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ABSTRACT Speech recognition systems play an important role in human–machine interactions. Many
systems exist for Arabic speech, however, there are limited systems for dialectal Arabic speech. The Arabic
language comprises many properties, some of which are ideal for building automatic speech recognition
systems such as syntax and phonology, while other properties are unsuitable for developing speech systems.
Importantly, most data are in non-diacritized form, vary in dialect, and contain morphological complexity.
Moreover, the Arabic dialects lack a standard structure. In this paper, we highlighted the works and
frameworks that have been developed in the last fourteen years of dialectal Arabic speech recognition
systems. The paper also presented an analysis and evaluation for several studies using different approaches
and techniques. The main goal of this paper is to compare and discuss different studies in dialectal Arabic
speech systems including several criteria such as techniques, datasets, evaluation metrics, and dialect
types. The study also includes a description of some techniques used in all steps of the dialectal Arabic
speech system such as hidden Markov models (HMM), convolutional neural network (CNN), and deep
neural network (DNN). In addition, we introduced the challenges and problems of dialectal Arabic speech
recognition systems. Overall, more studies are required to obtain a more accurate speech system for dialectal
Arabic.

INDEX TERMS Speech recognition, Arabic dialect, dialectal Arabic ASR, acoustic modeling.

I. INTRODUCTION
Automatic speech recognition (ASR) is one of the earliest
tasks in artificial intelligence (AI) research, which is used to
convert speech waves or signals to a mapping words (units)
sequence using an appropriate algorithm [1]. ASR has a wide
area of IT applications: employing a range of IT solutions and
applications for civil areas and industry, human–computer
interactions (HCI), voice applications, automatic language
translation, andmany via-voice systems [2]. Unlike other lan-
guages, there is limited research onArabic speech recognition
systems. Arabic speech recognition systems are a difficult
task, that is due to many reasons: the data sparseness of the
language, lexical variety, number of several dialects spoken
in the world, and the predominance of non-diacritized text
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material. Moreover, the Arabic language is a morphologically
complex language. However, the Arabic language is very rich
in vocabulary [3]. Thus, large-vocabulary ASR for Arabic
also represents several challenges for speech research. Over
the past decade, researchers have been greatly interested in
building robust Arabic automatic speech recognition (AASR)
systems [4], [5]. The Arabic language has a set of special
symbols (marks)-called diacritics (Arabic harakat)-that are
placed above the main symbols (letters) [6]. These diacritics
represent sounds similar to vowels in English and tones in
Chinese. These letter sounds are important for understanding
the meaning of words and sentences and represent another
challenge for Arabic ASR.

In addition, building acoustic models for dialectal Arabic
ASR is challenging. In these systems, training the model
requires the appropriate Arabic dialect. Therefore, develop-
ing Arabic dialectal ASR has several challenges. Lacking
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enough training data: A large data set should be collected to
obtain a good and accurate model. Unfortunately, collecting
dialect training data is a difficult task compared to other
modern standard Arabic (MSA) versions and languages. The
problems mainly correspond to building an accurate tran-
scription for dialect versions. The variety of dialects is a
challenge since the Arabic dialect has many different forms
(Egyptian, Levantine, Iraqi, Gulf, etc.). Furthermore, each
village sometimes has a different dialect form. In addition,
collecting a pronunciation dictionary that includes whole
dialectal words is also immensely challenging. The Arabic
dialect lacks standard orthography for writing and is mostly
spoken language. The diacritization for dialectal Arabic is
far more challenging than MSA since it requires a dialectal
Arabic morphological analyzer to generate various diacriti-
zation forms. Using context-based forms, the diacritization
also requires a robust language model for dialectal Arabic
which is currently unavailable.Moreover, the dialectal Arabic
diacritization-using automatic alignment against the audio
signal-is also difficult due to the larger set of vowels [7].
Therefore, the Arabic dialect does not include diacritics.
Thus, this leads us to build an inaccurate and less predic-
tive language model. Furthermore, the high morphological
complexity and high degree of morphological complexity,
during decoding, lead to high out-of-vocabulary rates and
larger search spaces [7], [8].

This paper aims to highlight the last achievements in
dialectal Arabic ASR. We a comprehensive overview for
dialectal Arabic ASR systems including different criteria
such as techniques, datasets, evaluation metrics, and dialect
types. The paper includes an analysis and discussion several
studies in this domain. The description of components and
methods of dialectal Arabic ASR are presented. In addition,
the study also presents some current challenges and diffi-
culties facing the system developers. We also introduce the
knowledge of techniques that are used in these systems and
investigate the used approaches and open-source data sets of
several Arabic dialects.

The rest of the paper is organized as follows. Section 2 intro-
duces the research methodology. In Section 3, we present
a literature review for dialectal Arabic ASR. In Section 4,
the main steps for ASR are described. Section 5 presents
the discussion and challenges. Finally, Section 6 includes the
conclusion and suggestions.

II. RESEARCH METHODOLOGY
The research methodology includes a number of steps as
shown in Figure 1. We used Google and Google Scholar
to search for studies in the dialectal Arabic ASR field.
Some of the keywords and strings are used to find stud-
ies and manuscripts related to our research topic. These
keywords and strings include: ‘‘dialectal Arabic automatic
speech system’’, ‘‘dialect Arabic automatic speech sys-
tem’’, ‘‘dialectal Arabic ASR’’, ‘‘automatic speech system
for dialect Arabic’’, ‘‘dialect Arabic’’, ‘‘Arabic automatic
speech system’’, ‘‘Arabic ASR’’, and ‘‘English language’’.

If studies include any keywords or strings in their con-
tent, we simply filter these studies to select the suitable
manuscript for dialectal Arabic ASR. We also use the cita-
tions of somemanuscripts to obtain other manuscripts regard-
ing our topic. The date of the initial collection is between
2005 and 2022. The initial number of collectedmanuscripts is
130 papers. Then, the range of date is reduced to 2009–2022
and the article type is selected resulting in 76 papers. Finally,
we manually selected the studies that are related to dialectal
Arabic ASR based on some criteria such as: (1) Studies that
presented the speech recognition (speech-to-text) systems;
(2) studies that include systems for pure dialects Arabic,
i.e., the developed systems only used pure Arabic dialects
for training and evaluation; (3) studies that used the Arabic
dialects as part of the training and evaluation data; (4) studies
that utilized the Arabic dialects for evaluation; (5) studies
that utilized the Arabic for dialects adaption and testing the
acoustic model; (6) studies that used the Arabic dialects for
speech code-switching. Thus, the studies or papers contain-
ing information, descriptions, or related works for dialectal
Arabic ASR were excluded—i.e., studies that do not include
investigation and results of dialectal Arabic ASR were not
taken into consideration. After the manual selection pro-
cess, 35 studies were reviewed and analyzed in this review
according to criteria such as techniques, approaches, datasets,
evaluation metrics, dialect types, and well-known publishers.

III. LITERATURE REVIEW
In this paper, 35 studies for dialectal Arabic ASR published
in different journals and conferences over the last 13 years
were introduced. Most studies were developed using machine
learning methods. We present several studies for various
Arabic dialect types.

Soltau et al. [9] presented a description for Arabic broad-
cast transcription evaluation using several techniques. They
used a large vocabulary and cross-adaptation for two acoustic
models (unvowelized and vowelized) to enhance the perfor-
mance. HiddenMarkovmodels (HMMs) were used for build-
ing acoustic models with a mixture of diagonal-covariance
Gaussian densities. Feature space maximum likelihood linear
regression (FMLLR), maximum likelihood linear regression
(MLLR), and feature minimum phone error (fMPE) were
utilized as discriminative training techniques. The global
autonomous language exploitation (GALE) Phase 2 and
Arabic Gigaword corpus were used for training and evalu-
ating the acoustic and language models. For dialect-specific
acousticmodeling, experiments are reported as a decision tree
depending on the dialect-dependent questions. The obtained
results included 25.9% for the regular tree and 24.7% for the
dialect tree.

Elmahdy et al. [10] introduced a new multilingual system
for dialectal ASR. The HMM-based technique was used for
training with MLLR, maximum a posteriori (MAP), and
vocal tract length normalization (VTLN) as adaptation tech-
niques. The acoustic models used the news broadcast corpus
of MSA for decoding Egyptian colloquial Arabic (ECA).
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FIGURE 1. Overview of filtering process of the reviewed studies.
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The authors collected the ECA connected digits data for eval-
uating their model. An accuracy rate of 99.34% was reached.

Al-Haj et al. [11] proposed a model to recognize the
dialectal Iraqi-Arabic. Pronunciation modeling was used for
investigating the dialectal Iraqi-Arabic. This acoustic model
is a combined model using HMM-based, sub-phonetically
tied, and semi-continuous. The Mel frequency cepstral coef-
ficient (MFCC) and approximations of the first and second
derivatives were used for features extraction with 42 dimen-
sional coefficients. The models were trained for 450 hours of
the Iraqi-Arabic dataset. The results were evaluated by two
versions of evaluation data; the best results were 35.84% and
33.30% using multi-pronunciation with estimated weights.

Selouani and Boudraa [12] created the dialectal Algerian
database (known as the Algerian Arabic speech database
(ALGASD)). This database includes 300 Algerian native
speakers. For training and evaluating this data, the authors
built ASR using the hidden Markov model toolkit (HTK) and
MFCCs for features extraction. In experiments, the test data
consisted of 157 sentences for evaluating the system. The
results achieved an accuracy rate of 91.65%.

Elmahdy et al. [13] proposed an ASR system for ECA
depending on the benefit of MSA resources. Cross-lingual
acoustic modeling was suggested using the Gaussian mix-
ture model (GMM) and HMM. MLLR and MAP were used
for adapting the acoustic model. The authors investigated
phoneme-based and graphene-based acoustic modeling to
adapt theMSAmodel using spelling variants. This adaptation
was used to select the correct ECA spelling. The results
showed a word error rate (WER) of 35.00% with MLLR,
MAP, and spelling variants.

Saon et al. [14] introduced a description for the Arabic
broadcast transcription using a mixture of GALE, FBIS,
and topic detection and tracking (TDT-4) audio. Subspace
Gaussian mixture models (SGMM) were utilized to train
the acoustic model and neural network acoustics were uti-
lized to train the language model (LM). They used modi-
fied Kneser–Ney smoothing for enhancing LM. MLLR and
fMLLR are used to estimate the acoustic models using
speaker-independent (SI). The best WER result was 9.10%
with the language model. Elmahdy et al. [15] suggested the
dialectal Arabic speech transcription system using the Arabic
chat alphabet (ACA). GMM-HMMwas used to train acoustic
models depending on phoneme-based and grapheme-based.
Kneser–Ney smoothing was used to train a bi-gram LM. The
ECA corpus with collected ACA data was used for training.
The best WER of this work was found to be 13.40%.

Huang and Hasegawa-Johnson [16] presented an Arabic
ASR system to classify phones based on West point MSA
with Babylon Levantine Arabic corpus. They proposed
cross-dialectal GMM as a training method to train the acous-
tic model and used transfer learning to transferMSA data into
dialectal Levantine Arabic.

Biadsy et al. [17] built Google’s Arabic voice search sys-
tem for multiple Arabic dialects and made a compression
between each. These dialectal languages were Egypt (EG),

Jordan (JO), Lebanon (LB), Saudi Arabia (SA), and the
United Arab Emirates (AE). They used the standard 3-HMM
state for training the acoustic model and boosted maxi-
mum mutual information (MMI) as discriminative training
techniques. In features extraction, linear discriminant anal-
ysis (LDA) was used as an adaptation method. The language
model was trained as 5-gram backoff LMs using entropy
pruning and Katz smoothing. The results for all used dialectal
language were 27.7, 28.7, 24.6, 18.5, and 24.2 for AE, SA,
EG, JO, and LB, respectively.

Almeman and Lee [18] proposed the Arabic ASR system
for recognizing the MSA, Egyptian, Gulf, and Levantine
dialects. This work presented compression between different
Arabic dialect languages. The CMU Sphinx framework
was used for training the acoustic model. The best WERs
achieved were 13.7%, 10.00%, 17.00%, 15.10%, and 16.30%
for multi-dialect, MSA, Gulf, Levantine, and Egyptian,
respectively.

Masmoudi et al. [19] presented a novel Tunisian Arabic
corpus and dictionary for ASR which was coined Tunisian
Arabic railway interaction corpus (TARIC). The Tunisian
graphemes were converted into the corresponding phonemes
using rule-based tools. Moreover, the authors built a tool for
this rule-based depending on a set of graphemes, phonemes,
the lexicon of exceptions, and phonetic rules. Two types
of corpora were used for evaluating the performance of
ruled-based tools and pronunciation dictionaries. The results
showed a WER of around 9%.

Ali et al. [20] developed an under-resourced Egyptian
ASR system and presented the results for this system.
GMM, SGMM, and deep neural network (DNN) models
were employed for training the acoustic model using the
KALDI toolkit. Minimum phone error (MPE) and bMMI
were used as discriminative training to adapt the acoustic
model. The SRILM toolkit was utilized to build LM with
Kneser–Ney smoothing. The standard 13-dimensional cep-
stral mean-variance normalized (CMVN) MFCC was used to
extract features. The training and evaluation were conducted
using 10 hours dataset. An optimal WER of 44.71% was
obtained for EG grapheme.

Elmahdy et al. [21] proposed the dialectal Arabic ASR
system for the Qatari Arabic (QA) dialect based on an
under-resourced Arabic dialect. The GMM-HMM architec-
ture was used to train the model using the KALDI toolkit.
The transfer learning technique was proposed to transfer
MSA-based into the Qatari dialect. In the transfer learning
method, they used different processes to increase the accuracy
such as orthographic normalization, phone mapping, data
pooling, acoustic model adaptation, and combined model.
The backoff tri-grammodel is built withKneser–Ney smooth-
ing. An optimal WER of 64.4%—for the evaluation—was
obtained with a combination of data pooling methods, adap-
tation methods, and Lattice minimum Bayes risk (MBR)
decoding.

Wray et al. [22] presented a study to assess the quality con-
trol in crowdsourcing transcriptions. The Arabic ASR system
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was built on MSA and dialect Arabic data. Moreover, the
dialect data was used to evaluate the quality of transcription
with an Edit distance algorithm. In Egyptian and North
African dialects, the transcription error was reduced by 1.0%
for Egyptian data and 4.0% for North African data.

Ali et al. [23] proposed a method for measuring accuracy
of the ASR system. They presented a new approach to report
the accuracy of the ASR system in a non-standard ortho-
graphic language known as the multi-reference word error
rate (MRWER). The grapheme-based approach was used for
building an acoustic model using sequential DNN. In the
experiment, an MRWER of 53% was obtained, and WERs
of 76.4% and 80.9% were reported.

Khurana andAli [24] presented a description for the dialec-
tal Arabic multi-genre broadcast (MGB-2) challenge, evalu-
ated based on 1,200 hours of speech audio. They proposed an
LF-MMI modeling framework for building the system. The
system was trained separately using long short-term memory
(LSTM), BLSTM, and TDNN techniques. A recurrent neural
network (RNN) was used for building the 4-gram language
model with MaxEnt connections (RNNME) by the RNNLM
toolkit. The features were transformed using adaptation tech-
niques such as LDA,MLLT, and fMLLR. The KALDI toolkit
was used for building all trained models. Finally, the three
models were combined into one model that achieved a WER
of 14.2%.

Amazouz et al. [25] introduced a study for the effective-
ness of code-switching (CS) in an ASR system. CS in
French/Algerian Arabic was proposed for comparing the
quantity of CS that occurred in dialectal Arabic and switch-
ing to French. They built the acoustic-phonetic model based
on collected Maghrebian broadcasts news data including
Algerian, Moroccan, and Tunisian dialects. The results
showed that the Algerian dialect had a better CS rate than
Tunisian and Moroccan.

Masmoudi et al. [26] proposed a framework for develop-
ing an ASR system based on the Tunisian dialect. They
sought to summarize the linguistic characteristics, such as
phonological, morphological, and syntactic, of the Tunisian
dialect. This work introduced grapheme-to-phoneme (G2P)
conversion using the ruled-based technique. An accuracy of
22.60% was obtained as WER.

Menacer et al. [27] developed an ASR system for MSA
and Algerian dialect known as Arabic Loria ASR (ALASR).
The DNN-HMM technique was utilized to build the acous-
tic model, and the LM was built by a classical n-gram.
The sMBR (state-level minimum Bayes risk) criterion was
applied for adapting the training. The Kaldi toolkit was
utilized for building the acoustic model. The Nemlar,
Gigaword Arabic, and NetDC corpora were used for training
and testing the model. WERs of 14.02%, 89%, and 65.45%
were obtained for MSA, Algerian dialect, and the combined
data (MSA and Algerian), respectively.

Ali et al. [28] presented a detailed description of the
Arabic MGB-3 challenge. The MGB-3 was used for evalu-
ating the Arabic ASR system. MGB-3 consists of 16 hours

of Egyptian dialect that are collected from talk show pro-
grams on YouTube. The system was trained using LSTM,
BLSTM, and TDNN techniques. The lexical and i-vector
bottleneck features were extracted for use in this system. The
system was evaluated using MGB-3 testing with an average
WER of 37.5%.

Ali et al. [29] introduced a study assessing the effective-
ness of the ASR on dialectal Arabic speech. This study
focused on the problems associated with the orthography
and spelling of dialects. The authors proposed an LF-MMI
modeling framework for building the system. The systemwas
trained using three LSTM, BLSTM, and TDNN techniques,
separately. In LM training, two types of n-gram were used;
firstly, tri-gram was used to generate decoding lattices, then,
4-gram was used for rescoring the output of the first type
based on the external LM data. Both language models were
trained using RNNwithMaxEnt connections (RNNME) with
Kneser–Ney as the smoothing technique. A multi-reference
word error rate (MR-WER) of 25.3% was reported in this
work as an average MR-WER for the Egyptian dialect.

Najafian et al. [30] presented a study for investigating
the performance of several spoken dialect identification
techniques. Multi-lingual such as Arabic, English, Czech,
Hungarian, andRussian languageswere trained separately for
enhancing the accuracy. This work used the multi-dialectal
speech corpus such as Egyptian (EGY), Gulf (GLF),
Levantine (LEV), MSA, and North African. A new n-gram
phonotactic feature was proposed and integrated with the
SVMs classifier for generating the phone sequences. In addi-
tion, the i-vectors method was combined with the phonotactic
features using DNN. Finally, convolutional neural networks
(CNNs) were used to map the acoustic model and proposed
features with each dialect language of the five dialects.
The system achieved accuracies of 56.82% and 57.91% for
phone n-gramwith support vector machine (SVM) and phone
n-gram with CNN, respectively.

Hassine et al. [31] built an Arabic ASR system for recog-
nizing Arabic numbers (digits), from 0 to 9, in the Tunisian
dialect. In the features extraction step, different techniques
were used separately to extract features such as the percep-
tual linear prediction (PLP) technique, 1PLP, MFCC, and
vector quantization of Linde-Buzo-Gray (VQLBG). Then,
all features were merged and used in training. The ANN
type-known as feedforward back-propagation neural net-
works (FFBPNN)-was used for training the acoustic model.
An average accuracy of 98.54% was obtained.

Khurana et al. [32] developed the DARTS system to con-
vert speech to text in the Egyptian Arabic dialect. The
transfer learning technique was used to transfer from
the high-resource broadcast domain to the dialectal text.
The acoustic model was trained on the Arabic MGB-2 and
MGB-3 challenge using a deep neural network including
a CNN and multiple layers of TDNN, and LSTM. Dis-
criminative methods were used in training such as LF-MMI
and Multi-LF-MMI. The training process was performed
by the KALDI toolkit. Two LMs were developed: the first
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one was a tri-gram LM built by the SRILM toolkit with
Kneser–Ney (KN) as the smoothing method. The other was
4-gram LM based on RNN-LM with MaxEnt connections
using the Mikolov RNN LM toolkit. DARTS was evalu-
ated using the MGB-3 testing corpus and achieved a WER
of 35.8%.

Ali et al. [33] presented a new edition of the multi-genre
broadcast challenge known as MGB-5. Its construction
depends on the MGB-3 dataset and contains audio data col-
lected from dialectal Moroccan recorded from over 48 hours
from YouTube. These data were used for evaluating the
Arabic ASR system. They proposed an LF-MMI modeling
framework for building the system. The system was trained
using three LSTM, BLSTM, and TDNN techniques, sep-
arately. RNNME was used to build 4-gram LM using the
RNNLM toolkit. The features were transformed using adap-
tation techniques such as LDA, MLLT, and fMLLR. The
KALDI toolkit was used for building all the trained models.
Accuracies of 67.1% and 48.4% were obtained for AV-WER
and MR-WER, respectively.

Ali et al. [34] evaluated the Arabic ASR system on the
dialectal Arabic transcription that included a set of evaluation
metrics. This work used these metrics by comparing their
correlation with human judgments on a validation set of
1,000 utterances for six systems. They proposed a new degree
for morphological abstraction and spelling normalization.
The results showed that the new degree of morphological
abstractions and spelling normalization demonstrated the best
correlation with human judgment.

Bougrine et al. [35] developed a complete recipe for build-
ing large-scale speech corpus from web resources. The pre-
sented recipe was used to create a corpus for the Algerian
Arabic dialect which was named KALAM’DZ. This corpus
included eight classes of Algerian Arabic sub-dialects con-
taining about 104.4 hours.

Alsharhan and Ramsay [36] evaluated the Arabic ASR
system on the Arabic dialect based on MSA data. They used
MFCCs for features extraction. The acoustic model was built
based on the DNN network using the HTK toolkit. The
pronunciation model was used for integrating the acoustic
model with the LM depending on the pronunciation lexicon.
The pronunciation lexicon contains a set of units (words)
with single or multiple phonetic transcriptions. Then, LM is
built using DNN and HMM. Two datasets were utilized for
training and testing; the first dataset is the GALE phase 3
dataset for MSA, while the second is the Arabic dialect
dataset which includes the Gulf, Iraqi, Egyptian, Levantine,
and Maghrebi dialect version. The final integration achieved
a WER between 3.24% and 5.35%.

Hamed et al. [37] collected and analyzed a speech
corpus based on Egyptian and English conversations.
Code-switching was used for mixing Arabic Egyptian and
English conversations. Three-fold was proposed for build-
ing the corpus including conversational Egyptian Arabic
spontaneous speech, obtaining manual transcriptions, and
analyzing the speech from the code-switching perspective.

Part-of-speech (POS) tags were used to annotate some of the
transcriptions.

Ali [38] developed a multi-dialect ASR system for
Arabic using an end-to-end approach. The author proposed
CNN, RNN, and joint connectionist temporal classification
(CTC)/attention encoder-decoder for building acoustic mod-
eling. In LM training, an RNN with Kneser–Ney is used to
build LM. An open-source corpus, collected from several cor-
pora, was used for training and testing processes. An accuracy
of 14.07% was obtained as WER.

Mubarak et al. [39] introduced the ASR system for dialec-
tal Arabic speech using an end-to-end approach. They pro-
posed a joint CTC/attention encoder-decoder for building
acoustic modeling. In LM training, an RNN is used to build
LM. The QASR corpus was used for training and testing
processes. An average accuracy of 52.6%was reported in this
work.

Hamed et al. [40] developed a system for switching
Egyptian Arabic-English based on ASR. They used
DNN-based hybrid and transformer-based depending on the
end-to-end approach to build ASR systems. In LM training,
an RNN is used to build LM. TheMBG-3 corpus was used for
training and testing processes. An optimal accuracy of 32.1%
was obtained as WER.

Ahmed et al. [41] developed and described an Arabic ASR
based on MGB-5 in Arabic. They applied speech augmen-
tation using speed and volume perturbation, data reverbera-
tion, and music-noise-speech injection transformation. CNN
with TDNN and TDNN-f were used for building the acous-
tic model. The x-vector and i-vector were combined and
used as new features in this system. In addition, language
model interpolation, semi-supervised learning, genre adapta-
tion, and lattice-based MBR were proposed and combined.
The proposed system achieved an average WER of 62.17%.

Al-Anzi and AbuZeina [42] presented dialectal Arabic
speech system. This system includes pronunciation dictio-
naries, language models, and acoustic models. Acoustic
model is trained and built based on a hybrid architecture
Deep Neural Network Hidden Markov model (DNN-HMM)
using HTK toolkit. N-gram language model is presented
using ong-distance word relationships. MFCC is used to
extract the features. The models are trained and evaluated by
discrete-word speech dataset. The system achieved 54.02%
as WER.

Hussein et al. [43] proposed an state-of-the-art end-to-end
ASR for Arabic speech. They used transformer technqniue to
build encoder and decoder. The languagemodel is build using
TDNN-LSTM. Mel filter bank is utilized to build acoustic
feature. MGB3 and MGB5 corpora are used to train and
evaluat system. The system achieved a new state-of-the-art
performance at 27.5% and 33.8% for MGB3 and MGB5
respectively.

IV. DIALECTAL ARABIC SPEECH RECOGNITION SYSTEM
As mentioned in the above-mentioned literature review, most
ASR systems comprise six steps: (i)
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1) Feature extraction.
2) Lexical modeling.
3) Language modeling.
4) Acoustic modeling.
5) Discriminative criteria.
6) Evaluation.

The ASR system architecture is shown in Figure 2 and is
further analyzed in this section.

A. FEATURE EXTRACTION
Feature Extraction is an important step of ASR tasks. The
wave is formed in continuous size and time. The purpose
of signal processing is to convert the waveform into vectors.
Feature extraction is a process that is utilized to map the audio
signals to a set of acoustic features that are utilized to build
the acoustic model. The acoustic featuremust be built without
losing substantial signal data, minimizing variability across
speakers, and environmental acoustic conditions, simultane-
ously. Moreover, it is used to distinguish speech from others.
In addition, it utilizes extraction of the testing features as the
input of the recognizer to generate the sequence of uttered
words [44]. Thus, there are several techniques that can be
used for feature extraction [45], [46].

• Mel frequency cepstral coefficient (MFCC) is a pop-
ular technique that is used to extract features of ASR.
It depends on cepstral analysis, which is a method
for separating speech signals into components in order
to represent pitch and vocal tract information. MFCC
simulates human behavior by distinguishing the sound
frequencies since the frequency bands are calculated
logarithmically. The feature processing begins with the
windows step, which converts the waveform into vectors
or chunks; optimally 25ms are handled with 10ms inter-
vals. Then, each window is transformed into the spec-
tral domain and power spectra using the short-time fast
Fourier transform technique. In addition, power spectra
are smoothed for each window using a 20-40 Mel filter
bank. This smoothing method is utilized to calculate the
frequency sensitivity of human hearing. The smoothed
power spectra are logarithmically calculated in order to
represent the Mel-filter bank (FBANK) features—that
will be used in this work for training the acousticmodels.
The FBANK features will be prepared and presented for
decorrelating discrete cosine transform (DCT) to pro-
duce MFCC [47]. This method has been used for feature
extraction for different ASR systems (see [17–23]).

• Perceptually based linear predictive analysis (PLP)
uses certain aspects of audition which provides the same
spectral estimation of speech as LPC analysis but with
a lower order model. In addition, it provides better
performance for crossing speaker ASR. Furthermore,
it is utilized to calculate the filter-bank filters followed
by a linear predictive analysis and produce a cepstral
representation. This method has been used for feature
extraction for different ASR systems (see [9], [16], [17],

[26]). LDA transformation is used to improve the separa-
bility and decrease data dimension in acoustic features.

Table 1 Studies that use these methods for feature extraction.

B. LEXICAL MODELING
A lexical model is a method for representing the phonemes
sequence in the vocabulary. It is used as a pronunciation
dictionary to map sequences of phones into words. Each
line in the lexical model is utilized to represent a suitable
word for the recognition model in the speech decoder with
context-independent phonemes for these words. In addition,
this lexical is a simple method for building lexical mod-
els. There are statistical methods to model lexical depend-
ing on the probabilities of multiple pronunciations of each
word [48].

C. LANGUAGE MODELS
LM is statistical modeling (known as a model used in ASR
decoding) for enhancing the word (unit) recognition process.
LM depends on a large set of vocabularies that are each
connected as sentences. In addition, LM is stored in a file
that contains all words and their probability occurrences.
The probability is the prior probability of a sequence of
words and appears in the language. An ASR with LM is
faster and achieves higher accuracy. In general, the quality
of LM depends on the morphologically of language, i.e.,
LM of morphologically simplex language is better than LM
of morphologically complex language. Thus, the LM of the
Arabic language presents challenges due to the morphologi-
cal complexity compared to some other languages [7], [49].
Sentences were not included in the ASR dataset and have
an output model with zero probability—this is taken as a
challenge and problem for the language model. To solve
the zero-probability problem, the presence of a smoothing
method endeavors to distribute probabilities to the sentences
that have zero-based probability depending on the sentences
in the dataset. Moreover, the method also tries to enhance the
accuracy of the network model. There are a set of smoothing
techniques that are used to calculate the probability of a
word [49] and that are classified into backoff and interpo-
lated techniques. In the first technique, the probability of the
missed sentence in the corpus is estimated using its lower
n-grams, while the second technique combines the sentence
probability with its lower order, i.e., the probability of tri-
gram, bigram, and unigram are combined. The smoothing
techniques are Witten–Bell, Good–Turing, and Kneser–Ney
smoothing [49]. Table 1 shows different techniques for build-
ing LM in different ASR systems. As shown, 25 dialectal
Arabic ASR studies used LM.

D. ACOUSTIC MODELING
A set of statistical models are estimated to represent a set
of sub-word/word (units), such as phonemes, tri-phones,
or complete words. These models are usually used to measure
how likely the acoustic features are emitted by the word
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FIGURE 2. ASR system architecture.

TABLE 1. Summary of different studies based on various parameters (feature extraction, LM methods, AC methods, and adaption methods).

sequence hypothesis and its constituting sub-word units. The
acoustic model is trained and built using generative learn-
ing algorithms. This model can recognize dialectal Arabic
speech. In the reviewed studies, many techniques are used
to represent acoustic modeling as shown in Table 1. A brief
description of some of these techniques is presented.

1) HIDDEN MARKOV MODELS
HMMs were introduced at the end of the last century. HMMs
are a special case of regular Markov models that have

been evaluated as a powerful model for representing the
time-varying signals as a parametric random process [50].
HMMs are considered the most popular acoustic models for
ASR [6]. In addition, they are encoded by a finite state of the
Markov model and decoded by a set of output distributions.
The inputs of HMM are the temporal variability, while the
outputs are spectral variability. The state of HMM is associ-
ated with probability density functions. The GMMwith mix-
ture diagonal covariance Gaussians are used to model each
state in HMM [45], [45], [50]. Several diagonal covariance
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Gaussians are utilized to generate probability densities as
follows [50]:

bi(x) =
N−i∑
j=1

wijN (x, µijσij) (1)

where j represents ranges over the count of Gaussian densities
in the mixture of state Si. The data likelihood will be maxi-
mized for training HMMs as follows [50]:

FY =
N∑
n=1

log(p(Y n1:Tn |w
n
1:Ln )) (2)

The parameters of the model (state transition probabilities
and output distribution parameters, e.g., means and variances
of a Gaussian) are automatically estimated from the training
data. HMM is used to model the unit (phone, phoneme, word,
etc.) [50]. The phone model is represented by a phoneme con-
nected with each HMM. HMMs are used to model the phones
as the main unit in speech, the left-to-right HMMs model
each phone using three states with the input and stacked
states. As shown in Table 1, nine dialectal Arabic ASR studies
used HMM.

2) GAUSSIAN MIXTURE MODEL
GMM is a statistical learning model. GMM is a probabilistic
model that represents the speech signals feature. It is used
to manipulate variations in signals and convert them into a
dynamic sequence of vectors. GMM is a suitable method that
deals with text-independent ASR systems. To implement the
likelihood ratio as a recognition model, the actual likelihood
function must be determined. This function is selected based
on the features that are extracted from signals. In addition, the
GMMmodel is built depending on the underlying distribution
of acoustic observations from speech. The temporal aspects
of the utterance do not impact GMM modeling. In speech
recognition, each utterance is represented as a GMM for
producing this model. The parameters in model λ must be
estimated in order to match the best training vectors in utter-
ance [51]. The most favorable techniques for estimating these
parameters in the model are:

1) Maximum likelihood (ML) estimation. The main goal
of ML is to obtain the model parameters that maximize
the likelihood of the GMM;

2) Expectation-maximization (EM). EM is an iterative
algorithm utilized to estimateML of GMMparameters.

As shown in Table 1, seven dialectal Arabic ASR studies
used GMM.

3) SUBSPACE GAUSSIAN MIXTURE MODEL
In conventional acoustic models, a GMM with a large set
of parameters can represent every HMM distribution. The
SGMM also represents the states’ distribution with a small
set of parameters as low dimensional subspace. There is a
high correlation between states’ distributions, therefore, the
distributions of states can be represented by a low dimen-
sional subspace for all states. Human sounds correspond to

a limited variety of distributions, therefore, speech is consid-
ered as triphone states with a high correlation between their
distributions. The SGMM is suitable for ASR and comprises
shared parameters for all states. In addition, SGMMs can be
naturally trained in a multilingual fashion. However, in an
SGMM, the correlations across the triphone states are stored
in a low dimensional model subspace as parameters [52].
All context-dependent HMM states in SGMMs use the
universal background model (UBM) for sharing a com-
mon representation. UBM represents a GMM model trained
over whole speech classes that are pooled together [53].
A GMM-UBM is a large mixture of Gaussians that represents
all speech with I components; it is used for pruning the Gaus-
sian components and initializing the model. The acoustic
space is split into I regions by UBM, where the acoustics are
defined using Mj, Ni, and wi. In UBM, the selected highest
P Gaussian components with maximum likelihood scores are
used in both model training and recognition. As in GMM,
we used ML to estimate the SGMM parameters, and EM to
estimate ML of SGMM. As shown in Table 1, four dialectal
Arabic ASR studies used SGMM.

4) DEEP NEURAL NETWORK MODEL
A DNN model comprises an input layer, an output layer, and
two or more layers of hidden units. Each hidden unit is used
to associate all inputs from the previous layer to the scalar
state using the logistic function and sent into the next layer.
DNNs are discriminatively trained using the backpropagation
of cost function derivatives. This backpropagation is utilized
to determine the conflict between the original outputs and
resulted fromDNN training [54]. In the softmax function, the
cross-entropy between the probabilities d and softmax output
p is represented by the natural cost function C as follows:

C = −
∑
j

djlog(pj) (3)

where the probability d is one or zero.
DNN can be trained on a large training set by calculating

the derivatives on a small part of the training set ‘‘minibatch’’
compared to the whole training set. Then, it updates the
weights to the gradient. The trained neural networks in DNN
are used to recognize speech. It includes the dimension of the
input spectral features as the input layer, N hidden layers, and
one output layer. The output layer dimension is equal to the
number of utterances the system is designed to identify. The
frame-level DNN posteriors from the output layer must be
combined by simply averaging over the test utterance [55].
DNN can be used to train and recognize speech sig-
nals during a low resource system without a secondary
classifier. The secondary classifier is unsuitable for small
datasets, which requires computational resources. Increas-
ing the number of hidden layers will enhance the system’s
performance, however, the complexity will be increased.
As shown in Table 1, 12 dialectal Arabic ASR studies
used DNN.
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5) CONVOLUTIONAL NEURAL NETWORK
CNN [56] is a kind of DNN. It has a mechanism for
simulating the mammal visual neuron systems [57] which
activate neurons in specific areas in the visual field. CNN has
conditioned—as opposed to fully integrated—connections to
manipulate data using a grid-form essential structure. For
example, an image can be represented by 2D pixel grids and
fixed-length audio can be represented by 1D grids. In addi-
tion, CNN has novel properties that render DNN more suit-
able for image and signal data. CNN has three stages: a
convolution, detector, and pooling stage.

• Convolution: The convolution stage is considered the
main component of CNNmodels. Practically, each value
in the feature vector is connected with the nearest values
in the feature vectors. Thus, favorable features are cal-
culated locally and selected. The convolution includes
a process to handle noise in local regions [58]. Overall,
this process trains the CNN model well.

• Detector: The detector stage receives the convolution
outputs and applies the nonlinear activation functions to
generate high-level features.

• Detector: A final pooling stage is utilized to adapt the
activation function resulting from the decoder stage.
This stage integrates outputs and shows signal data for
different local regions. Pooling is more suitable to rep-
resent small fluctuations that are obtained from inputs.
In addition, pooling is used to decrease outputs com-
pared to the detector stage, thus, reducing time and
computational complexities.

Because a CNN is a simulated biologically inspired model,
it is, therefore, suitable to develop acoustic models in ASR
systems in order to enhance the performance. In addition, the
structural locality from the acoustic feature is used to reduce
the spectral variance in acoustic features and long-term
dependencies in the speech frames by taking prior speech
signal knowledge [59], [60]. Sainath et al. [61] reported
that CNN achieves 13–30% enhancement over GMMs, and
4–12% enhancement over DNNs, using 700 hours of speech
data. As shown in Table 1, four dialectal Arabic ASR studies
used CNN.

6) TIME-DELAY NEURAL NETWORK
Time-delay neural networks (TDNNs) are types of CNNs
that are used for sharing the weights in a single temporal
dimension. The first TDNNmodel was proposed to recognize
phonemes [62]. Then, TDNNs were utilized for recognizing
the spoken word [63] and handwriting [64], enabling the
acoustic model to learn the temporal dynamics of the speech
signal using short-term acoustic feature vectors. Moreover,
it uses sub-sampling for reducing computation in training.
In DNN, the wider temporal context is processed by a wide
contextual window of features in the initial layer, while
in TDNN, each layer corresponds to a different level of
the entire features—local patterns in the entire features are
learned by the first layer and higher layers are used to learn

a wider temporal context. Each layer in a TDNN is operated
at a different temporal resolution, which is increased as one
moves deeper into the network. As shown in Table 1, six
dialectal Arabic ASR studies used TDNN.

7) LONG SHORT-TERM MEMORY NETWORK
LSTMs are a special type of RNNs used for the evolution
of RNN. The LSTM method can save information over a
long period using long-term dependencies in order to find and
exploit long-range context. The standard RNN has a single
neural network, while LSTM uses four interacting layers
with a unique communication link [4], [65]. In ASR, we can
use the coming context as well if the transcription for all
utterances is obtained at training time. An LSTM calculates
an input sequence X = x1, x3, ..., xT and the corresponding
output sequence Y = y1, y2, ..., yL using the calculation of
the network unit activation. An LSTM is used in the training
stage with sub-sampling given the T-length of the speech
feature sequence ot−1. It is utilized to produce a high-level
feature h1:T0 as follows:

ht = LSTM (xt , ot−1) (4)

where h denotes the sub-sampling. The input features X will
be handled to create the hidden states ht based on frame-wise
operations. LSTM presents the outputs to reduce the compu-
tational cost. Therefore, in ASR, the input length is different
from the output length [66]. A bidirectional LSTM (BLSTM)
is an LSTM in the hidden layers. As shown in Table 1,
11 dialectal Arabic ASR studies used LSTM and BLSTM.

E. TRANSFORMER MODEL
The Transformer model architecture is the same as sequence-
to-sequence attention-based models except relying entirely
on self-attention and position-wise, fully connected lay-
ers for both the encoder and decoder [67], [68]. The
transformer-based model comprises two parts: an encoder
with a set of blocks; a decoder with a set of blocks [69]. The
encoder maps an input sequence of symbol representations
x = (x1, . . . , xn) to a sequence of continuous representations
z = (z1, . . . , zn). Given z, the decoder then generates an
output sequence y = (y1, . . . , ym) of symbols one element
at a time. Transformer learns sequential information via a
self-attention mechanism instead of the recurrent connection
employed in RNN [70].

An attention function maps a query and a set of key-value
pairs to an output, where the query, keys, values, and output
are all vectors. The subsampled sequences (X-sub), that are
generated by the previous step, represent the input to the
encoder blocks. Encoder transform (X-sub) to (Q, K, V) using
a self-attention layer with a Softmax as follows [67], [68]:

Self Attention(Q,K ,V ) = softmax(
Q ∗ KT
√
dk

) ∗ V (5)

Q ∈ Rnq∗dq , K ∈ Rnk∗dk , and V ∈ Rnv∗dv denote to queries,
keys, and values respectively. d∗ is the dimensions of values,
keys, and queries, and n∗ is sequence lengths.
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The multi-head attention (MHA) to perform multiple
attention networks. MHA yielded from all concatenated
self-attention heads as follows:

MHA(Q,K ,V ) = [H1,H2, . . . ,Hh]W h (6)

Hi = Self Attention(Qi,Ki,Vi) (7)

where h denotes the attention heads number in a single layer
and i is the ith head in the layer. The MHA output is nor-
malized before being sent into the Feed Forward (FF) sub-
layer linked network, which is implemented for every point
individually as follows.

FF(h[t]) = max(0, h[t] ∗W1 + b1)W2 + b2 (8)

where h[t] denotes the t th position of the input H to the FF
sub-layer.

F. DISCRIMINATIVE CRITERIA
In speech recognition, the acoustic model may be trained
using large datasets consisting of hundreds of hours (or
greater), from different speakers. However, there are often
utterances that are poorly represented in the training data.
This leads to a conflict in mapping between training and
testing representation. To solve this problem and reduce the
mismatch, there are adaptation techniques for discrimina-
tive training of acoustic models. The discriminative training
approach directly optimizes a mapping function from the
input samples to output labels and is used to enhance the
acoustic model for recognizing utterances [71], [72]. There-
fore, the main goal of the discriminative learning approach
is to modify only the decision boundary without construct-
ing a data generator from the entire feature space. As in
the reviewed studies, several discriminative training crite-
ria are used for the dialectal Arabic speech recognition,
such as LDA, MMLR, fMMLR, maximum mutual infor-
mation estimation (MMIE), boosted MMI, MPE, CTC, and
attention-based models (see Table 1). In addition, adaptation
is an optimal approach that alleviates conflicts between the
models and the data from any utterance, channel, or another
factor. As shown in Table 1, 19 dialectal Arabic ASR studies
used adaptation methods.

G. EVALUATION
As in the reviewed studies, accuracy performance metric
is used for evaluating the performance of ASR systems.
Moreover, the perplexity metric is used for evaluating the
performance of LM. This section describes these evaluation
metrics in some detail.

1) ASR EVALUATION
The performance evaluation of ASR is usually presented in
terms of two criteria: (1) accuracy (Acc), which represents the
percentage of the accuracy, and (2) WER, which represents
the percentage of the word-level errors of the recognized
units. These criteria are defined as follows:

SER =
#correctly_recognized_sentences

#All_Sentences
∗ 100 (9)

WER =
S + D+ I

N
∗ 100 (10)

Acc = 100−WER (11)

where N represents all the words in the set of evaluation utter-
ances, substitutions (S) denotes the number of misrecognized
words, deletions (D) represents the number of the deleted
words in the recognition result, and I is the number of the
inserted words in the recognition result.

2) LANGUAGE MODEL EVALUATION
The performance evaluation of LM uses the perplexity mea-
sure, which is dependent on the token in transcriptions. The
perplexity of LM is calculated for K tokens as follows [73]:

Perplexity = (
K∏
i=1

P(tokeni|tokenj<i))−
1
K (12)

where P(tokeni|tokenj<i) represents the probability of i-th
throw of the LM training depending on the first i− 1 tokens.

Table 2 Shows the datasets and evaluation for all systems
that are presented in the reviewed studies.

V. DISCUSSION AND CHALLENGES
In this section, we present a discussion and analysis of the
results and highlight some challenges for the dialectal Arabic
ASR system.

A. DISCUSSION AND ANALYSIS
As in the literature review, many studies present the dialec-
tal Arabic ASR using several techniques and methods as
shown in Table 1. From Table 1, we can see that most stud-
ies used the MFCC technique for feature extraction. These
studies used 13 MFCC with 39 and 40-dimensional high-
resolution Mel frequency cepstral coefficients. Furthermore,
some of these studies used LDA for features transformation,
while other studies used techniques such as PLP (12- and
13-dimensional PLP), neural network (NN), bottleneck, and
VQLBG. In addition, most studies used language modeling
using different techniques in which a large number of these
studies used RNN for building language models. Moreover,
some of these studies used the Kneser–Ney smoothing tech-
nique for enhancing LM. The 3-gram and 4-gram LMs were
used in these studies. Five studies did not use LM. Table 1
shows the techniques and approaches that were used for
building acoustic models in the presented studies. Most stud-
ies used traditional techniques and others used deep learning
techniques for building acoustic models. Moreover, some
studies used hybrid techniques. Furthermore, two studies
used the ruled-based technique for building models. Most
studies used adaptation (discriminative) techniques, as shown
in Table 1. These techniques were used to enhance the acous-
tic model for recognizing utterances. In general, most studies
used a traditional approach for building the dialectal Arabic
ASR system, while two studies used an end-to-end approach.

We cannot decide the state-of-the-art of dialectal Arabic
ASR systems. However, according to our literature review
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TABLE 2. Comparison of different studies based on parameters (dataset, ACC(%), WER(%), perplexity, and year).

TABLE 3. Number of studies over the last five years.

and current knowledge, we can conclude that studies imple-
menting the end-to-end approach are at the front of dialectal
Arabic ASR systems as shown in Table 2.

From Table 2, we can observe that the WER term was
reported as result for most studies, while other studies used
the accuracy terms. In addition, most studies did not report the
perplexity of LM. Furthermore, we can see that five studies
are presented in 2017 and one study is presented in 2016.
Over the last five years, 17 studies were presented as shown
in Table 3.

As shown from the literature review and Table 2, datasets,
corpora, and databases were used in the dialectal Arabic ASR
systems. The corpora and datasets were collected and built as
follows:

Audio speech files are collected from radio and/or TV
broadcast news, telephone conversation, and YouTube chan-
nels based on the same conditions. Audio files will be sep-
arated into smaller length. Then, the audio files will be
converted into wav format. After that, speech files will be
re-sampled into the same sampling rate. The corresponding
transcript file for each audio file will be created. Finally, the
transcript will be converted into Buckwalter format.

Some of these data sources are freely available and others
require an access fee. Table 4 summarizes the characteristics
and availability of some (free) data sources that were used in
dialectal Arabic ASR systems.

The Arabic dialect has several types of dialects such
as Algeria (DZ), Egypt (EG), Iraq (IQ), Jordan (JO),
Saudi Arabia (SA), Kuwait (KW), Lebanon (LB), Libya
(LY), Mauritania (MR), Morocco (MA), Oman (OM),
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TABLE 4. Characteristics of data source.

Palestine (PS), Qatar (QA), Sudan (SD), Syrian Arab
Republic (SY), United Arab Emirates (AE), Yemen (YE),

Tunisia (TN), and Bahrain (BH). Figure 3 shows the number
of speakers from each dialect type.
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TABLE 5. Summary of the Arabic dialect types.

FIGURE 3. Number of speakers in each type of Arabic dialect.

The presented studies show different dialectal Arabic ASR
systems for some of these Arabic dialects. Table 5 summa-
rizes the types of Arabic dialects in the presented studies.
From this table, we note that the Egyptian dialect has the
highest study count (17), while Algeria and Tunisia have
seven and eight studies, respectively. Mauritania-type dialect
has only one study representing the lowest. In addition, Sudan
and Yemeni dialects have no studies.

Some of the presented studies were published in the Web
of Science and Scopus databases as shown in Table 6.
Figure 4 shows a comparison between the types of Arabic

dialects regarding the number of studies for each type.

B. CHALLENGES
As mentioned above, many studies have developed dialectal
Arabic ASR systems. Arabic dialects that includes vocal-
ized components and using morphological decomposition
to address the challenges of dealing with the huge lexical

TABLE 6. Summary of studies published in web of science and scopus
databases.

FIGURE 4. Comparison of Arabic dialect types regarding the number of
studies.

variety. However, adding to the challenges that are mentioned
in the introduction, many challenges still exist:

1) There are a few counts of datasets that are related to the
Arabic dialect. This leads to develop a badASR system.

2) There are no datasets for some dialect types such as
Sudan and Yemeni. Therefore, most dialectal Arabic
ASR systems can not recognize all Arabic dialect
languages.
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3) All of the available studies used a non-diacritized
Arabic version. The non-diacritized Arabic word may
have many meaning with the word meaning to its’
position in the word context. Thus, the accuracy of
training acoustic model may be decreased. Also LM
may be less predictive.

4) There are studies that lack variation in data.
5) All of the studies use English letters instead of Arabic

letters in transcription using the Buckwalter format.
Thus, the data needs more efforts.

6) Many of the presented studies used the MSA version
to train and adapt the acoustic model, and dialectal
version for testing; i.e., these studies did not use pure
dialectal data in the training process.

7) The studies that were developed based on the collected
or specific datasets have good accuracy. These studies
did not use the standard datasets. Moreover, some of
these studies used one dialect type.

8) The multi-dialect systems have a low accuracy com-
pared to one-dialect systems.

VI. CONCLUSION
In this work, we reviewed 35 studies of the dialectal Arabic
ASR. Many approaches and techniques were described in
feature extraction, including lexical modeling, languagemod-
eling, acoustic modeling, discriminative criteria, and evalu-
ation steps. Moreover, we presented the current progress of
the dialectal Arabic ASR and introduced three comparisons
between the presented studies including techniques andmeth-
ods, datasets, accuracies, dialect types—these studies were
analyzed and discussed. In addition, a brief of the dialectal
Arabic data sets and corpora is presented. We also discussed
and highlighted some challenges and problems. Due to chal-
lenges and from the analysis, we suggest some future studies
including collecting diacritized data, collecting new various
data, collecting Sudanese and Yemeni dialect data, adapting
techniques and methods to address Arabic letters, and apply-
ing other techniques and methods for building the dialectal
Arabic speech system.
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