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ABSTRACT Biogeography-based optimization (BBO) cannot effectively solve high-dimensional global
optimization problems due to its single migration mechanism and random mutation operator. To get better
performance, a dual BBO based on sine cosine algorithm (SCA) and dynamic hybrid mutation is proposed
in this work, which named SCBBO. Firstly, the Latin hypercube sampling method is innovatively used
to improve the initial population ergodicity. Secondly, a nonlinear transformation parameter and a inertia
weight adjustment factor are designed into the position update formula of SCA to make SCBBO suitable
for high dimensional environments. Then, a dynamic hybrid mutation operator is designed by combining
Laplacian and Gaussian mutation, which helps the algorithm to escape from local optima and balance the
exploration and exploitation. Finally, the dual learning strategy is integrated, so the convergence accuracy is
further improved by generating dual individuals. Meanwhile, A sequence convergence model is established
to prove the algorithm can converge to the global optimal solution with probability 1. Compared with
other state-of-the-art evolutionary algorithms, SCBBO effectively improves the optimization accuracy and
convergence speed for high-dimensional optimization problems. To further show the superiority of SCBBO,
its performance is compared on 1000, 2000, 5000 and 10000 dimensions, respectively. The comparsions
show that SCBBO’s optimization results on these dimensions are basically the same. Applying SCBBO
to engineering design problems, and the simulation results demonstrate that the proposed method is also
effective on constrained optimization problems.

INDEX TERMS Biogeography-based optimization, high-dimensional global optimization, sine cosine
algorithm, dual learning, engineering design problems.

I. INTRODUCTION
Optimization is the most common problem in engineering,
science, economy and society, such as system control,
mechanical design, network design, large-scale integrated
circuit design, biopharmaceutical and economic model.
The application of optimization technology in the above-
mentioned domains has produced enormous economic and
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social benefits. Practice shows that, under the same condi-
tions, the system efficiency, resources, economic benefits and
other aspects have been significantly improved through the
treatment of optimization technology, and the larger the scale
of the problem, the more obvious the corresponding effect.
With the development of engineering technology and science,
optimization problems tend to be large-scale, multi-peak,
nonlinear and strongly constrained. The objective function
is discontinuous and non-differentiable, and some of them
even have no clear function form.Traditional optimization
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methods, such as Newton method, quasi-Newton method,
conjugate gradient method, variable scale method and tunnel
method, are no longer applicable due to the following
problems: a). The traditional method requires continuous and
differentiable objective function. b). Before the algorithm is
implemented, the first-order or even higher-order derivatives
and inverse matrices of the function are required. The more
complex the objective function is, the more calculation is
required. c). The results of the problem are closely related
to the selection of initial values. d). The algorithm lacks
generality, and users need to select the most appropriate
method for specific problems. In order to solve the above
problems, many scholars have been inspired by nature and
designed various algorithms based on population by imitating
biological mechanisms or natural phenomena, which are
called swarm intelligence evolutionary algorithms (EAs).
EAs are not constrained by the restriction conditions (such
as differentiability, continuity etc.) and do not need derivative
and other auxiliary information. They have the characteristics
of high efficiency, simple operation, strong universality and
meets the objective requirements of current optimization
problems. Therefore, EAs have become the mainstream
optimization method.

In the past 40 years, swarm intelligence EAs have
developed rapidly and have been widely used in com-
munication [1], finance [2], power grid [3], military [4],
control system [5], [6] and other fields. Among them, the
biogeography-based optimization (BBO) proposed by Dr.
Simon of the United States in 2008 is a new swarm heuristic
algorithm [7]. Simon uses the mechanism of biological
migration and information interaction between habitats to
establish mathematical modeling to realize the optimization
process of the problem. BBO has the advantages of few
parameters, easy implementation, and good stability when
searching for the global optimal solution. So it has been
widely favored by scholars from all over the world since it
was proposed. Up to now, there are still many scholars doing
in-depth research on the algorithm. They have improved
or applied it to practical problems, and achieved some
results.

In the field of algorithm improvement, people mainlymake
improvements in three directions. The first direction is to
adjust the migration rate model of BBO. Ma [8] designed six
migration rate models and found that the cosine migration
model has the best optimization performance, and concluded
that the performance of the nonlinear migration model is far
better than that of the linear migration model. Wei et al. [9]
inspired by the cosine migration model and designed a more
complex hyperbolic sine cosine migration model, which
further improves the optimization performance of BBO.
The second direction is to improve the operator of BBO.
BBO’s framework is mainly composed of three operators:
selection, migration and mutation. For the selection operator,
Feng et al. [10] designed a selection operator with a random
ring topology in 2017, which reduces the possibility of
better solutions being destroyed by inferior solutions. Later,

Zhang et al. [11] deleted the original BBO roulette selection
operator in 2019, and adopted a example learning method
to select better habitats for migration, thereby improving
the convergence accuracy of the algorithm. An et al. [12]
put forward a probabilistic selection operator based on non-
dominated sorting in 2021, so that BBO can effectively solve
the multi-objective flexible job-shop scheduling problem.
For the migration operator, Literature [13] desigened an
enhanced biogeography-based optimization (BBO) referred
to as POLBBO. In POLBBO, an efficient operator named
polyphyletic migration operator is proposed. This operator
can not only generate new features from more promising
areas in the search space, but also effectively increase the
population diversity. Then, Bansal et al. [14] proposed a
new operator, namely the disruption operator to improve
the capability of exploration and exploitation in BBO. This
new algorithm is called DisruptBBO (DBBO). literature [15]
designed a disturbed migration operator and obtained the
PBBO. PBBO increases the local development capabilities
of BBO. Literature [16] designed a novel BBO by integrating
opposition-based learning mechanism (OBBO). In OBBO,
the opposite individuals are merged into BBO population
to improve the diversity, and the optimization performance
of this algorithm is obviously better than that of standard
BBO. Recently, Reihanian et al. [17] introduced a new
two-stage migration operator in the framework of BBO to
enable the algorithm to search the problem space effectively.
For the mutation operator, the harmony search (HS) [19]
process was added to the mutation operator of BBO in
literature [18], and HSBBO was obtained. HSBBO not only
effectively increases population diversity, but also improves
the convergence accuracy. Zheng et al. [20] directly deleted
the randommutation operator of BBO and adopted the differ-
ential mutation mechanism to conduct effective search, thus
improving the algorithm’s ability to develop new solutions.
The last direction of improvement is to integrate BBO with
other EAs. Literature [21] presented a biogeography-based
krill herd (BBKH) algorithm to solve complex optimization
problems. Literature [22] proposed the BBOTS based on
tabu search algorithm (TS) [23]. It stores the performed
migrations in a taboo table and prohibits reverse migration of
populations to previous habitats. Yogesh et al. [24] integrated
particle swarm optimization (PSO) [25] into BBO, and
applied it to speech signal and emotional stress recognition.
Zhang et al. [26] presented a novel hybrid algorithm based
on BBO and grey wolf optimizer (GWO) [27], named
HBBOG. In recent two years, with the continuous emergence
of new EAs, many scholars have integrated some new
algorithms into BBO. Farswan et al. [28] fused fireworks
algorithm (FWA) [29] with BBO to obtain the FBBO, which
has two search mechanisms. Then, Hamid [30] merged
the firefly algorithm (FA) [31] with BBO in 2021, and
obtained the hybrid algorithm FABBO. FABBO is essentially
a two-stage method. In the first stage, FA is used for
preliminary optimization, and some better solutions are found
by searching the problem space through a limited iteration.
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In the second stage, BBO is used to conduct more refined
search for these better solutions to obtain the optimal solution
with higher accuracy.

In the field of algorithm application, BBO has been applied
inmany aspects at present. For example, literature [32] solved
the function optimization problem of discrete variables by
improving BBO. Literature [33] proposed a novel BBO based
on population competition strategy to solve the substation
location problem. Then, Pal and Saraswat [34] introduced
an innovative method for categorization of histopatholog-
ical images using an enhanced bag-of-feature framework.
To obtain the optimal visual words in bag-of-features, they
proposed a new spiral BBO variant which introduces a spiral
search and random search in themutation operator to generate
the suitability index variables. By 2021, BBO has been
applied to fields such as industrial production and financial
optimization. For instance, Rostami et al. [35] designed an
optimal feature selection method for SAR image classifica-
tion based on BBO, artificial bee colony (ABC) and support
vector machine (SVM) in order to solve the feature selection
problem. Harrabi et al. [36] designed a hybrid BBO algorithm
to solve job-shop scheduling problems with general time
delays. Literature [37] also proposed a hybrid meta-heuristic
method based on BBO and PSO to estimate the currency
demand in Iran. And Recently, Taghizadeh et al. [38] pro-
posed amaheuristic-based data replica placement mechanism
using BBO for data-intensive IoT applications on the fog
ecosystem.

Although BBO is easy to implement and has few
parameters, it is easy to fall into local optimal solution and
difficult to escape [39]. Especially in the late evolution, the
convergence rate of BBO is very slow. The improvement of
scholars from various countries has reduced the possibility of
BBO falling into local optimal solution, and the algorithm
has been improved to a certain extent [40]. However, the
convergence speed and optimization accuracy of BBO still
need to be improved, especially in the late evolution, the
search speed has not been effectively improved. However,
according to our extensive investigation, the present BBO
and its variants are not effective in solving high-dimensional
optimization problems. We review hundreds of studies on
BBO in the last decade and find that none of them solved
problems with more than 100 dimensions. The vast majority
of variants have only been tested on 30, 50 or 100 dimensions.
With the progress of society, practical problems put forward
higher and higher requirements for algorithms. In order
to achieve a breakthrough in this field, aiming at the
shortcomings of BBO, this paper proposes a dual BBO
with sine cosine algorithm (SCA) [65] and dynamic hybrid
mutation mechanism. As it integrates another evolutionary
algorithm, it mainly belongs to the third category in the
direction of improvement, so we named it SCBBO. SCBBO
improves the original algorithm migration operator and
mutation operator respectively, and integrates SCA and dual
learning strategy. The above improved methods make BBO
adapt to high dimensional optimization environment, and

greatly improve the convergence performance of BBO. The
main contributions of this paper are as follows:

(1). In this paper, SCA algorithm and BBO algorithm
are innovatively combined to obtain a hybrid migration
algorithm. At the same time, a dynamic hybrid mutation
operator is designed to effectively balance the exploration and
exploitation of the algorithm. In addition, this paper designs a
dual learning strategy and combines it into BBO for the first
time. A sequence convergence model is established to prove
the convergence of SCBBO. This is a new proof.

(2). The ability of SCBBO to solve global optimization
problems can reach 10000 dimensions. To further show the
superiority of SCBBO on high dimensions, we test SCBBO’s
optimization ability on 1000, 2000, 5000, 10000 dimensions.
The results prove that the algorithm in this paper has
good stability and excellent optimization ability on high-
dimensional environment.

(3). SCBBO is applied to solve the engineering
design optimization. It solves pressure vessel design,
tension/compression spring design and welded beam design
respectively. By comparing the results of other literatures
and algorithms, we conclude that that SCBBO has better
applicability and optimization capabilities in engineering
design problems.

The remaining sections of this paper are as follows:
section II introduces the standard BBO and its calculation
process in detail; In section III, the algorithm SCBBO is
proposed. In section IV, the global convergence of SCBBO
is proved. In section V, the computational complexity of
SCBBO is analyzed. Then, section VI includes numerical
experiments and results analysis. section VII is the applica-
tion of SCBBO, using SCBBO to solve engineering design
optimization problems. Finally, section VIII summarizes the
whole work and points out the direction of future work. The
graphical abstract of this paper is shown in FIGURE 1.

II. STANDARD BBO
Simon proposed the BBO in 2008. The basic idea is
that biological populations live in different habitats and
are affected by rainfall, vegetation diversity, geological
diversity, climate and so on. The suitability of each habitat
is different, and biological populations are distributed and
migrated accordingly. In an optimization problem, a habitat
corresponds to a candidate solution, and the habitat suitability
index (HSI) corresponds to the objective function value of
the candidate solution. The aforementioned factors affecting
HSI are called suitability index variables (SIVs), which
correspond to independent variables of candidate solutions.
If the candidate solutions are considered as individuals in
the population, the good individuals are like the habitats
with high HSI, and the bad individuals are like the habitats
with low HSI. Good individuals are more likely to share
their independent variables with poor individuals, and poor
individuals are more likely to accept the characteristics of
good individuals. The addition of new features may improve
the quality of individuals, and obtain a better function
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FIGURE 1. Graphical abstract of this paper.

target value, which is the mathematical idea of BBO [39],
[40]. BBO is an EA, which is mainly accomplished by the
following three steps.

A. INITIALIZATION
BBO uses Eq. (1) to randomly generate NP habitats as the
initial population, and each habitat contains D variables.

xij = xjmin + rand(0, 1) ·
(
xjmax − xjmin

)
(1)

where, i = 1,2,. . . ,NP; j = 1,2,. . . ,D. xij is the j-th variable
of habitat xi, so xi = (xi1,xi2,. . . ,xiD). xjmax and xjmin are
the upper and lower limits of the j-th variable respectively.
After population initialization, HSI of each habitat can be
calculated based on fitness function of the actual problem.

B. MIGRATION
The population is sorted in descending order by the HSI of
each xi, so the original habitat xi will be assigned a new i.
The species number Si of habitat xi sorted can be calculated
using Eq. (2):

Si = Smax − i, i = 1, 2, · · ·NP (2)

where, Smax is the maximum number of species and is given
as an initial value.Immigration rate and emigration rate are
calculated based on the species number of habitats. Habitats
with high HSI have a high probability of sharing features with
habitats with low HSI to improve the quality of those low
HSI habitats. At the same time, habitats with high HSI will
resist change, so their immigration rate is low [7].Therefore,
habitats with high HSI have higher emigration rates and
lower immigration rates than habitats with low HSI, while
habitats with low HSI have the opposite results. In general,
the migration process follows the migration rate model.

The original BBO used the linear migration model to cal-
culate the immigration and emigration rate, but literature [8]
proved that complex migration model has better optimization
performance than linear model. So, this paper adopts the
cosine migration model which is more consistent with the
natural law. Compared with linear migration rate model,
it can better reflect the nature of ecosystem migration and
increase species diversity. Therefore, the immigration rate λi
and emigration rate µi of habitat xi are calculated by Eq. (3):

λi =
I
2

(
cos

π · Si
Smax

+ 1
)
, µi =

E
2

(
− cos

π · Si
Smax

+ 1
)
.

(3)

where, I is the maximum immigration rate and E is the
maximum emigration rate, both of which are given as initial
values.

For each habitat xi, the characteristic variables to be
immigrated should be determined according to λi during the
migration process. The specific operation is to generate a
random number between (0,1) for each variable of habitat
xi. If it is smaller than λi, this variable needs to be replaced.
Then, in the remaining NP-1 habitats, the habitat xk to be
emigrated is determined by roulette according to µk . Finally,
the variable of xk is used to replace the corresponding variable
of xi. Algorithm 1 shows the BBO migration process.

Algorithm 1 The Migration Operator of BBO
for i = 1 to NP

for j = 1 to D
if rand(0,1) < λi

select the xk according to the {µk}NPk=1
xij = xkj

end if
end for

end for

C. MUTATION
Catastrophic events (e.g. famine, natural disaster, etc.) that
suddenly changes the HSI of a habitat, or an outbreak that
causes a species to move to another habitat, or a genetic
mutation that directly creates a new species, are all referred to
as mutation. Firstly, the species probability Pi of each habitat
is calculated from the immigration rate λi and emigration rate
µi through Eq. (4).

Pi =


− (λi + µi)Pi + µi+1Pi+1, Si = 0
− (λi + µi)Pi
+λi−1Pi−1 + µi+1Pi+1, 1 ≤ Si ≤ Smax − 1
− (λi + µi)Pi + λi−1Pi−1, Si = Smax

(4)

The mutation rate of a habitat is inversely proportional
to its species probability [39]. Therefore, the relationship
between the mutation rate mi and the species probability Pi
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of each habitat is as follows:

mi =
(
1−

Pi
Pmax

)
· mmax,Pmax = max

(
{Pi}NPi=1

)
(5)

where,mmax is the maximummutation rate, which is given as
an initial value. For each habitat xi, a number between (0,1)
is randomly generated, and if it is smaller than the mutation
rate mi, xi needs to be mutated. Then for each independent
variable of xi, a random number in the range of values is
generated to replace the original variable value. Algorithm 2
gives the mutation process of BBO.

Algorithm 2 The Mutation Operator of BBO
for i = 1 to NP

if rand(0,1) < mi
for j = 1 to D

updata xij by Eq. (1)
end for

end if
end for

D. THE CALCULATION PROCESS OF BBO
Algorithm 3 presents the detailed calculation process
of BBO.

E. THE ADVANTAGES AND DISADVANTAGES OF BBO
Since the main work of this paper is to use BBO to solve
high dimensional global optimization problems, we mainly
discuss the advantages of using BBO to solve high dimen-
sional numerical problems. Through the analysis of BBO to
explain our motivation to improve BBO. Then, we analyze
the reasons why the presentt BBO is not suitable for the high-
dimensional optimization environment, so as to point out the
direction for the next improvements.

The advantages of BBO:
(1). Unlike other evolutionary algorithms (e.g. genetic

algorithm, differential evolution algorithm, immune algo-
rithm), BBO does not need to breed or cross to produce
the next generation of population, so it can greatly reduce
the complexity of the algorithm. Even if solving high-
dimensional numerical problems, it does not consume too
much memory.

(2). BBO does not require complex parameter tuning
like particle swarm optimization, ant colony optimization
or artificial bee colony algorithm. BBO’s parameters are
basically fixed and do not need to be reset according to the
nature of the problem. Therefore, the parameters do not affect
the convergence performance of the algorithm when solving
high-dimensional optimization problems.

(3). BBO has good utilization ability of population
information. It uses information from current population
to migrate species and evolve. Therefore, on the high-
dimensional environment, the population can still complete
feature sharing in all dimensions, so as to evolve towards the
optimal solution.

The disadvantages of BBO:
(1). According to Eq. (1), BBO uses random initialization

to generate initial population. This method makes it difficult
to disperse the population in high dimensional space. The
population has no ergodicity, so the algorithm converges
slowly on solving high dimensional problems.

(2). BBO uses roulette to select habitats for emigration.
It cannot avoid the immigration of inferior individuals to
superior individuals. If habitat xi will be immigrated, it is
likely to be immigrated by habitat xj(j > i). It means that
habitats with lower HSIwill immigrate to habitats with higher
HSI, and the features of poorer individuals will replace the
features of better individuals, thus reducing the fitness of
superior individuals. Therefore, the random selection of BBO
will reduce population diversity and thus not suitable for
high-dimensional environment.

(3). BBO’s search capability is weak. BBO searches the
problem space using information sharing between species.
This mechanism works well in low-dimensional environ-
ment. However, when solving high-dimensional problems,
a large number of new individuals are needed to search the
space, and only the new solution generated by the migration
operator is far from enough.

(4). BBO uses random mutation to escape from the local
optima. However, for the individuals with high fitness,
random mutation can easily destroy them, leading to worse
individuals and lower population diversity. This mutation
method is blind and cannot guarantee the mutation to the
direction of the optimal solution. But, when solving high-
dimensional optimization problems, it is difficult to find the
global optimal solution if the search is blind.

(5). BBO can not balance the exploration and exploitation
effectively. It only relies on the substitution of several
variables to search the problem space. Therefore, the
algorithm cannot effectively switch between local search and
global search in high-dimensional space.

III. PROPOSED ALGORITHM (SCBBO)
Although many variants of BBO have been put forward by
scholars from various countries, these variants still havemany
defects on solving some complex problems. Especially for
the high-dimensional global optimization problems, there
is no variant can solve them effectively. In this section,
some existing BBO variants are deeply studied, and the
defects of different variants are analyzed. According to the
defectss of BBO and its variants, a dual BBO based on sine
cosine algorithm and dynamic hybrid mutation mechanism is
proposed and named SCBBO. We will introduce the design
principle and calculation process of SCBBO in detail.

A. LATIN HYPERCUBE SAMPLING METHOD
The convergence speed and accuracy of the algorithm
will be affected by the quality of the initial population.
From subsection II-E, The initial population of standard
BBO is randomly generated, so the diversity and the
rationality of the distribution in the search space cannot be
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Algorithm 3 The Calculation Procedure of BBO
initialize BBO parameters, which involve Smax , I, E, NP, and mmax
initialize the population of BBO by Eq. (1)
while (the termination condition is not met)

for each habitat, calculate the HSI and sort from best to worst
for each habitat, calculate the Si by Eq. (2), the λi and µi by Eq. (3)
for each habitat, calculate the Pi by Eq. (4), the mi by Eq. (5)
perform the migration operator by Algorithm 1
perform the mutation operator by Algorithm 2

end while
output the optimal solution

guaranteed. Most BBO variants use random initialization
to generate initial populations, which is the main reason
why they are not suitable for high-dimensional environment.
At present, the improvement of population initialization
strategy mainly uses chaotic mapping [41], [42]. However,
chaotic mapping can only reduce the number of individ-
uals distributed in the edge region of the search space,
but can not effectively improve the ergodicity, and will
increase the amount of computation. In this paper, the
Latin hypercube sampling method is introduced to generate
more uniform distribution of initial points without additional
calculation.

Latin hypercube sampling is a multi-dimensional stratifi-
cation technique that can efficiently sample in the distribution
interval of variables [43]–[45]. The essence of this method is
to divide the interval into N equally spaced non-overlapping
sub-intervals, and conduct independent equal probability
sampling for each sub-interval, so as to ensure that the
sampling points are evenly distributed in the whole interval.
Taking the interval [0,1] as an example, random sampling
and Latin hypercube sampling are carried out respectively.
In the case of small sample numbers, random distribution
does not disperse the population well to the whole interval.
The comparison of the distribution of Latin hypercube
sampling and random sampling is shown in FIGURE 2,
in which 10 points are extracted from the interval [0,1]
throughing the two methods. It can be observed that Latin
hypercube sampling can also spread over the entire space for
a small number of samples. Therefore, this paper uses Latin
hypercube sampling method to generate the initial population
to improve the ergodicity.

B. HYBRID MIGRATION OPERATOR BASED ON SCA
Migration strategy has great influence on the search perfor-
mance of BBO. Although the discrete migration mechanism
of BBO can effectively utilize the current population
information, direct substitution of solution variables will lead
the blindness of migration. The variable of the better solution
is likely to be replaced by the inferior solution, thus reducing
the quality of the population, leading to the poor ability of the
algorithm to mine new solutions. Moreover, the BBO variants
proposed by other scholars still have some drawbacks.

For example, although the PRBBO [10] reduces the possibil-
ity that the better solution destroyed by the inferior solution,
the selection operator of the random ring topology makes
migration only take place between adjacent habitats, which
largely reduces the ability of utilize population information.
EMBBO [11] adopts the example learning method to select
a better habitat than the current habitat for migration,
thus improving the convergence accuracy of the algorithm.
However, the whole population moves towards the local
optimal solution, which is prone to fall into the local optima.
TDBBO [46] designs a two-stage differential migration
operator, which effectively balances the search and develop-
ment capabilities of the algorithm, but has defects of high
computational complexity and slow convergence. Therefore,
in order to enhance the search ability, a hybrid migration
operator based on sine cosine algorithm is proposed in
this paper.

1) IMMIGRATION REFUSAL MECHANISM
From subsection II-E, the standard BBO is easy to migrate
the features of the inferior solution to the superior one,
so that the superior habitat is destroyed. In order to avoid
the destruction of the inferior solution to the superior one,
we design an immigration refusal mechanism. The specific
operation is to set a threshold τ for the emigration rate
µk of habitat xk . When the emigration rate µk of habitat
xk is less than the threshold τ , habitat xi will reject the
variables from habitat xk . The emigration rate of each
habitat is proportional to its HSI. Therefore, the higher
the emigration rate, the higher the HSI of the habitat,
that is, the better the objective function value. Setting a
threshold τ can ensure that all habitats used for emigration
have high HSI, thus avoiding the destruction of superior
habitats. Taking a population with only 6 individuals as an
example, FIGURE 3 shows a sample graph of two migration
operators.

As shown in FIGURE 3, threshold τ is similar to a
dividing line. Habitats x1, x2, x3 with an emigration rate
greater than τ can share variables with other habitats, while
habitats x4, x5, x6 with an emigration rate less than τ can
only accept variables from other habitats and cannot share
information.
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FIGURE 2. Comparison chart of sampling distribution.

FIGURE 3. Direct migration operator and migration operator with immigration refusal mechanism.

2) CONVEX MIGRATION OPERATOR
The immigration refusal mechanism effectively avoids the
damage of inferior solutions to the better ones, but does
not greatly improve the convergence speed and accuracy of
BBO. Therefore, when the emigration rate µk of habitat xk
selected by roulette is less than the threshold τ , a convex
migration operator is adopted for the migration of habitat xi.
The features of xi no longer just copy the features of xk , but
are replaced by a ‘‘convex combination’’ of xk and the optimal
solution of the current population xbest :

xij = (1− θ ) · xkj + θ · xbestj , θ ∈ rand(0, 1). (6)

There are three reasons for adopting convex migration.
Firstly, good individuals are less likely to degenerate as
a result of migration, because some of their original
characteristics are retained during migration. Secondly, poor

individuals will accept at least part of the characteristics from
good individuals in the migration. Finally, such migration
ensures that the population evolves towards the direction
of the optimal value of each generation, no longer blindly
searches, and can converge quickly. The parameter θ can
be either deterministic or dynamically changing. Through
a large number of experiments, this paper proposes the
strategy of changing parameter θ dynamically and randomly.
Because the current optimal solution xbest is likely to be the
local optimal solution, dynamic random adjustment of θ can
improve the probability of the algorithm escaping from the
local optima.

3) SINE-COSINE MIGRATION OPERATOR
From subsection II-E, BBO only migrates the features of
habitats whose random number is less than the immigration
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FIGURE 4. Images of r1sin(r2) and r1cos(r2).

rate, so its search capability is weak. The features of most
habitats remain unchanged, so the population diversity does
not increase significantly, which is also the main reason
why the algorithm is not suitable for high-dimensional
optimization environment. Therefore, this paper proposes
a method of migration in the form of ‘‘sine and cosine
function waves’’, which together with immigration refusal
mechanism and convex migration operator constitutes the
hybrid migration operator.

The sine cosine algorithm (SCA) [47] has a simple
structure and is easy to implement. Its most significant feature
is that it achieves optimization based on the change of the
value of sine function and cosine function. Each individual in
SCA is updated through Eq. (7):

x t+1ij =

{
x tij + r1 sin (r2) · |r3x

t
bestj − x

t
ij|, if r4 < 0.5

x tij + r1 cos (r2) · |r3x
t
bestj − x

t
ij|, if r4 ≥ 0.5.

(7)

where, t is the current iteration number, r1 = a −
at/MaxIt, r2 ∈ [0, 2π ], r3 ∈ [0, 2], r4 ∈ [0, 1],and
MaxIt is the maximum iteration number. In order to take
full advantage of SCA’s search capabilities, we analyzed
and discussed SCA in depth. In SCA, there are mainly four
parameters (r1, r2, r3, r4). Among them, the most critical is
the adaptive parameter r1, which controls the transformation
of the algorithm from global search to local development.
When the value of r1 is large, the algorithm tends to search
globally. When r1 is small, the algorithm tends to local
develope. Therefore, SCA uses the periodicity of sine and
cosine for global search and local development. FIGURE 4
shows the graphs of r1sin(r2) and r1cos(r2) when a = 2,
MaxIt = 500 and a = 2,MaxIt = 1000.

It can be seen from FIGURE 4 that when r1 > 1, the
values of r1sin(r2) and r1cos(r2) may be greater than 1 or
smaller than -1. When r1 ≤ 1, the values of r1sin(r2) and
r1cos(r2) must be between -1 and 1. According to SCA design
principle, the algorithm performs global search first and then
local search. The volatility of r1sin(r2) and r1cos(r2) and

their corresponding relationship with the algorithm search
strategy as shown in FIGURE 5. When |r1sin(r2)|> 1 or
|r1cos(r2)|> 1, the algorithm performs global search. When
|r1sin(r2)|≤ 1 or |r1cos(r2)|≤ 1, the algorithm performs local
search. According to r1 = a−at/MaxIt , when the number of
iterations t > (1 − 1/a)MaxIt , r1 < 1 and the algorithm no
longer performs global search. Therefore, the original r1 is a
monotone decreasing function, which is not good at balancing
the global and local search ability of the algorithm. In the
middle and late stage, the algorithm is mainly developed
locally in a small area, which is easy to fall into the local
optimal state. To overcome it, most scholars have studied
the modification of it [48]–[51]. Inspired by the waveform
change of sine function, we proposes a nonlinear amplitude
regulating factor r∗1 which is calculated by Eq. (8).

r∗1 = a sin
(
π

2

(
MaxIt + t
MaxIt

))
(8)

It can be seen from Eq. (8) that r∗1 and the original
r1 are both decreasing functions. However, based on the
fluctuation of sine function, r∗1 is beneficial to improve
the convergence accuracy of the algorithm for multi-modal
and irregular problems while meeting the requirement of
large value in the early stage and small value in the
late stage of iteration. At the initial stage of iteration, r∗1
decreases slowly, which is beneficial to the population to
search for the optimal solution with a large step size and
accelerate the convergence rate. At the end of iteration,
the rate of r∗1 decline is accelerated, which is conducive
to more accurate search of the algorithm in the optimal
value neighborhood and improved convergence accuracy.
In order to fully prove the effectiveness and superiority of
parameter r∗1 , we compared r∗1 with other four expressions of
r1, as shown in TABLE 1. FIGURE 6 shows a graph of these
parameters.

As can be seen from TABLE 1, under the same conditions,
when the number of iterations reaches half, r (2)1 < r (1)1 <
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FIGURE 5. When r1 = 2, r3 = 1, the fluctuation of r1sin(r2) and r1cos(r2) and algorithm search strategy.

TABLE 1. Expression comparison of the parameter r1.

FIGURE 6. Image of parameter r (i )
1 .

r (3)1 < r∗1 < r (4)1 can be obtained. The global search
ability increases successively, while the local development
ability weakens. From FIGURE 6, r (2)1 pays more attention
to local search, and the algorithm searches for the optimal
solution of the problem in a small range most of the time,
so it is easy to fall into the local optimal solution. On the
contrary, only a small part of values of r (3)1 and r (4)1 are
between [0,1], which indicates that the algorithm conducts

global search most of the time. Although the search speed can
be improved, the algorithm cannot conduct greatly accurate
search in the optimal value neighborhood, thus reducing
the convergence accuracy. By contrast, the r (∗)1 proposed in
this paper can better balance the global search and local
development capabilities of the algorithm.While ensuring the
convergence speed, the algorithm can conduct more accurate
search in a small area.

According to Eq. (7), the original SCA uses individual xi
to guide itself, which has the problem of slow convergence.
In addition, xi may have a low HSI, thus reducing the popu-
lation quality and affecting the algorithm search. Therefore,
this paper uses the elite guidance approach to update the
position, so as to speed up the convergence. The specific
operation is to replace the guide with the optimal individual
xbest of the current population, which accelerates the search
speed through the xbest . Furthermore, in order to make the
position information of the current optimal individual xbest
gradually be fully utilized with the number of iterations,
we design a dynamic inertia weight ω inspired by cosine
function waveform curve, which makes the algorithm not
limited to learning the global optimal value and improves
the convergence accuracy. Eq. (9) defines the expression of
inertia weight ω.

ω = γ

[
1− cos

(
π ·

t
MaxIt

)]
(9)
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FIGURE 7. The change of inertia weight ω with iterations.

where, γ is the weight adjustment factor and its value is 0.5.
FIGURE 7 shows the variation of inertia weight ω with the
iterations. In the early stage of evolution, a larger weight is
needed to make the particles move to the optimal direction.
In the middle of evolution, the inertia weight ω becomes
smaller, which preventing the algorithm falling into the local
optimal value prematurely, and ensuring the survival and
development ability of individuals with low HSI. At the end
of evolution, the population gradually does not need elite
guidance, so the position update mode gradually degenerates
to the unguided update mode with the decrease of the inertia
weight ω.
To sum up, for habitat xi, when a random number generated

on a variable is greater than the immigration rate, this variable
still needs to be migrated. The new location update mode is
implemented through Eq. (10).

x t+1ij =

{
ωx tbestj + r

∗

1 sin (r2) |r3x
t
bestj − x

t
ij|, r4 < 0.5

ωx tbestj + r
∗

1 cos (r2) |r3x
t
bestj − x

t
ij|, r4 ≥ 0.5.

(10)

The migration operator of SCBBO is obtained by com-
bining the immigration refusal mechanism, convex migration
operator and sine-cosine migration operator. Algorithm 4
presents the migration process of SCBBO.

C. DYNAMIC HYBRID MUTATION OPERATOR
From subsection II-E, BBO can not balance the exploration
and exploitation effectively. The standard BBO uses random
mutation to generate new individuals, which is weak in
generating new solutions with high HSI. Especially in the
late stage of evolution, the solution set is close to the
theoretical optimal solution, so random mutation is not only
difficult to explore better solutions, but also easy to produce
more poor solutions. This is also one of the main reasons
why BBO cannot effectively solve the high-dimensional
optimization problems. In recent years, many scholars have

Algorithm 4 The Migration Operator of SCBBO
for i = 1 to NP

for j = 1 to D
if rand(0,1) < λi

select the xk according to the {µk}NPk=1
if µk > τ

updata xij by Eq. (6)
else

xij = xkj
end if

else
updata xij by Eq. (10)

end if
end for

end for

also improved the BBO mutation operator, but they all have
different defects. For instance, MTBBO [52] proposed in
2020 divides the population into three different grades, and
carries out different mutations for individuals in different
grades. Although it can effectively improve the convergence
accuracy, it also increases the computational complexity.
The algorithm needs to perform three mutation operators
on the population, which consumes a lot of time. Both
PRBBO [10] and HGBBO [53] adopted gaussian mutation
help BBO to improve population diversity. However, the step
size of gaussian distributed random number is short, which
can not greatly help the algorithm to escape from the local
optimal solution. In addition, NBBO [17], EMBBO [11] and
WRBBO [54] directly delete the mutation operator to avoid
random mutation generating inferior solutions. Although the
computation is reduced, the algorithm only relies on the
migration operator to search new solutions, which has the
problem of slow convergence speed, and the population
diversity decreases rapidly, and the algorithm is easy to fall
into the local optimal state. Therefore, this paper proposes
a Laplace-Gauss hybrid mutation strategy that dynamically
adapts the iterations, which can balance the search and
development of the algorithm and help it escape from local
extremums.

The probability density functions of Laplacian distribu-
tion [55] and Gaussian distribution are defined as Eq. (11)
and Eq. (12) respectively.

fL(x;α, β) =
1
2β

exp
(
−
|x − α|
β

)
(11)

fG(x;µ, σ ) =
1

√
2πσ

exp
[
−(x − µ)2/2σ 2

]
(12)

where, α ∈ (−∞,∞) and β > 0 are location parameter
and proportion parameter respectively.µ is the mean, σ is the
variance. The Laplacian distribution Lap(α, β) is defined by
the distribution function shown in Eq. (13), which is always
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FIGURE 8. Step size comparison of Lap(1, 2) and G(0, 1).

FIGURE 9. The changes of w1 and w2 with the iterations.

symmetrically distributed with respect to α.

F(x) =

{
0.5× exp(−|x − α|/β), x ≤ α
1− 0.5× exp(−|x − α|/β), x > α

(13)

In order to effectively utilize more random numbers in the
search space, α = 1, β = 2 in the Laplacian distribution
Lap(α, β) are set. µ = 0, σ = 1 in the Gaussian distribution
G(µ, σ ). Therefore, the mutation formula based on dynamic
hybrid strategy is defined as Eq. (14).

xij = w1xbestj(1+ Lap(1, 2))+ w2xbestj(1+ G(0, 1))

×

{
w1 = 1− (t/MaxIt)3

w2 = (t/MaxIt)3
(14)

Laplacian random number Lap(1, 2) has a larger fluctua-
tion range thanGaussian distribution random numberG(0, 1),
as shown in FIGURE 8. Lap(1, 2) searches in a larger range
of the current optimal value, which is beneficial to maintain
the population diversity and help the algorithm escape from
the local optimal value. G(0, 1) can search more accurately

within a small range of the current optimal value, which is
beneficial to improve the convergence accuracy. Meanwhile,
w1, w2 are used to adjust the weight between Laplacian
random number and Gaussian random number. FIGURE 9
shows the change of weight coefficient with the iterations. w1
and w2 are responsible for better exploration and exploitation
over the process of iteration. w1 is used to complete global
search, that is exploration; w2 is used to complete local
search, that is exploitation. In Eq. (14), the weight coefficient
w1 of Lap(1, 2) has a large value in the early stage of
evolution, so the algorithm can utilize more random numbers
and explore better solutions near the current optimal solution
with a large step. At the late stage of evolution, the population
will converge to the theoretical optimal solution region, and
with the increase of the iterations, w1 gradually decreases,
while the weight coefficient w2 of G(0, 1) keeps increasing.
Themutation step size ofG(0, 1) is small, which is convenient
for the algorithm to search precisely in the optimal solution
neighborhood. It not only enhances the local development
ability of the algorithm, but also has little influence on
the convergence speed in the later period. Therefore, the
hybrid mutation strategy avoids falling into the local optimal
solution by dynamically adjusting the weight coefficients
and improves the search efficiency. Algorithm 5 gives the
calculation process of the dynamic hybrid mutation operator.

Algorithm 5 The Mutation Operator of SCBBO
for i = 1 to NP

if rand(0,1) < mi
for j = 1 to D

updata xij by Eq. (14)
end for

end if
end for

D. DUAL LEARNING STRATEGY
Ergezer et al. [16] proposed the oppositional biogeography-
based optimization (OBBO) in 2014, which applied the
opposite-based learning strategy into BBO. OBBO merges
the reverse individuals of the population into BBO to improve
the optimization ability. Opposite-based learning is similar
to dual learning, which was first proposed by Collard and
Aurand [56]. They designed a genetic algorithm based on
dual learning (DGA) to generate dual individuals by taking
the maximum Hamming distance of poor individuals in the
population. Later, Yang and Yao [57] suggested that only the
part of poor individuals in the population should be selected.
In this paper, when improvingBBO, the dual learning strategy
is integrated into the algorithm for the first time.

In SCBBO, when the dual learning strategy is applied to
the algorithm, only Nd individuals from the worst part of the
population are selected to generate dual individuals. Because
it’s unlikely that a good individual will produce a better dual
individual than the original one. In other words, the individual
closer to the optimal value is not worth generating its dual.
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Randomly generating dual individuals will not only waste the
evaluation times of function, but also reduce the population
quality. Therefore, only the dual of the inferior individual will
be generated. The specific operation is to take any point xo on
the line segment from Wk to the current optimal individual
xbest , and then the centrosymmetric point of Wk centered on
xo is the dual individual W ′k . The advantage of this way is
to ensure that the dual of the poor individual moves in the
direction of the optimal value, and the population evolves in
a good direction, thus improving the convergence speed of
the algorithm. Algorithm 6 gives the calculation flow of dual
learning operator.

Algorithm 6 The Dual Learning Strategy of SCBBO
{Wk} ← {The worst Nd habitats in the population}
(Nd = NP/2) for each habitatWk

r = rand(0,1)
xo = r ·Wk + (1− r) · xbest
W ′k = 2 · xo −Wk

end for
select the habitats in {Wk}U{W ′k} as the next population

E. GREEDY SELECTION FOR THE BEST SOLUTION
Greedy selection strategy is not the innovation of this paper,
but it is essential. Algorithm 7 gives the specific operation.
The reason for designing Algorithm 7 is that the optimal
individual of the current population is used by the hybrid
migration operator, dynamic hybrid mutation operator and
dual learning strategy. Only when the optimal individual
of each generation does not degenerate can we ensure
that the population does not degenerate during evolution.
Therefore, in order to achieve the goal without increasing the
computation, we only perform greedy selection on the current
optimal individual.

Algorithm 7 Greedy Selection for the Best Individual

if HSI(x tbest ) ≤ HSI(x
t−1
best )

x tbest = x t−1best
end if

In summary, this paper proposes a dual BBO based on sine
cosine algorithm and dynamic hybrid mutation mechanism.
SCBBO improves the standard BBO from the contents of
the four subsections of this section. Algorithm 8 shows the
calculation flow of SCBBO.

IV. CONVERGENCE PROOF OF SCBBO
At present, the convergence of most evolutionary algorithms
is proved byMarkovmodel or dynamicmodel. In this section,
we will prove the global convergence of SCBBO with a
new method. The establishment of sequence convergence
model to prove the convergence of SCBBO is also a major
innovation of this paper. For a global optimization problem,
assuming that its optimal solution is x∗, then f (x∗) is the

global optimal value. The optimal solution of SCBBO in
the t-th iteration is x tbest , and f (x

t
best ) is the current optimal

value. According to the sequence convergence theorem, the
equivalent condition that SCBBO can find the global optimal
value f (x∗) is that a certain f (x tbest ) is in the δ domain of f (x∗),
that is,

∣∣f (x tbest)− f (x∗)∣∣ ≤ δ.
During the evolution of SCBBO, each iteration exists a best

individual. The set formed by these individuals is:

Xbest =
{
x1best , x

2
best , · · · , x

t
best , · · · , x

MaxIt
best

}
(15)

where, MaxIt is the maximum iteration number. Thus,
sequence A can be constructed according to Eq. (16):{

A = {a1, a2, · · · , aMaxIt }

at = f
(
x tbest

)
, t = 1, 2, · · · ,MaxIt

(16)

As can be seen from subsection III-E, in SCBBO, the
optimal value of each generation will must be better or
equivalent that of the previous generation. Therefore, the
following formula must be true:

a1 ≤ a2 ≤ · · · ≤ aMaxIt . (17)

With the evolution, the population will gradually move
closer to the range where the optimal solution exists, that
is, the probability of the optimal individual in the population
entering the δ domain of the global optimal solution increases
gradually. Eq. (18) is used to express the probability that the
optimal value f (x tbest ) of the current population converges to
the global optimal value f (x∗):

pt =
{∣∣f (x tbest)− f (x∗)∣∣ ≤ δ} , t = 1, 2, · · · ,MaxIt

(18)

According to Eq. (17) and (18), the following relationship
must exist:

p1 ≤ p2 ≤ . . . ≤ pt , t = 1, 2, · · · ,MaxIt (19)

therefore, after t-th iteration, the probability that the current
optimal value does not converge to the global optimal value
is:

Pt = (1− p1) (1− p2) · · · (1− pt) (20)

From Eq. (19), it can be seen that pt is monotone and does
not decrease, so the following formula is true:

Pt = (1− p1) (1− p2) · · · (1− pt−1) (1− pt)

≤ (1− p1) (1− p1) · · · (1− p1) (1− p1)

= (1− p1)t (21)

and, since p1 is the probability, so 0 ≤ p1 ≤ 1 , then we
have 0 ≤ (1 − p1) ≤ 1 . After many iterations, Eq. (22) can
be set up.

lim
t→∞

(1− pt)t = 0 (22)

According to Eq. (22), after a large number of iterations,
the probability that the algorithm does not converge to the
optimal value is 0. Therefore, as the iteration number t
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Algorithm 8 The Calculation Procedure of SCBBO
initialize SCBBO parameters, which involve Smax , I ,E ,NP,mmax , τ and Nd
initialize the population of SCBBO by latin hypercube sampling
for each habitat, calculate the HSI and sort from best to worst
for each habitat, calculate the Si by Eq. (2), the λi and µi by Eq. (3)
for each habitat, calculate the Pi by Eq. (4), the mi by Eq. (5)
while (the termination condition is not met)

perform the hybrid migration operator by Algorithm 4
perform the dynamic hybrid mutation operator by Algorithm 5
perform the dual learning strategy by Algorithm 6
perform the greedy selection by Algorithm 7
for each habitat, calculate the HSI and sort from best to worst

end while
output the optimal solution

increases, SCBBO will eventually converge to the global
optimal value f (x∗) in the form of probability 1. The proof
is completed.

V. SCBBO COMPLEXITY DISCUSS
With reference to BBO, the computational complexity of
SCBBO is compared and analyzed. As for the calculation
process of the algorithms, comparing Algorithm 3 and
Algorithm 8, it can be seen that SCBBO moves the
calculation of habitat immigration rate, emigration rate,
species probability and mutation rate out of the iteration
loop. Because they are all based on rankings, so there is no
need to double count. However, the original BBO does not
avoid repeated calculation. In each iteration, it recalculates
the immigration rate, emigration rate, species probability and
mutation rate of each habitat, and the total calculation times
is 4 · MaxIt · NP. On the contrary, SCBBO only calculates
these data once in the whole evolutionary process, so the
total number of calculations is 4 · NP. Therefore, SCBBO
greatly reduces the computational complexity of migration
operator and mutation operator, and saves the calculation
of 4 · (MaxIt − 1) · NP times at least. Although the sine-
cosine migration operator of SCBBO adds some judgment
steps, it does not bring additional loops. Finally, the dual
learning strategy is added to SCBBO. In each iteration, Nd
individuals with low HSI will be selected to generate their
dual individuals. For every dual individual generated, two
additional calculations are performed. So the number of
computations increases to 2 ·Nd ≤ 2 ·NP in each generation,
and the total number of computations does not exceed 2 ·
MaxIt · NP. Although SCBBO increases the computation in
the dual learning strategy, this has been compensated in the
migration and mutation operators.

To sum up, SCBBO fully reduces the computation amount
from migration and mutation operators, thus achieving the
purpose of reducing the running time. Although the process
of generating dual individuals increases some computational
complexity, it is fully compensated in the process of
migration and mutation. SCBBO as a whole saves at least
(2 ·MaxIt − 4) · NP calculations compared with BBO.

VI. EXPERIMENT AND ANALYSIS
In order to verify the effectiveness and superiority of
SCBBO on solving high-dimensional global optimization
problems, we carry out a series of simulation experi-
ments. As shown in TABLE 2, this paper summarizes
and selects 24 classical benchmark functions. They con-
tain complex functions such as unimodal, multimodal,
irregular, rotating and noisy, which can test the com-
prehensive ability of the algorithms. The experimental
environment for all numerical experiments in this paper is
MATLAB 2020a.

A. COMPARISON BETWEEN SCBBO AND TWO
CONSTITUENT ALGORITHMS
This subsection compares SCBBO with its two constituent
algorithms to verify that SCBBO improves the performance
of BBO and SCA. SCBBO does not increase additional
function evaluation numbers compared with BBO. So the
same iterations number means the same function evaluation
number. Therefore, we set MaxIt = 1000, and the
maximum mutation rate mmax of BBO is 0.05 [58]. To avoid
contingency, each algorithm runs 50 times independently
on 24 benchmark functions on 30,50, and 100 dimen-
sions, respectively. Finally, the mean (Mean) and standard
deviation (Std) of the 50 errors are calculated, and the
rank-sum test will be performed at a significance level of
0.05 TABLE 3 show the rank-sum test results, and the
last line summarizes the result of this comparison. The
test results are obtained as ‘‘(w/t/l)’’, whose representative
meaning is: w(+:win)/t(≈:tie)/ l(-:lose). Where, ‘‘−’’ means
that the performance of the contestant algorithm is worse
than that of SCBBO, ‘‘+’’ means that the performance of
the contestant algorithm is superior, and ‘‘≈’’ means that
the performance of contestant algorithm and SCBBO is
similar.

As can be seen from TABLE 3, the overall performance
of SCBBO is significantly better than BBO and SCA on
30, 50 and 100 dimensions, so the performance of two
original algorithms are greatly improved. BBO performs
worse than SCBBO on all benchmark functions. SCA and has
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TABLE 2. 24 Benchmark functions.

similar performance to SCBBO on two benchmark functions
(f 9 with D = 30, f 10 with D = 30 and 50), but
has a bigger error mean on the remaining 22 functions.
Horizontal comparison: SCBBO’s convergence accuracy is
much higher than BBO and SCA. It can be seen that the
improvement strategies in this paper effectively improves the
search ability of the algorithm. The hybrid migration operator
makes the population close to the optimal solution quickly,
and the dynamic mutation operator keeps the diversity of
the population and balances the exploration and balance
of the algorithm effectively. Longitudinal comparison: The
convergence accuracy of SCBBO basically does not decrease
with the increase of the dimensions. This shows that the
improvement strategies in this paper makes BBO suitable
for high-dimensional optimization environment and has
good scalability. This is because the Latin hypercube
sampling method makes SCBBO populations on different
dimensions have good ergodicity, while the dual learning
strategy can make the poor individuals in the population
close to the optimal solution. At the same time, the
hybrid migration operator and dynamic mutation operator
enable SCBBO to switch freely between global search and

local search, so that it is not easy to fall into the local
optima, and can still converge quickly in high dimensional
environment.

Next, we compare the three algorithms’ convergence speed
and stability. According to the 50 times optimization results
of the three algorithms on 24 benchmark functions on 30,
50 and 100 dimensions, boxplots are drawn to compare the
stability. At the same time, a search with the smallest error
and the errors of each generation are selected to make the
best convergence graphs of three algorithms to compare the
convergence. As shown in FIGURE 3.

From FIGURE 3, SCBBO converges faster than BBO
and SCA on different benchmark functions. Although
SCA is similar to that of SCBBO on some benchmark
functions, the convergence curve of SCA fluctuates greatly
(e.g. f 7, f 9, f 14, f 17, f 18 and f 24) and the algorithm is
unstable. On functions f 7, f 9, f 11 and f 24, SCA does not
converge. This shows that SCA is easy to fall into the local
optimal solutions. On the contrary, the convergence curve of
SCBBO basically does not fluctuate, and the algorithm can
successfully escape from the local optima. This is because
the hybrid migration operator accelerates the convergence
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TABLE 3. Rank-sum test results of SCBBO and its two component algorithms with D = 30, 50 and 100.

speed of SCBBO, while the dynamic mutation operator helps
it escape from the local optima. At the same time, greedy
selection ensures that the population does not degenerate,
so the convergence curve of SCBBO always decreases. This
also verifies the convergence proof in Section IV. At the same
time, the 50 error values obtained by SCBBO on different
benchmark functions are very close, and the boxplot can
hardly be seen. However, BBO and SCA both have multiple
outliers, and the search performance is unstable. Therefore,
by carefully observing the convergence curves and boxplots,
it can be seen that SCBBO has better convergence and
robustness than BBO and SCA,which verify the effectiveness
of the improvement strategies again.

B. COMPARISON BETWEEN SCBBO AND OTHER BBO
VARIANTS
This section compares the SCBBO with seven excellent
BBO variants. They are all proposed in the past five

years, and TABLE 4 shows the detailed information of
them. Consistent with subsection VI-A, eight algorithms
search the optimal values on 24 benchmark functions. The
performance of these BBO variants on low-dimensional
optimization problems is fully verified in their original
reference articles. So we mainly compare the performance
of SCBBO and them on high dimensions. In literatures
[48], [61]–[63], the dimensions greater than 100 are defined
as high-dimensional optimization problems. Thus, SCBBO
and the seven BBO variants search the optimal values of
24 benchmark functions on 200 dimensions. Set (MFEs)
of each function, and record the error between the optimal
value searched and the theoretical optimal value when
reaching MFEs. According to the method of seting MFEs
in CEC2017 [64], the MFEs of each benchmark function is:
dimension(D)×104.

Similarly, in order to avoid contingency, each algorithm
independently runs 50 times, then the mean and standard
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TABLE 3. (Continued.) Rank-sum test results of SCBBO and its two component algorithms with D = 30, 50 and 100.

deviation of 50 errors are used as evaluation indexes. The
mean reflects the searching ability and the standard deviation
reflects the stability of the algorithm. Therefore, the mean is
the focus of comparison. TABLE 5 shows the optimization
results of SCBBO and seven BBO variants for 24 benchmark
functions on 200 dimensions. Where, the boldface represents
the best result of the eight algorithms, and the last column
represents the rank-sum test results, which has the same
meaning as that in TABLE 3.

As can be seen from TABLE 5, SCBBO obviously
has the best overall performance among all the BBO
variants. PRBBO gets the same result as SCBBO on f12
and worse on all remaining functions. Then, the error
mean of BBOSB is better that of SCBBO on only one
benchmark function (f 21), and the results are not as good
as SCBBO on the remaining 23 functions. While, TDBBO,
WRBBO, DCGBBO and FABBO have larger mean and
standard deviation than SCBBO on all benchmark functions.

In contrast, HGBBO is more competitive. It has better mean
and standard deviation than SCBBO on three benchmark
functions (f 20, f 21 and f 24), and the same result as
SCBBO on f 12. It can be seen that although these BBO
variants have excellent performance in low-dimensional
environment, they cannot effectively solve high-dimensional
global optimization problems. They are not suitable for
high-dimensional environment. Conversely, even when
D = 200, SCBBO still converges precisely to the theoretical
optimal values on 19 benchmark functions (f 1−f 6, f 8−f 14,
f 16 − f 19, f 22 and f 23). This shows that SCBBO has good
scalability and is suitable for high-dimensional optimization
environment. Latin hypercube sampling method makes the
initial population of SCBBO still have good ergodicity in
high dimensional space. Hybrid migration operator enables
SCBBO to search effectively and speeds up convergence.
Then, dynamic hybrid mutation operator makes SCBBO not
easy to fall into the local optima. Dual learning strategy helps
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FIGURE 10. Convergence curves and boxplots of BBO, SCA and SCBBO on different benchmark functions with D = 30, 50 and 100.

the poor individuals of the population move quickly to the
optimal solution.

Similarly, to clearly compare the convergence process
between SCBBO and the seven BBO variants, we plot the
convergence curves and boxplots of them on different bench-
mark functions. As shown in FIGURE 11, SCBBO has the
fastest convergence speed on all functions, and it is not easy
to fall into the local optima. On f 1, f 2, f 4, f 6, f 11 and f 22,
SCBBO’s convergence speed is faster than other algorithms
at the beginning of iteration. When the iteration enters the
middle, SCBBO rapidly converges to the optimal value, and
the number of iterations is at least 1000 times less than other
algorithms. Especially for functions f 13, f 14, f 15, f 18 and

f 19, the convergence curves of SCBBO are almost invisible.
From boxplots, SCBBO has excellent robustness and stable
search performance in the face of different high-dimensional
benchmark functions.

In summary, the overall performance of SCBBO is better
than that of PRBBO, BBOSB, TDBBO, WRBBO, HGBBO,
DCGBBO and FABBO. SCBBO has higher convergence
accuracy, faster convergence speed and better stability on
high-dimensional global optimization problems.

C. COMPARISON BETWEEN SCBBO AND OTHER EAs
To further verify the superiority of SCBBO for solving
high-dimensional global optimization problems, we compare
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TABLE 4. Details of seven BBO variants.

it with seven state-of-the-art EAs proposed in the
past few years: GWO [27], WOA [65], SSA [66],
AEFA [67], AOA [68], ChOA [69], MPA [70]. Among
them, GWO, WOA, SSA and AEFA are highly cited
advanced algorithms in ‘‘Web of Science’’, which are called
state-of-the-art algorithms. AOA, ChOA and MPA are the
novel algorithms proposed in the past two years, which
are suggested to solve high-dimensional global optimization
problems. Therefore, SCBBO can further verify its superior-
ity by comparing with these outstanding algorithms.

Then, eight algorithms search for optimization on
24 benchmark functions on 500 dimensions, and record the
optimal value searched when MFEs is reached. Similarly,
in order to avoid contingency, each algorithm independently
runs 50 times, and the mean and standard deviation of
50 times errors are used as evaluation indexes. TABLE 6
shows the rank-sum test results of eight algorithms, in which
the best results are shown in bold.

From TABLE 6, SCBBO still has the best overall per-
formance among the eight evolutionary algorithms, with the
minimummean value obtained on 21 functions and zero error
on 20 functions. WOA converges to the theoretical optimal
value on eight benchmark functions (f 8, f 9, f 12 − f 14, f 17
and f 19), which is consistent with the results of SCBBO,
while the results on the remaining functions are inferior to
SCBBO. ChOA converges to the theoretical optimal value
only on f 12, but the mean and standard deviation of the
remaining 23 functions are greater than SCBBO. Then, GWO
gets better results than SCBBO on f 20, and the same results
on the other five functions (f 12 − f 14, f 23 and f 24), but
worse results on the remaining 18 functions. However, the
mean and standard deviation of all functions obtained by
AEFA and AOA are inferior to SCBBO. In contrast, SSA
and MPA are more competitive. The results obtained by
SSA on three functions (f 20, f 21 and f 24) are the best
among the eight algorithms. The results of MPA are better
than SCBBO on three functions (f 20, f 21 and f 24) and

identical to SCBBO on eight functions (f 9, f 10, f 12 −
f 14, f 17, f 19 and f 23). So, although these advanced algo-
rithms show excellent performance on low-dimensional
problems, their performance significantly decreases when
solving high-dimensional optimization problems. On the
contrary, even when D = 500, SCBBO converges precisely
to the theoretical optimal value on 19 functions. A careful
comparison between TABLE 5 and TABLE 6 shows that the
convergence results of SCBBO on 200 dimensions are almost
the same as on 500 dimensions. Therefore, the improvement
strategies in this paper makes BBO suitable for high-
dimensional optimization environment, and the algorithm
performance has good ductility.

For a better evalution of SCBBO and the compared
algorithms, FIGURE 12 shows convergence curves of the
eight algorithms on different functions. It can be observed that
SCBBO algorithm converges much faster than other EAs on
different benchmark functions, saving at least 800 iterations
and not falling into the local optima. Especially for functions
f 15, f 18 and f 23, SCBBO converges rapidly and the
convergence curve is almost invisible. Then, the convergence
curve of WOA on f 7 is unstable, while SCBBO maintains
a smooth convergence cruve. This is because the greedy
selection ensures that the population does not degenerate, but
always converges towards the optimal solution. Therefore,
even compared with the advanced evolutionary algorithms,
the algorithm proposed in this paper also shows the optimal
search performance and stability.

In a word, on high-dimensional global optimization
problems, the performance of SCBBO is significantly better
than that of GWO, WOA, SSA, AEFA, AOA, ChOA and
MPA in both solution quality and convergence speed.

D. PERFORMANCE COMPARISON OF SCBBO ON
DIFFERENT HIGH DIMENSIONS
With the rapid development of the present society, the practi-
cal problems in life have higher and higher requirements
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FIGURE 11. Convergence curves and boxplots of scbbo and seven bbo variants on different benchmark functions with d = 200.

for algorithms. An algorithm should converge quickly and be
able to solve high dimensional problems. To further analyze
and compare the performance of the proposed SCBBO on
high-dimensional global optimization problems, SCBBO is
optimized in the high-dimensional environment ofD= 1000,
D= 2000,D= 5000 andD= 10000, respectively. Similarly,
to avoid contingency, the algorithm runs 50 times on each
benchmark function, and the mean and standard deviation
of the 50 errors are recorded. As shown in TABLE 7,
to facilitate comparison, the results obtained by SCBBO on
500 dimensions are also included.

From TABLE 7, SCBBO can still converge precisely on
10000 dimensions, and the error obtained on 19 benchmark
functions are 0. Except for the multi-modal function f24,
the solution accuracy of SCBBO is basically unchanged on
different high dimensions. Furthermore, FIGURE 13 shows
the convergence curves of SCBBO on some benchmark
functions with different dimensions. It can be seen that
with the increase of dimensions, the convergence curves of
SCBBO are basically the same. Therefore, the algorithm
proposed in this paper has powerful searching ability, and
its performance is basically not affected by dimensions,
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FIGURE 12. Convergence curves of SCBBO and other seven EAs on different benchmark functions with D = 500.

which can effectively solve the high-dimensional global
optimization problems.

VII. APPLICATION OF SCBBO ON ENGINEERING
DESIGN PROBLEMS
This dection further verifies the effectiveness and advance-
ment of SCBBO by solving three constrained real
optimization problems in engineering design (pressure vessel
design, tension/compression spring design and welded beam
design). These engineering design problems have been
extensively studied and solved in many literatures, so we
selected themethods and research results in the past few years
for comparison to better clarify the performance of SCBBO.
In SCBBO, the population size NP is 50, and the maximum
number of iterationsMaxIt only needs 100.

A. PRESSURE VESSEL DESIGN
The goal of the pressure vessel design problem is to minimize
the cost of fabrication (pairing, molding and welding). The
design of the pressure vessel is shown in FIGURE 14. Both
ends of the pressure vessel are capped with a cap, and
the cap at one end of the head is hemispherical. L is the
section length of the cylinder part without considering the
head, R is the inner wall radius of the cylinder part, Ts
and Th are the wall thickness of the cylinder part and the

head respectively. Therefore, L, R, Ts and Th are the four
optimization variables for the pressure vessel design problem.
The objective function and four optimization constraints of
the problem are expressed as follows:

X = [x1, x2, x3, x4] = [Ts,Th,R,L]
Minimize f (X ) = 0.6224 x1x3x4+
1.7781 x2x23 + 3.1661 x21x4 + 19.84 x21x3
S.t. g1(X ) = −x1 + 0.0193 x3 ≤ 0
g2(X ) = −x2 + 0.00954 x3 ≤ 0
g3(X ) = −πx23x4 − 4πx33/3+ 1296000 ≤ 0
g4(X ) = x4 − 240 ≤ 0
Where 0 ≤ xi ≤ 100, i = 1, 2;
10 ≤ xi ≤ 200, i = 3, 4

(23)

We apply SCBBO to solve pressure vessel design problem,
and compare its results with 16 excellent algorithms proposed
in the past decade, as shown in TABLE 8. As can be seen from
TABLE 8, the results obtained by SCBBO in pressure vessel
design are superior to other comparison algorithms, and the
cost is minimal.

B. TENSION/COMPRESSION SPRING DESIGN
Spring is an important part in industrial production, and
there are many factors that affect the structural performance
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FIGURE 13. Convergence curves of SCBBO with D = 500, 1000, 2000, 5000 and 10000 on some benchmark functions.

FIGURE 14. Schematic view of pressure vessel design problem.

of it. As shown in FIGURE 15, the design problem of the
tension/compression spring is to minimize the weight of the
spring while meeting the constraints of minimum deflection,
vibration frequency, and shear stress. The problem consists

of three continuous decision variables: the wire diameter (d),
the mean coil diameter (D) and the number of active coils
(P). Through the relationship between design parameters and
performance of spring, the followingmathematical model can
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TABLE 8. The experimental results of SCBBO and other algorithms for pressure vessel design problem.

FIGURE 15. Schematic view of tension/compression spring design problem.

TABLE 9. The experimental results of SCBBO and other algorithms for tension/compression spring design problem.

FIGURE 16. Schematic view of welded beam design problem.
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TABLE 10. The experimental results of SCBBO and other algorithms for welded beam design problem.

be obtained:

X = [x1, x2, x3] = [d,D,P]
Minimize f (X ) = (x3 + 2) x2x21

St. g1(X ) = 1−
x32x3

71785x41
≤ 0

g2(X ) =
4x22 − x1x2

12566
(
x2x31 − x

4
1

) + 1

5108x21 − 1
≤ 0

g3(X ) = 1−
140.45 x1
x22x3

≤ 0

g4(X ) =
x1 + x2
1.5

− 1 ≤ 0

Where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
(24)

The objective function in Eq. (24) is a typical multi-
variable constrained optimization problem. In order to obtain
better spring design parameters, many scholars applied the
improved EAs to this engineering optimization problem.
To illustrate the design effect of SCBBO, 16 outstanding
algorithms of nearly ten years are also applied to the
objective function and the optimization results are compared.
The spring design parameters and objective function results
obtained by each algorithm are shown in TABLE 9. As can
be seen, the results obtained by SCBBO in the design of
tension/compression spring are better than other EAs, and the
spring weight is the minimum.

C. WELDING BEAM DESIGN
The goal of the welding beam design problem is to obtain the
minimummanufacturing cost. As shown in FIGURE 16, four
design variables of welded beam need to be optimized: the
thickness of weld (h), length of attached part of bar (l), height
of bar (t), and the thickness of bar (b). While optimizing the
design variables, ensure that the seven constraints are not
violated. These constraints are shear stress (τ ), bending stress

in beam (σ ), deflection of beam end (δ) and buckling load of
bar (Pb). The mathematical model of welding beam design is
as follows:

X= [x1, x2, x3, x4]= [h, l, t, b]
Minimize f (X )=1.10471 x21x2
+0.04811 x3x4 · (14.0+ x2)
S.t. g1(X )=τ (X )− τmax ≤ 0
g2(X )=σ (X )− σmax ≤ 0
g3(X )=δ(X )− δmax ≤ 0
g4(X )=x1 − x4 ≤ 0
g5(X )=P− Pc(X ) ≤ 0
g6(X )=0.125− x1 ≤ 0
g7(X )=1.10471 x21
+0.04811 x3x4 · (14.0+ x2)− 0.5 ≤ 0
Where 0.1 ≤ x1, x2 ≤ 2, 0.1 ≤ x3, x4 ≤ 10.

τ (Ex)=

√
(τ ′)2 + (τ ′′)2 + (lτ ′τ ′′) /

√
0.25

(
l2 + (h+ t)2

)
τ ′=

6, 000
√
2hl

, σ (Ex)=
504, 000
t2b

, δ(Ex)=
65, 856, 000(
30× 106

)
bt3

,

τ ′′=
6, 000(14+ 0.5 l)

√
0.25

(
l2 + (h+ t)2

)
2
[
0.707 hl

(
l2/12+ 0.25(h+ t)2

)]
Pc(Ex)=64, 746.022(1− 0.0282346 t)tb3

(25)

SCBBO is applied to solve the welding beam design
problem and compared with 16 optimization algorithms.
as shown in TABLE 10, SCBBO has the best optimization
result, and the results of GWO, HGSO, I-GWO, RSO, AVOA
and HBA are similar to SCBBO.

In conclusion, SCBBO achieves better optimization results
than other EAs on three complex engineering design
optimization problems. Therefore, SCBBO can be widely
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used in constrained optimization problems and is an advanced
algorithm worthy of being popularized and adopted.

VIII. CONCLUSION
In order to improve the performance of BBO for high-
dimensional global optimization functions, this paper pro-
poses a new BBO variant based on sine cosine algorithm
and dual learning strategy, named SCBBO. The uniqueness
and innovation of this paper can be summarized as follows:
(a). This paper uses Latin hypercube sampling method to
generate initial population, which improves ergodicity of
population distribution. At the same time, the shortcomings
of the position updating formula of SCA are analyzed.
Then the nonlinear transformation parameters and inertia
weight adjusting factor are designed, which are combined
with the original BBO’s migration operator to obtain a
hybrid migration operator that adjusts the search state
with the iterations. (b). By combining Laplacian random
number and Gaussian random number, a dynamic hybrid
mutation operator is obtained, and the dual learning strategy
is integrated into BBO, which effectively balances the
exploration and exploitation of the algorithm and helps it
improve the convergence speed and accuracy. (c). A sequence
convergence model is established to prove that SCBBO
has global convergence, and the computational complexity
of SCBBO is analyzed by comparing with the original
BBO. (d). 24 benchmark functions are used for comparative
simulation experiments, and the results prove that the ability
of SCBBO to solve global optimization problems can
reach 10000 dimensions. In engineering design optimization
problems, SCBBO can obtain better design parameters,
which shows that SCBBO has higher practical application
value.

In the future work, SCBBO can be combined with more
complex optimization problems in other fields, such as image
processing, neural networks, support vector machines, etc.

AUTHORSHIP CONTRIBUTION STATEMENT
Ziyu Zhang: investigation, methodology, experiment, and
writing: original draft. Yuelin Gao: supervision and funding
acquisition. Wenlu Zuo: project administration and writing:
review and editing.

STATEMENTS AND DECLARATIONS
The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this article. All
authors guarantee that the article is legitimate and belongs to
their own scientific research results. No copying, plagiarism,
infringement, data forgery, and other bad behavior, not
involve state secrets. The source of others’ work quoted
in the manuscript has been indicated. The authors will be
responsible for any economic losses and negative social
impacts caused by bad behavior themselves.

REFERENCES
[1] P. K. R. Maddikunta, T. R. Gadekallu, R. Kaluri, G. Srivastava,

R. M. Parizi, and M. S. Khan, ‘‘Green communication in IoT networks
using a hybrid optimization algorithm,’’ Comput. Commun., vol. 159,
pp. 97–107, Jun. 2020, doi: 10.1016/j.comcom.2020.05.020.

[2] B. Chen, Y. Lin, W. Zeng, H. Xu, and D. Zhang, ‘‘The mean-variance
cardinality constrained portfolio optimization problem using a local
search-based multi-objective evolutionary algorithm,’’ Int. J. Speech
Technol., vol. 47, no. 2, pp. 505–525, Sep. 2017, doi: 10.1007/s10489-017-
0898-z.

[3] X. Zhang, Y. Chen, Y. Wang, R. Ding, Y. Zheng, Y. Wang, X. Zha,
and X. Cheng, ‘‘Reactive voltage partitioning method for the power
grid with comprehensive consideration of wind power fluctuation and
uncertainty,’’ IEEE Access, vol. 8, pp. 124514–124525, 2020, doi:
10.1109/ACCESS.2020.3004484.

[4] C. Liu, Y. Yu, X. Li, and P.Wang, ‘‘Application of entity relation extraction
method under CRF and syntax analysis tree in the construction of military
equipment knowledge graph,’’ IEEE Access, vol. 8, pp. 200581–200588,
2020, doi: 10.1109/ACCESS.2020.3034894.

[5] K. Lu, G. Zeng, and W. Zhou, ‘‘Adaptive constrained population extremal
optimisation-based robust proportional-integral-derivation frequency con-
trol method for an islanded microgrid,’’ IET Cyber-Syst. Robot., vol. 3,
no. 3, pp. 210–227, Sep. 2021, doi: 10.1049/csy2.12028.

[6] G. Q. Zeng, X.-Q. Xie, M.-R. Chen, and J. Weng, ‘‘Adaptive popula-
tion extremal optimization-based PID neural network for multivariable
nonlinear control systems,’’ Swarm Evol. Comput., vol. 44, pp. 320–334,
Feb. 2019, doi: 10.1016/j.swevo.2018.04.008.

[7] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans.
Evol. Comput., vol. 12, no. 6, pp. 702–713, Dec. 2008, doi:
10.1109/TEVC.2008.919004.

[8] H. Ma, ‘‘An analysis of the equilibrium of migration models for
biogeography-based optimization,’’ Inf. Sci., vol. 180, no. 18,
pp. 3444–3464, Sep. 2010, doi: 10.1016/j.ins.2010.05.035.

[9] L.Wei, N.Wang, andH. Lu, ‘‘A novel BBO algorithm based on local search
and nonuniform variation for iris classification,’’ Complexity, vol. 2021,
pp. 1–17, Apr. 2021, doi: 10.1155/2021/6694695.

[10] Q. X. Feng, S. Liu, J. Zhang, G. Yang, and L. Yong, ‘‘Improved
biogeography-based optimization with random ring topology and Powell’s
method,’’ Appl. Math. Model., vol. 41, pp. 630–649, Jan. 2016, doi:
10.1016/j.apm.2016.09.020.

[11] X. Zhang, Q. Kang, Q. Tu, J. Cheng, and X. Wang, ‘‘Efficient and merged
biogeography-based optimization algorithm for global optimization prob-
lems,’’ Soft Comput., vol. 23, no. 12, pp. 4483–4502, Jun. 2019, doi:
10.1007/s00500-018-3113-1.

[12] Y. An, X. Chen, Y. Li, Y. Han, J. Zhang, and H. Shi, ‘‘An improved
non-dominated sorting biogeography-based optimization algorithm for
the (hybrid) multi-objective flexible job-shop scheduling problem,’’
Appl. Soft Comput., vol. 99, Feb. 2021, Art. no. 106869, doi:
10.1016/j.asoc.2020.106869.

[13] G. Xiong, Y. Li, J. Chen, D. Shi, and X. Duan, ‘‘Polyphyletic
migration operator and orthogonal learning aided biogeography-based
optimization for dynamic economic dispatch with valve-point effects,’’
Energy Convers. Manage., vol. 80, pp. 457–468, Apr. 2014, doi:
10.1016/j.enconman.2013.12.052.

[14] J. C. Bansal and P. Farswan, ‘‘A novel disruption in biogeography-
based optimization with application to optimal power flow problem,’’
Int. J. Speech Technol., vol. 46, no. 3, pp. 590–615, Apr. 2017, doi:
10.1007/s10489-016-0848-1.

[15] X. Li and M. Yin, ‘‘Multi-operator based biogeography based opti-
mization with mutation for global numerical optimization,’’ Comput.
Math. With Appl., vol. 64, no. 9, pp. 2833–2844, Nov. 2012, doi:
10.1016/j.camwa.2012.04.015.

[16] M. Ergezer, ‘‘Oppositional biogeography-based optimization,’’ Cleve-
land State Univ., Cleveland, OH, USA, Tech. Rep., 2014, doi:
10.1109/ICSMC.2009.5346043.

[17] A. Reihanian, M.-R. Feizi-Derakhshi, and H. S. Aghdasi, ‘‘NBBO: A new
variant of biogeography-based optimization with a novel framework and a
two-phase migration operator,’’ Inf. Sci., vol. 504, pp. 178–201, Dec. 2019,
doi: 10.1016/j.ins.2019.07.054.

[18] G. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao, ‘‘Hybridiz-
ing harmony search with biogeography based optimization for global
numerical optimization,’’ J. Comput. Theor. Nanosci., vol. 10, no. 10,
pp. 2312–2322, 2013, doi: 10.1166/jctn.2013.3207.

56014 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.comcom.2020.05.020
http://dx.doi.org/10.1007/s10489-017-0898-z
http://dx.doi.org/10.1007/s10489-017-0898-z
http://dx.doi.org/10.1109/ACCESS.2020.3004484
http://dx.doi.org/10.1109/ACCESS.2020.3034894
http://dx.doi.org/10.1049/csy2.12028
http://dx.doi.org/10.1016/j.swevo.2018.04.008
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1016/j.ins.2010.05.035
http://dx.doi.org/10.1155/2021/6694695
http://dx.doi.org/10.1016/j.apm.2016.09.020
http://dx.doi.org/10.1007/s00500-018-3113-1
http://dx.doi.org/10.1016/j.asoc.2020.106869
http://dx.doi.org/10.1016/j.enconman.2013.12.052
http://dx.doi.org/10.1007/s10489-016-0848-1
http://dx.doi.org/10.1016/j.camwa.2012.04.015
http://dx.doi.org/10.1109/ICSMC.2009.5346043
http://dx.doi.org/10.1016/j.ins.2019.07.054
http://dx.doi.org/10.1166/jctn.2013.3207


Z. Zhang et al.: Dual BBO Algorithm

[19] K. S. Lee and Z.W.Geem, ‘‘A newmeta-heuristic algorithm for continuous
engineering optimization: Harmony search theory and practice,’’ Comput.
Methods Appl. Mech. Eng., vol. 194, nos. 36–38, pp. 3902–3933,
Sep. 2005, doi: 10.1016/j.cma.2004.09.007.

[20] Y.-J. Zheng, H.-F. Ling, H.-H. Shi, H.-S. Chen, and S.-Y. Chen,
‘‘Emergency railway wagon scheduling by hybrid biogeography-based
optimization,’’ Comput. Oper. Res., vol. 43, no. 1, pp. 1–8, 2014, doi:
10.1016/j.cor.2013.09.002.

[21] G.-G. Wang, A. H. Gandomi, and A. H. Alavi, ‘‘An effective krill herd
algorithm with migration operator in biogeography-based optimization,’’
Appl. Math. Model., vol. 38, nos. 9–10, pp. 2454–2462, May 2014, doi:
10.1016/j.apm.2013.10.052.

[22] W. L. Lim, A. Wibowo, M. I. Desa, and H. Haron, ‘‘A biogeography-
based optimization algorithm hybridized with tabu search for the quadratic
assignment problem,’’ Comput. Intell. Neurosci., vol. 2016, pp. 1–12,
Jan. 2016, doi: 10.1155/2016/5803893.

[23] A. Misevicius, ‘‘An implementation of the iterated Tabu search algorithm
for the quadratic assignment problem,’’ OR Spectr., vol. 34, no. 3,
pp. 665–690, Jul. 2012, doi: 10.1007/s00291-011-0274-z.

[24] C. K. Yogesh, M. Hariharan, R. Ngadiran, A. H. Adom, S. Yaacob,
C. Berkai, and K. Polat, ‘‘A new hybrid PSO assisted biogeography-
based optimization for emotion and stress recognition from speech
signal,’’ Expert Syst. Appl., vol. 69, pp. 149–158, Mar. 2017, doi:
10.1016/j.eswa.2016.10.035.

[25] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
Int. Conf. Neural Netw. (ICNN), vol. 4, 1995, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[26] X. Zhang, Q. Kang, J. Cheng, and X. Wang, ‘‘A novel hybrid
algorithm based on biogeography-based optimization and grey wolf
optimizer,’’ Appl. Soft Comput., vol. 67, pp. 197–214, Jun. 2018, doi:
10.1016/j.asoc.2018.02.049.

[27] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf
optimizer,’’ Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi:
10.1016/j.advengsoft.2013.12.007.

[28] P. Farswan and J. C. Bansal, ‘‘Fireworks-inspired biogeography-based
optimization,’’ Soft Comput., vol. 23, no. 16, pp. 7091–7115, Aug. 2019,
doi: 10.1007/s00500-018-3351-2.

[29] Y. Tan and Y. Zhu, ‘‘Fireworks algorithm for optimization,’’ in Proc. Int.
Conf. Swarm Intell. Berlin, Germany: Springer, 2010, pp. 355–364, doi:
10.1007/978-3-642-13495-1_44.

[30] H. F. Ghatte, ‘‘A hybrid of firefly and biogeography-based optimization
algorithms for optimal design of steel frames,’’ Arabian J. Sci. Eng.,
vol. 46, no. 5, pp. 4703–4717, May 2021, doi: 10.1007/s13369-020-
05118-w.

[31] X. S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in Proc.
Int. Symp. Stochastic Algorithms. Berlin, Germany: Springer, 2009,
pp. 169–178, doi: 10.1007/978-3-642-04944-6_14.

[32] W. Gong, Z. Cai, C. X. Ling, and H. Li, ‘‘A real-coded biogeography-
based optimization with mutation,’’ Appl. Math. Comput., vol. 216, no. 9,
pp. 2749–2758, Jul. 2010, doi: 10.1016/j.amc.2010.03.123.

[33] L.-L. Li, Y.-F. Yang, C.-H. Wang, and K.-P. Lin, ‘‘Biogeography-based
optimization based on population competition strategy for solving the
substation location problem,’’ Expert Syst. Appl., vol. 97, pp. 290–302,
May 2018, doi: 10.1016/j.eswa.2017.12.039.

[34] R. Pal and M. Saraswat, ‘‘Histopathological image classification using
enhanced bag-of-feature with spiral biogeography-based optimization,’’
Int. J. Speech Technol., vol. 49, no. 9, pp. 3406–3424, Sep. 2019, doi:
10.1007/s10489-019-01460-1.

[35] O. Rostami and M. Kaveh, ‘‘Optimal feature selection for SAR image
classification using biogeography-based optimization (BBO), artificial bee
colony (ABC) and support vector machine (SVM): A combined approach
of optimization and machine learning,’’ Comput. Geosci., vol. 25, no. 3,
pp. 911–930, Jun. 2021, doi: 10.1007/s10596-020-10030-1.

[36] M. Harrabi, O. B. Driss, and K. Ghedira, ‘‘A hybrid evolutionary approach
to job-shop scheduling with generic time lags,’’ J. Scheduling, vol. 24,
no. 3, pp. 329–346, Jun. 2021, doi: 10.1007/s10951-021-00683-w.

[37] S. A. Jalaee, A. Shakibaei, H. R. Horry, H. Akbarifard, A. GhasemiNejad,
F. N. Robati, and N. A. Zarin, ‘‘A new hybrid metaheuristic method based
on biogeography-based optimization and particle swarm optimization
algorithm to estimate money demand in Iran,’’MethodsX, vol. 8, Jan. 2021,
Art. no. 101226, doi: 10.1016/j.mex.2021.101226.

[38] J. Taghizadeh, M. Ghobaei-Arani, and A. Shahidinejad, ‘‘An efficient
data replica placement mechanism using biogeography-based optimization
technique in the fog computing environment,’’ J. Ambient Intell. Human-
ized Comput., pp. 1–21, Sep. 2021, doi: 10.1007/s12652-021-03495-0.

[39] W. Guo, M. Chen, L. Wang, Y. Mao, and Q. Wu, ‘‘A survey of
biogeography-based optimization,’’ Neural Comput. Appl., vol. 28, no. 8,
pp. 1909–1926, Sep. 2017, doi: 10.1007/s00521-016-2179-x.

[40] H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, ‘‘Biogeography-
based optimization: A 10-year review,’’ IEEE Trans. Emerg. Top-
ics Comput. Intell., vol. 1, no. 5, pp. 391–407, Oct. 2017, doi:
10.1109/TETCI.2017.2739124.

[41] J. S. Wang and J. D. Song, ‘‘Chaotic biogeography-based optimization
algorithm,’’ IAENG Int. J. Comput. Sci., vol. 44, no. 2, pp. 122–134, 2017.

[42] A. Mistri, P. K. