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ABSTRACT Information about correlated color temperature influencing the scene due to the surrounding
lighting is vital, especially for circadian lighting and photography. This paper proposes a novel image-based
machine learning model to predict the correlated color temperature in a scene with the help of the Macbeth
ColorChecker color rendition chart and a DSLR camera. In the proposed technique, the researcher fixes the
white balance setting in the camera, thereby forcing color difference in the captured image of the Macbeth
ColorChecker chart placed in the scene. The Bayesian neural network model considers the color difference
values of the six spectrally neutral patches of the Macbeth ColorChecker chart as inputs for CCT prediction.
The color differences are calculated using the CIEDE2000 color difference formula. Four models with white
balance settings in the camera as 5000K, 6500K, 8000K, and 10000Kwere developed and analyzed. During
experimentation, the proposed model’s correlated color temperature prediction error is less than five percent
with the white balance setting in the DSLR camera as 10000 K. The model performed consistently under
varied lighting levels and mixed CCT lighting conditions set up with LED, incandescent, and fluorescent
lamps.

INDEX TERMS Computer vision, digital photography, image color analysis, neural networks, photometry.

I. INTRODUCTION
Correlated color temperature (CCT) expressed in Kelvin (K)
indicates the color of the influencing light in a scene. The
knowledge of the CCT value can be used to estimate the
appearance of a known object in a scene. In various sectors
like healthcare, industry, and corporate, circadian lighting is
gaining importance, which demands color tuning of indoor
artificial light [1]–[3]. This is achieved by varying CCT and
intensity of the artificial light in sync with outdoor light
conditions. In photography, knowledge of light source CCT
is crucial in determining the color output of the photograph.
The camera setting ‘white balance’, which can be set by the
photographer, is associated with the CCT of light governing

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

the scene [4]. Hence, CCT information of the light source in
a location is vital in human-centric lighting and photography
applications.

The use of digital cameras as sensors for photometry has
gained momentum due to their cost-effectiveness, measure-
ment speed, and accuracy [5]–[7]. Techniques of using a
digital single-lens reflex (DSLR) camera for luminance mea-
surement are well explored and established [8]–[10]. This
motivates us to explore further the possibility of using a
digital camera to estimate photometric parameters like CCT
and Color Rendering Index (CRI), which are helpful to access
the qualitative aspects of lighting design.

The traditional approach of CCT measurement involves
placing the artificial light source in an integrating sphere
that houses a spectrometer. Handheld spectrometers are now
available in the market with which CCT of the influencing

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 55499

https://orcid.org/0000-0002-5222-3041
https://orcid.org/0000-0002-0651-4278
https://orcid.org/0000-0001-9875-7092
https://orcid.org/0000-0001-8431-6130


V. Kamath et al.: Development of Bayesian Neural Network Model to Predict CCT

light source on the work plane can be obtained. But both
methods require expensive calibrated instruments. Profes-
sional photographers use standardized target surfaces to
ensure color reproduction in the resulting photograph.

CIEDE2000 has been officially adopted as the color differ-
ence formula by CIE [11], [12]. Software tools are available
to compute this color difference caused by the camera settings
during image capture. Using standardwhite balance cards and
ColorChecker charts for color rectification is enhanced with
the help of post-processing photo editing software commer-
cially available [13]. Though these charts help correct color in
the resulting image, they do not provide the actual numerical
value of CCT in the captured scene.

When a camera is used for photometric measurement, the
white balance setting plays a significant role in deciding the
pixel values of the resulting image. The user must carefully
analyze the lighting condition in the scene and set the white
balance mode. Keeping auto white balance (AWB) mode on
the camera may lead to unreliable pixel data for photometry.
The post-processing image manipulation algorithms of the
camera also contribute to the pixel values. It must be noted
that the user has limited control over these image manip-
ulation steps. A sensor calibration method is suggested by
Juan Sebastian Valencia et al. [14] to address the above issue.
Sneha Jain et al. [15] photographically obtained CIE XYZ
values using HDR images. McCamy’s method is used to
calculate CCT values from CIE XYZ values. The percentage
error reported by the authors for CCT prediction is ±9.54%.
The light source in the scene was a tubular daylight device.
The radiance daylight simulation tool was used to get X , Y ,
and Z pixel values from the HDR image.
Authors of literature [16] proposed a novel model that

can predict dynamic variations of CRI and CCT due to
system power variations of phosphor-coated white LED
systems. Electrical, optical, spectral, thermal, and device-
specific parameters were extracted from steady-state tests
only. The authors claimed that the model could be used dur-
ing steady-state and dynamic situations. The current article
proposes a machine learning-based approach to predict the
actual CCT influencing the scene with the help of Xrite
ColorChecker chart pixel data.

II. PROPOSED HYPOTHESIS
This study explores the possibility of establishing a relation
between the pixel data of the ColorChecker chart image
and the CCT of light in the scene and proposes a machine
learning-based model to predict the CCT influencing a given
location.

The hypothesis statement is as follows: ‘When the white
balance of a digital camera is manually fixed, and an image
of the ColorChecker chart is captured, the color difference
of the spectrally neutral patches of the chart that result after
shifting the pixel values to D50 white point can be used to
predict the actual CCT of the surrounding light’.

Once the white balance value is fixed in the camera,
say to 10000 K, the camera’s image processor considers

TABLE 1. Reference CIE L∗, a∗, b∗ values using illuminant D50 2-degree
observer (for charts manufactured before november 2014).

the surrounding light condition as cool white (with CCT
10000 K). The processor then compensates by adding a yel-
low tint to produce an image of the scene under neutral white
conditions. For example, if the actual lighting condition of
the scene is warm white, say 3200 K, and the image of the
scene is captured with a white balance setting as 10000 K,
a considerable yellow tint appears in the resulting image. The
image seems warmer than seen by the eye. This condition
is due to the additional yellow tint compensation made by
the camera image processor to make the image scene appear
neutral. The compensation done by the camera for neutral-
izing the image is assumed to be directly proportional to the
difference between the actual CCT of the scene and the set
white balance in the camera. This process is not desired by
a photographer whose aim is usually to capture a scene as
seen by the human eyes. In the proposed technique, the color
difference caused by the white balance setting in the resulting
image from the actual scene is desired for analysis purposes.

The CIE L∗, a∗, b∗ values of patches of x-rite Col-
orChecker chart classic manufactured before and after
November 2014 are made available by the manufacturer [17].
These standard reference values are noted by illuminating
the chart with a D50 illuminant, that is, standard lighting
condition with a CCT value of 5003 K. The reference L∗,
a∗, and b∗ values of the six neutral patches used during
experimentation are given in Table 1.

To compute the color difference, it is necessary that ref-
erence and measured L∗, a∗, and b∗ values should have the
same white point [18]. Hence, during the experimentation,
the measured L∗, a∗, b∗ value under a lighting condition is
transformed to L∗, a∗, b∗ value with D50 white point.
The following sections discuss the experimental setup to

test the proposed hypothesis, model development to relate
color difference values with actual CCT, and results are
discussed.

III. EXPERIMENTAL SETUP
The ColorChecker chart is exposed to a wide range of CCT
values from warm white to cool white lighting conditions
in the experimentation. For every lighting condition, the
image of the ColorChecker chart is captured using a DSLR
camera, and the actual CCT value is measured using cali-
brated Asensetek lighting passport spectrometer. The actual
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values of CCT measured from the standard meter, and the
extracted RGB values of the spectrally neutral targets in
the ColorChecker chart are used to develop a supervised
learning-based neural network model for predicting CCT.
The workflow of the data building process is shown in Fig. 1.

FIGURE 1. Workflow for developing the model.

A. SURROUNDING CONDITIONS
For gathering data for the proposed model, a dark room is
used to ensure consistent lighting conditions. Experimenting
in the darkroom nullifies the influence of wall surfaces and
objects on the ColorChecker chart. Also, the ColorChecker
chart is illuminated only by the desired sources for the
research.

In the setup, four commercially available LED battens are
used. The technical details of the fixture are shown in Table 2.

