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ABSTRACT Power line detection is necessary for the safe flight of low-flying UAVs (Unmanned Aerial
Vehicles). This paper deals with the power line recognition problem for the safety of agricultural spraying
drones in agricultural environments. The dataset of power lines was obtained in an agricultural environment.
The training dataset was constructed by labeling powerlines with bounding boxes of 6 sizes, ranging from
0.03 to 0.15 times the image. The model used for training was the tiny-YOLOvV3 model. The model
was verified using the mean average precision (mAP), which was used to verify the object recognition
performance. Depending on the six sizes of bounding boxes, the mAPs were evaluated to be 70.22, 94.00,
86.75, 68.87, 61.65, and 53.40, respectively. The mAP was the highest at the bounding box of 0.05 times the
image size, and it was confirmed that this size is most suitable for power line detection. The real-time frames
per second (FPS) results of power lines detection are on average 12.5. This paper shows that the location
detection of power lines is possible in real-time using deep-learning techniques with embedded systems.

INDEX TERMS Power line detection, deep learning, agricultural spraying drone, unmanned aerial vehicle

(UAV).

I. INTRODUCTION

As drone control technology advances, it is used in various
fields, such as surveillance, investigation, and agriculture
[1]-[3]. Recent research on drones has led to obstacle detec-
tion and collision avoidance topics. The power line is one
of the most dangerous obstacles for flying drones [4]. Since
power lines are difficult to recognize for drone pilots at a long
distance, there is a high risk of a drone collision. Power lines
are difficult to observe when at a long distance from the drone
pilot. They are mainly invisible during rainy or foggy weather.
Thus, wire-strike accidents have become a significant threat
to the safety of drones.

Previous studies have shown several methods for power
line detection. Power line detection has been conducted using
several ways, such as the Hough transform using radar images
of active millimeter-wave sensors [5], the Hough transform
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and line tracking algorithm using images from the cam-
era [6], and matching and grouping several line segments
from collinearity properties using LIDAR [7]. Recently, stud-
ies using deep learning get increased. The studies using a
convolutional neural network to detect power lines showed
whether the image contained power lines but could not
show the location of the power lines [8]. Using the instance
segmentation, the individual location of power lines could
be detected [9]. The technique using instance segmentation
shows good performance in detecting diverse objects. Still,
a lot of time and effort for preprocessing is required due to
labeling at the pixel level. Constructing the training data using
the bounding box method takes less preprocessing time than
the instance segment. However, it has mainly been used to
recognize a single object [10]-[12]. The main contribution of
this research is as follows:

1) This study proposed technology for learning and
detecting power lines using the bounding box method.
A power line was trained through many successive
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labeling boxes. Then, the optimal power line recogni-
tion condition was found while adjusting the size of the
labeling box.

2) A new method to verify the performance of continuous
object detection has been proposed. The method to
verify object detection performance presented in pre-
vious studies was not suitable for continuous object
detection.

This study was conducted to develop a technical element for
the safe flight of agricultural spraying drones. High payload
and long flight time are important for agricultural spraying
drones. Therefore, it is necessary to reduce weight and power
consumption. It is better to use light sensors, such as CMOS
cameras, than heavy sensors, such as Light Detection and
Ranging (LiDAR). Also, embedded computers for using the
deep learning model have to have lightweight and low power
consumption. In this study, Jetson Nano was used as embed-
ded computers for using the deep learning model, and the
tiny-YOLOV3 [13]-[14] was used due to the performance
constraints of embedded computers. The deep learning model
for the power line detection was set in the embedded com-
puter of the test drone. This test drone was tested in indoor
and paddy fields, and it was confirmed that the power lines
were normally detected.

Il. RELATED WORK

A. POWER LINE DETECTION

To support cascaded Power Line Detection(PLD), a new
object recognition definition with special features of power
lines in joint RGB-NIR images has been proposed [4].
This new definition of object recognition combines the line
edges of pixels, the area-based special material properties
of NIR, and the overall coherent color of RGB. To solve
the power line object detection problem, the edge line of
the wire object is first detected in the combined RGB-NIR
image. More precisely, it constructs a region of the wire
object using its two corresponding edge candidates. Potential
powerline regions are found based on the local intensity
of the NIR image. Finally, the powerline object was vali-
dated according to the uniform color characteristics of the
RGB image. It was detected within 2 seconds on the PC
using the PLD method from images of 1024 x 650 size.
The accuracy was greater than 88% using the true positive
rate.

A framework using Hough Transform and Support Vec-
tor Machine (SVM) was proposed to detect power lines in
millimeter-wave radar images for helicopters [5]. An appro-
priate function to characterize the Bragg pattern was derived
so that the classifier can be used for reliable classification.
An overlapping slice processing method that facilitates par-
allel processing was used to improve detection accuracy.
An adaptive algorithm that adjusts the probability of frames
containing power lines has been proposed. This algorithm is
able to detect power lines even in the presence of severe noise.
A millimeter-wave lidar image with a size of 2048 x 174 was
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used, and a processing time per frame was evaluated at
approximately 0.1 seconds. The power line detection accu-
racy was more than 98%.

Power line detection tests were conducted in two cases:
synthetic image and real image using Hough transform, ran-
dom Hough transform, and line tracking algorithm [6]. The
test images were taken from a smartphone camera with a
resolution of 5312 x 2988. The detection accuracy was
obtained as the average pixel deviation of the detected line
from the best-matched ground truth line. The detection rate
is the percentage of power lines detected with an accuracy of
fewer than 10 pixels. Power lines with larger pixel deviations
are treated as undetected. The processing time is the average
time spent per image excluding user input time to the line
tracer. The detection rate was 85.71%, the detection accuracy
was 3.11px, and the processing time was 5.55 seconds.

The detection and extension of the power line are predicted
by estimating the mathematical model [7]. The Power Line
LiDAR-based Detection and Modeling (PL2DM) is a scan-
based algorithm that uses planar analysis to segment a point
cloud through minimum range-based neighbor comparison
and extracts a set of power line candidate points. These points
are fitted to line segments that are further matched and appro-
priately grouped, according to their collinearity properties.
The final estimated mathematical model of the power line
is expressed as a horizontal straight line combined with a
vertical catenary curve. The analysis is divided into two parts.
One considers the vertical displacement (in the Z direction)
due to the difference in elevation angles. The other relates
to the horizontal displacement (in the XY plane) concerning
the azimuth. The vertical mean error is 0.078 m, and the
horizontal mean error is 0.12 m.

Two CNN-based power line detection methods have been
proposed for use in real-time alarm systems [8]. In the first
method, end-to-end classification, the CNN is modified for
the target task and jointly trained. In the second method,
CNN feature classification, features are extracted from the
intermediate stage of the CNN and input to the classifier.
The proposed method detects power lines with errors of less
than 0.3%.

A Transmission Line Detection (TLD) method based on
the instance segmentation framework has been proposed[9].
Using CableNet, deep multitasking neural network, it is pos-
sible not only to segment the pixels of a transmission line
from the background, but also to correlate them with the
cable instances that contain those pixels. Specific structures
such as dilated convolutional layers and spatial convolutional
layers were introduced to improve the framework of general
segmentation models by considering the appearance char-
acteristics of cables. In addition, the two output branches
are superimposed with the decoder part to produce multiple
feature-embedded representations of the pixel. Finally, pixel
clustering is performed to achieve accurate cable instance
segmentation. By training two data sets, the true positive rates
were 64.77% and 85.43%.
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FIGURE 1. The process to acquire a deep-learning model for power line detection.

B. OTHER LINE DETECTION

A lane detection technology has been proposed that uses a
computer vision-based algorithm to detect the road’s lanes
and curves, and warn the driver [15]. The technology uses
multi-threshold algorithms such as the Sobel threshold and
HLS threshold and uses a sliding window technique to delimit
road lanes. The proposed algorithm can be implemented in
real-time on a road with lanes.

A full guide system for UAVs based on image processing
technology was proposed [16]. The software part consists of
two algorithms. The first algorithm is crop row detection,
which has been proposed and used for the identification of
plant lines. The second algorithm is the line follower algo-
rithm, which is used to move the vehicle based on the line
identified by line detection. The trajectory is generated based
on the identification of the planting line and the positioning
parameters provided by the line follower algorithm. Then,
the complete trajectory was defined at runtime using all the
positioning parameters generated by the proposed algorithm.
In field experiments, the algorithm achieved a 100% detection
rate of crop rows for images with a resolution of 320 x 240 or
higher. The system performance measured in the laboratory
experiment was confirmed to be 31.22 FPS at the resolution
of 320 x 240 and 1.63 FPS at the resolution of 1920 x 1080.

lll. METHODS

The training data were labeled with bounding boxes of var-
ious sizes and trained with tiny-YOLOV3. Through eval-
uation metrics, an optimized bounding box was decided.
Finally, a deep learning model was obtained for power line
detection(Fig. 1).

A. IMAGE PROCESSING

1) DATA ACQUISITION

Since agricultural spraying drones are mainly used for rice
cultivation, this study obtained images of power lines in
paddy fields. Pesticides are sprayed on clear or cloudy days,
except on rainy days. When the sunlight and camera lens of
the drone camera face each other, the image is relatively dark.
Therefore, images of power lines around the paddy fields
were obtained on clear or cloudy days and under various
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directional conditions of sunlight and camera lenses. Images
were acquired using a drone equipped with a 20 million-pixel
camera (DJI Phantom 4 Pro 2) at an altitude of 14-16 m
for the power lines. The distance between the drone and the
power line was 5-8 m.

2) LABELING

Because the power lines are in the form of thin and continuous
objects, it is difficult to label them as objects such as people,
animals, or cars. Some power lines are stretched in a straight
line, as shown in Fig.2a, whereas others are stretched in a
U-shaped curve, as shown in Fig.2b. There may be various
shapes of power lines. If only the shape of the power line
shown in Fig. 2a is learned, the power lines shown in Fig. 2b
cannot be detected. In order to solve this problem, it is nec-
essary to collect images of power lines of all possible shapes.
It takes a lot of time. Also, if the power line is labeled with
one bounding box and learned, many parts other than the
power line are detected. When labeling one power line, there
are cases where another power line is included as shown in
Fig. 2b.

To solve this problem, the power lines are labeled with
several continuous boxes of a specific size, as shown in Fig. 3.
The labeling method in this study is similar to the case of lane
detection using a sliding window method [15]. The brightness
values of the background images above and below the power
line were labeled using the bright point compared to the
power line. When the power line is labeled in the method
applied in this study, the position of the power line can be
estimated in more detail, and significant data for learning
can be obtained from a small number of images. In general,
a power line is labeled in a bounding box. However, if the
spacing between the two power lines is narrower than that
of the bounding box, it is difficult to label the power lines
individually. Thus, these two power lines are contained within
one bounding box, as shown in Fig. 3. Deep learning was
performed with bounding boxes of various sizes to check
the performance of the power line detection according to the
size of the bounding box. The size of the bounding box was
changed from 0.03 to 0.15 times the ratio of the image size.
The results of the bounding box for each ratio are shown in
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(b)

FIGURE 2. Difficulties in setting learning areas for power lines: (a) power
lines from the top left to the bottom right of the image; (b) U-shaped
power lines.

Fig. 4. In the case of 0.03 times bounding box, the size of the
bounding box became 12 x 12 pixels because the size of the
training images was 416 x 416 pixels in this study(Fig. 4a).

FIGURE 3. Labeling methods for single and neighboring double power
lines.

B. POWER LINE DETECTION ALGORITHM
1) TINY-YOLOV3 MODEL
The tiny-YOLOv3 model is simpler than the YOLOv3 model.
The detection accuracy is lower than YOLOV3, but real-
time implementation is possible even with limited hardware.
The tiny-YOLOV3 reduces the architecture of the darknet53.
There are only seven convolution and six max-pooling layers
in the basic structure, and the features are extracted using a
small number of 1 x 1 and 3 x 3 convolution layers. The tiny-
YOLOV3 predicts the bounding box on two different scales.
One is through a feature map obtained using 13 x 13, and the
other is by merging up-sampled 13 x 13 feature maps and
26 x 26 feature maps [17].

The structure of the tiny-YOLOV3 is shown in Fig. 5.
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FIGURE 4. Comparison of bounding boxes for power lines according to
the size ratio of the image: (a) 0.03 times; (b) 0.05 times; (c) 0.07 times;
(d) 0.10 times; (e) 0.12 times; (f) 0.15 times.

