simulation of flow around RAE2822
airfoil.

Correspondingly, Fig.17 illustrates the energy ratio of the
first ten-order modes of pressure field of RAE1222 air-
foil. We can see that the energy ratio of the first two-order
modes reaches 99.69%, followed by the energy of the first
four-order, six-order and eight-order modes accounting for
99.92%, 99.97%, and 99.99% respectively. From the per-
spective of model energy ratio, it is very successful so far to
construct the transonic flow database of airfoil by changing
the angle of attack, even if shock happens in the flow. It also
confirms that flow field analysis using reduced-order model
is feasible.

We choose the first four-order modes which represent
the main information of the pressure field, and employ
POD-LGBM, POD-LSTM and POD-TCN to train the series
of temporal coefficients. For Reynolds numbers Re = 6.45×
106 and Re = 6.55 × 106 respectively, given the pressure
fields at the attack angles ai = −3 + 0.02 × i, i =
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FIGURE 19. Predicted pressure field with POD-LGBM, POD-LSTM and POD-TCN at the attack angle a = 2.46◦ and Re = 6.55× 106.

FIGURE 20. Comparison of the first four temporal coefficients predicted
by POD-LGBM, POD-LSTM and POD-TCN and real value at Reynolds
number Re = 6.45× 106.

0, 1, . . . , 250; ai ∈ [−3, 2], the pressure data in the range
of attack angle 2 < a ≤ 3 are predicted. In experiment 2,
we organized the training data and test data in the same way
as in experiment 1. Using the same time step and interval,
we obtained a single time coefficient training and validation
data set of [294×1×7] under a single working condition, and
finally obtained [1126× 1× 7] training and validation data,
predicting the data from timestep T + 1 to T + 50 under spe-
cific conditions by recursively calling the model. Likewise,
in more than 100 times of detailed hyperparameter tuning,
the three sets of hyperparameters that each made the three
models predict the best performance were selected as the final

FIGURE 21. Comparison of the first four temporal coefficients predicted
by POD-LGBM, POD-LSTM and POD-TCN and real value at Reynolds
number Re = 6.55× 106.

settings. Based on this, we can assume that more detailed
parameter tuning will not change the final experimental con-
clusions.

Fig. 18, at a = 2.88◦ for Re = 6.45 × 106, and Fig. 19,
at a = 2.46◦ for Re = 6.55 × 106, show predicted pres-
sure fields based on three methods and numerical simulation
results. It can be seen from the two cases that the overall
pressure gradient is roughly the same, and the shock locates
in the middle and rear of the upper surface of the airfoil. The
position and strength of shock are also well predicted.

Next, we analyze the error generated during predic-
tion. Fig. 20 and 21 show the first four-order coefficients,
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FIGURE 22. Error curves at Reynolds numbers Re = 6.45× 106(left) and
6.55× 106(right) for RAE2822 airfoil.

a1, a2, a3, a4 of POD decomposition series and predicted
values from three methods: POD-LGBM, POD-LSTM and
POD-TCN. Fig. 20(b) and 21(b) illustrate the predicted plot
of a1 alone for clarity. The results indicate that POD-TCN
and POD-LSTM deviate slightly from the truth, whereas
POD-LGBM diverges from the truth more and its error accu-
mulation is obvious.

The errors of threemethods under the two conditions:Re =
6.45 × 106 and Re = 6.55 × 106 are shown in Fig. 22. The
initial error and cumulative error growth rate of POD-TCN
are significantly smaller than those of POD-LGBMand POD-
LSTM, indicating that POD-TCN has a good prediction abil-
ity in predicting aperiodic sequences.

V. CONCLUSION
Our work proposes a non-intrusive reduced-order method-
ology for flow field analysis via combining SVD-based
POD and intelligent algorithms: LGBM, LSTM and TCN.
It is worth noting that LGBM, LSTM and TCN are typical
and advanced representatives of tree-based model, RNN-
based model and CNN-based model respectively. Princi-
pal flow modes expressing flow behavior are attained by
SVD-based POD for field snapshots. Modal regression anal-
ysis is applied to determine the mapping relation between
modes and measured flow fields, where LGBM, LSTM and
TCN are enforced to predict temporal coefficients in regres-
sion model, resulting in the reconstructed flow field. The
experimental results show that POD-LGBM, POD-LSTM,
and POD-TCN have high ability to predict vortex flow
and shock flow, whereas POD-TCN has stronger prediction
ability, more stable robustness and slower cumulative error
growth rate for multi-step prediction. The hierarchical struc-
ture of POD-TCN ensures that the model can obtain the
general trend of sequence data whilst achieve more periodic
information, which is one of the important reasons why it can
achieve higher prediction accuracy with less cost.

In our experiments, we find that themodel prediction effect
cannot be simply attributed to the limitations of the model
itself. The size of the database for constructing snapshots
has an important impact on the prediction accuracy. Using
more snapshot data can significantly improve the predic-
tion accuracy of the model compared to less snapshot data,
and inputting data from different distributions can make the

predictive power of the model more robust. However, due
to the passage of time, small adjustments are made on the
distribution of the data every moment, which will seriously
affect the model’s prediction accuracy on the data flow after
a long time. We will further investigate this issue in the future
work.
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