With the help of the android app, the CCT of the four lamps
can be changed in steps of 1% simultaneously, from 2800K to
5800 K, providing 110 unique CCT lighting conditions. The
LED fixture’s spectral power distribution (SPD) when set to

TABLE 2. Light source specification.

FIGURE 2. (a) SPD of the fixture with cool white light output and 0%
dimming (b) SPD of fixture with cool white light output and 0% dimming.

cool white and warm white conditions is shown in Fig. 2. The
app also facilitated the fixture’s remote operation, thereby
avoiding the possible error due to light reflection from users’
clothing. Care is also taken to provide a constant voltage
supply to the lighting fixtures.

The light fixtures are vertically mounted to throw light
on the ColorChecker chart positioned 1.5 meters away. The
ColorChecker chart (passport) is clamped to cardboard and
positioned vertically. The calibrated spectrometer is mounted
above the chart to capture the true CCT due to the light fix-
tures, as shown in Fig. 3. The spectrometer is also triggered to
capture accurate data remotely through the spectrum genius
mobile application. The isometric view of the light fixture set
up with the camera is shown in Fig. 4.

The camera is positioned behind the lighting fixture to
avoid glare on the camera lens. The image of the Col-
orChecker chart is captured by placing it in front of the
lighting fixture.

B. CAMERA SETUP
The camera used for the experiment is a full-frame Nikon
D750 with a 50 mm Nikkor F/1.8D AF prime lens. In addi-
tion to standard white balance settings like auto, cloudy,
and shade, the user can manually set the color temperature
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FIGURE 3. Positioning of ColorChecker chart and spectrometer.

FIGURE 4. Isometric view of the light fixture arrangement.

TABLE 3. Additional camera settings for data collection.

value of the scene in the camera. The motive behind using
a prime lens is to reduce the possibility of vignetting and
distortions due to the series of glasses found in telephoto
lenses. Table 3 shows camera settings made during data
collection.

ISO 100 camera sensor sensitivity leads to less digi-
tal noise in the resulting image. The sensor is correctly
exposed (exposure compensation is zero) using aperture pri-
ority mode. Since the chart surface is parallel to the image
sensor, the aperture of f/3.2 ensures the correct focus of the
ColorChecker chart patches in the image. Post-processing
settings like ‘active D-lighting’ and ‘picture control’ are min-
imized. The camera is mounted on a tripod. The center of the
lens and ColorChecker chart are in the same line. The camera
flash is kept OFF, and the shutter button is remotely triggered
using a wireless remote.

C. IMAGE DATA EXTRACTION AND MODEL DEVELOPMENT
The proposed model should work in any lighting con-
ditions caused by different types of light sources (LED,
incandescent, fluorescent). Four models are developed using
images captured with white balance as 5000 K, 6500 K,
8000 K, and 10000 K. For each white balance setting, around
110 images are analyzed. The white balance value that gives
the best performing model has to be fixed as the white bal-
ance setting during the deployment of the proposed setup.
In sections D, E, and F, the procedure followed to extract data
from images, the statistical significance analysis, and model
development are discussed.

D. DATA EXTRACTION FROM IMAGES
Data extraction from images is a laborious process with-
out proper image processing tools. The steps to obtain the
CIEDE2000 color difference value for each of the neutral
patches of the ColorChecker chart are shown in Fig. 5.

FIGURE 5. Stages to calculate the color difference of a neutral color patch.

An application is developed usingMATLABAppDesigner
to simplify data collection and tabulation. Fig. 6 shows the
opening page of the application when the user chooses an
image to analyze using the ‘Browse Image’ button.

FIGURE 6. Opening page of the developed GUI.

The application is used in the following steps:
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1) STEP 1: BROWSE AND SELECT THE IMAGE
TO BE ANALYZED
Once the user chooses the image to analyze using the ‘Browse
Image’ button, camera aperture, shutter speed, ISO settings
used to capture the scene, and the file name are displayed at
the bottom of the application screen to facilitate the user. The
EXIF data of the image file using image processing toolbox
commands is used for this purpose. The user can also enter
the true CCT and CRI values noted from the calibrated sensor
during the capture of the scene.

2) STEP 2: COLOR CHECKER CHART IDENTIFICATION
The user must manually specify the ‘registration points’
of the ColorChecker chart, as shown in Fig. 7. This is
done by moving the four blue points (labeled as 1. Black
point, 2. White point, 3. Brown point, and 4. Bluish-green
point) to their marker position available in the chart. Once
this is done, the ‘Marker points updated’ button must be
pressed.

FIGURE 7. Specifying the ColorChecker chart registration points.

On the press of the ‘Marker points updated’ button in the
designed app, the following operations occur:

1) All the patches of the ColorChecker chart are identi-
fied, and RGB pixel values of the patches aremeasured.
This step of chart recognition can be verified, as shown
in Fig. 8.

2) Color differences based on the CIEDE2000 formula
and CIE94 formula are computed and tabulated

The above steps occur due to ‘ColorChecker’ (function of
MATLAB available since 2020b version), ‘measureColor’
(measures RGB values from the chart patches), ‘rgb2lab’ (to
covert RGB color space to LAB with D50 as white point),
‘imcolordiff’ (to calculate color difference with CIEDE2000
formula). Depending upon the manufactured date of the Col-
orChecker chart (before/after November 2014), the refer-
ence values used in the ‘measureColor’ function are to be
modified.

FIGURE 8. Identification of ColorChecker chart.

3) STEP 3: DATA SAVING
After step 2, the application user interface appears, as shown
in Fig. 9.

FIGURE 9. User interface after the chart is analyzed.

The ‘Export Data’ button is enabled to export the following
data to an excel file:

• RBG pixel values of ColorChecker chart patches
• LAB values of ColorChecker chart patches
• Image file name and camera exposure settings
• CIEDE2000 color difference value of all the Col-
orChecker chart patches

• True CCT and CRI value
The excel file can be accessed from the ‘current folder’ set in
MATLAB. After the data is exported, the user can continue
to analyze another image. A tracker is maintained to inform
the user about the number of image files analyzed.

E. STATISTICAL ANALYSIS OF THE DATA
The data of color difference is measured for six neutral
patches, and the actual CCT condition of the scene is recorded
and tabulated for each white balance setting on the camera
(5000 K, 6500 K, 8000 K, and 10000 K). Statistical tests are
carried out to check if a statistical correlation between the
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FIGURE 10. Bayesian neural network model structure.

FIGURE 11. BNN based ML model performance at 5000 K camera white
balance setting (a) Error histogram (b) Regression for training data
(c) Regression for test data.

tabulated color difference values of the neutral patches and
the actual CCT value of the scene exists.

Table 4 shows the outcome of Pearson’s correlation test
for the color difference vs. actual CCT data collected cor-
responding to a white balance setting of 10000 K. A neg-
ative ‘r’ value close to 1 indicates good inverse rela-
tion between the two variables supporting the possibility
of a mathematical model for predicting the CCT of the
scene.

In addition to the correlation test, z-score values were
used to detect outliers. Measurements with z-score above
and below 2.56 and −2.56, respectively, are considered
outliers.

F. TRAINING A BAYESIAN NEURAL NETWORK
The CIE2000 color difference data of the six neutral patches
populated is used for training the Bayesian neural net-
work. Four neural network models corresponding to 5000 K,
6500 K, 8000 K, and 10000 K white balance settings are

FIGURE 12. BNN based ML model performance at 6500 K camera white
balance setting (a) Error histogram (b) Regression for training data
(c) Regression for test data.

developed. The network structure is as shown in Fig. 10. 75%
of the data is used for training, and the remaining 25% is used
for testing purposes.

IV. RESULTS AND DISCUSSION
This section discusses the results obtained from the Bayesian
neural network-based model for four different manual white
balance settings in the camera.

Fig. 11-14 shows the error histograms, training, and testing
regression plots for four different white balance settings in
the camera, i.e., 5000 K, 6500 K, 8000 K, and 10000 K.
Table 5 provides the Mean Square Error (MSE) of the CCT
predictionmodels during training and testing.When thewhite
balance is set to 5000 K, it is observed that the model is
overfitting for the training data hence leading to poor gen-
eralization. At 6500 K white balance setting in the camera,
the performance improves. But for cases with actual CCT
values close to 6500 K, the model prediction errors lead to
poor testing MSE.

It must be noted that most artificial light sources operate in
the 2500 K to 6500 K range. The model’s prediction perfor-
mance with a white balance setting in the camera at 8000 K
and 10000 K is very encouraging.

Themodel’smean square error (MSE)with awhite balance
of 8000 K is better than 10000 K. But prediction instances
near-zero error line is more from the model developed with
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TABLE 4. Statistical analysis of the correlation between neutral patches and actual CCT value using pearson’s coefficient.

FIGURE 13. BNN based ML model performance at 8000 K camera white
balance setting (a) Error histogram (b) Regression for training data
(c) Regression for test data.

TABLE 5. Mean square error (MSE) of the CCT prediction models during
training and testing.

10000 K white balance. Also, MSE from the 10000 K white
balancemodel testing samples suggests superior performance
to the other models in question.

FIGURE 14. BNN based ML model performance at 10000 K camera white
balance setting (a) Error histogram (b) Regression for training data
(c) Regression for test data.

The spectral power distribution of traditional light sources
like incandescent bulbs and fluorescent lamps significantly
differs from LED light sources. The model has a scope of bias
since it was developed from an LED smart batten measure-
ment data. This problem is addressed with additional light
measurements using traditional sources and a different LED
fixture in the darkroom, whose SPDs are shown in Fig. 15.
The 10000 K white balance-based model is re-trained with
these additional measurements. These added measurements
ensured a versatile model for CCT prediction.

The robustness of the model is evaluated in two ways. One,
by creating lighting scenes with LED lamps operating at dif-
ferent CCT values in a given scene. The model’s performance
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TABLE 6. CCT prediction via bayesian neural network (BNN) in mixed lighting conditions with camera white balance set at 10000 K.

FIGURE 15. SPD of the (a) incandescent bulb, (b) fluorescent lamp,
(c) & (d) LED fixture when operated at cool white and warm white light
output, respectively, were used to re-train the 10000 K white
balance-based model.

TABLE 7. CCT prediction with different light sources and lighting levels.

is tabulated in Table 6. Two, measurements were carried out
under various light sources and light levels. The results are

shown in Table 7. The ColorChecker chart images were taken
with the camera’s white balance setting set to 10000 K.

The proposed model gave steady performance even during
dimming conditions, as shown in Table 7.

V. CONCLUSION
A novel technique to predict the correlated color temperature
in a scene due to the lighting condition of the surrounding
using the camera as the sole sensor is proposed in this paper.
Macbeth ColorChecker chart is placed in the scene, and the
image is captured using a DSLR camera. The pixel data of
the six spectrally neutral patches of the ColorChecker chart
is used to compute color difference based on the CIEDE2000
formula. The Bayesian neural network-based model predicts
the CCT value using the color difference values of six neutral
patches as inputs.

The authors would like to emphasize that the white balance
setting in the camera plays a crucial role when the image is
used for photometric analysis. The resulting pixel values of
the image due to incorrect white balance set automatically
or manually will lead to erroneous measurements. For the
proposed model, it is experimentally found that color differ-
ence values obtained with white balance setting in the camera
as 10000 K provided the best fit than that of 5000 K, 6500 K,
and 8000K. The correlated color temperature prediction error
is less than 5%, with a white balance setting of 10000 K.
The prediction error was within the limit even when the
scene was illuminated with different CCT values sources.
The model’s performance is consistent for a wide range of
illuminance levels. With the help of computation tools, the
discussed technique requires only a single scene image with
a ColorChecker chart. The proposed method successfully
addresses the challenge of CCT measurement in a complex
lighting scene.

A DSLR camera with a fixed focal length lens (prime lens)
is employed during the study. The authors believe that the
proposed technique can be carried out using calibratedmobile
phone cameras, thereby reducing the overall cost of the sys-
tem. Themodel’s accuracy can be further improvedwithmore
measurements and re-training. Reducing the complexity of
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the model by decreasing the number of inputs to the neural
network can be explored. The RAW image information might
further enhance data quality.
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