2) EVALUATION METRICS
The precision and recall of the results of the deep-learning
model were calculated using (1) and (2), respectively.
precision = TP/(TP + FP) (1)
recall = TP/(TP 4 FN) 2)

TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative
The intersection over union (IoU) was used to evaluate
the prediction performance of the object detector. The IoU

is measured by the degree of overlap between the detected
object and the ground truth using (3).

IoU = (Area of overlab)/(Area of union) 3)

The average precision (AP) can be obtained as the total area
of the lower part of the precision-recall graph. It is calculated

VOLUME 10, 2022



H.-S. Son et al.: Real-Time Power Line Detection for Safe Flight of Agricultural Spraying Drones

IEEE Access

Conv.3x3/1 filter 256

26 x 26 x 256

Input 416 x 416 x 3

l l 26 x 26 x 256

Conv.3x3/1 filter 16 Maxpooling2x2/2

l 416 x 416 x 16 l 13 x 13 x 256

Maxpooling2x2/2 Conv.3x3/1 filter 512

l 208 x 208 x 16 l 13x13x512

Conv.3x3/1 filter 32 Maxpooling2x2/1

l 208 x 208 x 32 l 13 x13x 512

Maxpooling2x2/2 26 x 26 x128 Conv.3x3/1 filter 1024

l 104 x 104 x 32 l 13 x 13 x 1024

13 x 13 x 256

Conv.3x3/1 filter 64 Conv.1x1/1 filter 256

l 104 x 104 x 64 l 13 x 13 x 256

Maxpooling2x2/2 Conv.3x3/1 filter 512

l 52 x 52 x 64 l 13x13x512

Conv.3x3/1 filter 128 Conv.1x1/1 filter 3x(class+5)

l 52x 52 x 128 l

Maxpooling2x2/2

[ Output 13 x 13 x {3x(class+5)} ]

FIGURE 5. The structure of tiny-YOLOvV3.

by taking the average of the maximum precision values for
11 recall values using (4) and (5) [18].

1

AP = 1 Zre{O.O,O.l,O.Z,m 1.0} Pinterp @)
Pinterp(r) = ;n?érp(;) ©)

where Pjjerp(r) is interpolated by taking the maximum pre-
cision measured above the recall r, and p(r) is the measured
precision at recall 7.

PASCAL VOC is a criterion used for the category recog-
nition and detection of visual objects. It provides standard
datasets and evaluation procedures for images to the visual
and machine learning communities. According to PASCAL
VOC, AP is obtained when the IoU of each object is 0.5 or
more. The average of the AP, mAP, evaluates whether the
model is suitably trained. The mAP has been used to assess
if the learning is properly performed [19]-[22].

For a single object, the ground truth was constant. How-
ever, there are several cases of ground truths for continuous
objects, such as power lines. As shown in Fig. 6, both upper
or lower ground truth could be possible in an image.

Fig. 7 shows a comparison between the ground truth and
deep-learning results of the two cases shown in Fig. 6. Look-
ing at the enlarged picture of the same area, the upper image
of Fig. 7 shows two deep learning results (blue box) in one
ground truth (green box). In the lower image of Fig. 7, one
deep-learning result appears in one ground truth. The IoU
value of a continuous object can be changed depending on
the ground truth. The result visually seems to have all the
power lines recognized, however, the mAP value was as low
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as 27.8 with the condition of the IoU over 0.5. Since the power
lines are continuous, the IoU changes depending on how the
ground truth is made. The mAP also changes according to the
ToU.

FIGURE 6. Different ground truths in the same image: the ground truth
used in this paper (upper) and different ground truth (lower).

Fig. 7 shows that the power lines seem to be detected with
high AP. However, if the precision and recall are calculated
according to the conventional method, the AP is low. This
is due to the duplicate detection of one power line. There-
fore, many cases where true positives were treated as false
positives would have also been included. Conversely, if all
the deep-learning results from the duplicate detection are
recognized as true positives, the value of recall exceeds 1 and
the AP also exceeds 1. In this study, Multiple IoUs occurred
in one ground truth. When the sum of IoU is 0.5 or more, it is
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FIGURE 7. Ground truths used in this paper and the result of deep
learning (upper), and different ground truth and the result of deep
learning (lower) (green square: ground truth, blue square: a result of
deep learning).

classified as a true positive. For example, in Fig. 8a, the first
ToU is 0.25 and the second IoU is 0.15. Because the sum of
IoUs becomes 0.4, it is classified as a false positive. On the
other hand, as shown in Fig. 8b, if the first IoU is 0.4 and the
second IoU is 0.25, the sum of IoUs is 0.65. Therefore, this
case is classified as a true positive.

I i I
L

First loU = 0.2

/ Second loU = 0.15

< 7

/ / Sum of loUs = 0.4

% // .. False Positive

(a)
¥

First loU = 0.4 Second loU = 0.25
Sum of loUs = 0.65
.. True Positive

(b)

FIGURE 8. Proposed evaluation metrics: ground truth(green box),
deep-learning result(blue box): (a) Example of false positives; (b)
Example of true positives.

C. EMBEDDED SYSTEM AND TEST DRONE
The test drone is shown in Fig.9. It had a weight of 6.15 kg,
including the battery, a payload of 5 kg, and a size of
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950 x 950 x 410 mm in width x length x height. To reduce
the size, weight, and power consumption of the embedded
systems, the Jetson Nano (NVIDIA, USA) was chosen.

While the test drone flew, the embedded systems recorded
the video of the detection results of the power lines. After the
flight was completed, the performance of the deep-learning
model developed in this study was validated through a video.
The specifications of the embedded systems and cameras for
deep-learning processing are listed in Table 1. The embed-
ded systems were attached to the drones (Fig. 10). Indoor
and field tests were conducted to validate the decided deep
learning model using the test drone.

FIGURE 9. Test drone for the field tests for power line detection through
deep learning.

TABLE 1. The specification of the embedded systems and camera for
deep-learning processing.

Specification
Size 100 x 80 x 29 mm (width X length x depth)
Weight 140 g
Payload S5kg
CPU Quad-core ARM Cortex-A57 MPCore
processor
GPU NVIDIA Maxwell architecture with 128
NVIDIA CUDA® cores
RAM 4GB 64-bit LPDDR4
oS Ubuntu 18.04 LTS
Program Python
GPU accelerated CUDA 10.0 and CUDNN 7.5
library
Camera 1920x1080 pixels at 30 fps

IV. EXPERIMENTAL RESULTS
A. DECISION OF DEEP LEARNING MODEL

The parameters for training the tiny-YOLOv3 are listed
in Table 2. As in previous studies[23-25], the default val-
ues provided in [14] were used. The specifications of the

VOLUME 10, 2022
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fRB478878

Embedded systems

FIGURE 10. The test drone equipped with the embedded systems and
camera for deep-learning processing.

deep-learning computer used in the experiment are listed
in Table 3.

TABLE 2. Parameters for training power lines.

Parameter Value
Momentum 0.9
Learning rate 0.001
Decay 0.0005
Image size 416 x 416 (pixel)
Iteration 500200

TABLE 3. The specification of the deep-learning computer.

Specification

CPU Intel Core 17-7700K 4.20GHz
GPU NVIDIA GTX 1080 Ti
RAM 32GB
oS Ubuntu 18.04 LTS
Program Python
GPU accelerated library CUDA 10.1 and CUDNN 7.6.5

The image data set consisted of training and test sets.
The images used for training and testing were 399 and 35,
respectively. Because an image includes one or more power
lines, the training set contained 1146 power lines, and the
test set contained 78. The power line labeling numbers for
the training sets were 40231, 22315, 15376, 9801, 7404, and
6573 for each bounding box size, whereas those for the test
set were 2981, 1607, 1096, 774, 602, and 417. The results are
summarized in Table 4.

Fig. 11 shows the mAP values of the 35 test images, some
of which are presented in Fig. 12. As the bounding box size
increases from 0.05 to 0.15 times, the mAP decreases from
94.00 to 53.40. As the size of the bounding box increases, the
performance of the power line detection decreases because
the bounding box contains not only power lines but also
objects such as trees and power poles. However, when the size
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TABLE 4. Number of labeling of the training and test set according to the
size of the bounding boxes.

Training set Test set
Number of images 399 35
Number of power 1146 78
lines
x0.03 40231 2981
Number of x0.05 22315 1607
labeling -, o7 15376 1096
based on
thesize of . 1 9801 774
bounding
boxes x0.12 7404 602
x0.15 6573 417

of the bounding box is 0.03 times the image size, the mAP is
70.22, which is smaller than that of 0.05 times the image size.
When the size of the bounding box becomes too small, only
the black part of the power line is highlighted; thus, power
line detection cannot be performed properly.

Because the highest mAP was found for the bounding box
of 0.05 times the image size, the model trained on the power
lines with this bounding box size was applied to the embedded
systems.

x0.03 x0.05 x0.07 x0.10 x0.12 x0.15

bounding box size

FIGURE 11. mAP of power line detection through deep learning according
to the bounding box size.

In the previous study, the accuracy of power line detection
was 85~99%, and the method proposed in this paper showed
that the accuracy of power line detection was 94%. In the pre-
vious study, the processing time was between 0.1 seconds and
5.55 seconds using PC. This paper obtained a processing time
of 0.15 seconds using an embedded computer. This shows an
above-average result than previous studies. (Table 5)

B. APPLICATION FOR THE DRONE WITH EMBEDDED
SYSTEM

The decided deep-learning model was deployed on the
embedded systems for the test drone. As a first validation
test, an indoor experiment detected power lines 3.0 m away
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FIGURE 12. Examples of test images to verify deep learning performance.

from the drone(Fig.13a). The thickness of the power lines
used in the experiment was 10 mm in diameter. A power line
was detected, as shown in Fig.13b. When detecting the power
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TABLE 5. Performance and detection technique comparison with related
works.

Processing Detection

. . t
time technique System

Ref. Accuracy

Joint linear-
[4] 88% 2 time line PC
segment

detector

Hough
Transform PC
+SVM

Hough
Transform
[6] 85.71% 5.55s + line PC
tracking
algorithm

[5] 98% 0.1s

Deep
learning
(CNN)

PC with

0,
(8] 99.7% 0.22s GPU

Deep
learning
(CableNet)

PC with
0,

[9] 85.43% 0.6s GPU
Deep
learning
(Tiny-
YOLOv3)

\—_’—H.
B . )

FIGURE 13. Indoor experiment to validate the performance of embedded
systems: (a) test drone; (b) results of power line detection.

Embedded

Proposed 94% 0.15s
computer

(b)

FIGURE 14. Field test using the drone equipped with the embedded
systems for deep-learning processing: (a) drone flying in front of power
lines; (b) results of the power lines detection in real-time.

line in real-time, the FPS was evaluated to be an average
of 12.5. The red border area was set as an area of collision
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risk, and power lines were detected in the area. Using the
area of collision risk reduces the number of calculations. The
field experiment was conducted using a drone equipped with
embedded systems on a paddy field in Gimje-si, Jeollabuk-
do. The drone flew within a 5 — 10 m distance from the
power lines, and the power lines were recognized, as shown
in Fig.14.

V. CONCLUSION

This paper proposes a deep-learning technique to detect the
location of power lines. Because the power lines are con-
tinuous objects, the conventional object detection technique
for a single object such as animals and cars is not suitable.
The training set was constructed by labeling the power lines
with bounding boxes of six sizes, 0.03 to 0.15 times the
image size. This study proposed and applied a modified
method to calculate the mAP for continuous object detection.
The mAPs were evaluated to be from 53.4 to 94, and the
highest mAP was found at a bounding box of 0.05 times the
image size. This mAP is similar to previous studies on object
detection [17], [21], [25]. This result could be concluded
that if the bounding box is large, features other than the
power line increase, and if the bounding box is too small,
there are few features to detect the power line. The FPS
12.5 evaluated in this study is also similar to previous studies
[26]-[28]. The power line detection model is installed in a
lightweight embedded system with low power consumption.
The drone can detect the power line during a flight in real-
time. It is expected to be commercialized economically by
applying it to agricultural spray drones. The limitation of this
technology is that when the rice is not grown enough, the
proposed algorithm can incorrectly detect ridges as power
lines. Future work should include the development of a post-
processing technique that detects multiple power lines and
does not detect ridges as power lines. Also, an algorithm will
be developed to determine the location and distance of power
lines. The inference speed of the deep learning system will
be improved by optimizing the deep learning model through
TensorRT. This will allow agricultural spraying drones to rec-
ognize power lines and perform stop, warning, and collision
avoidance.
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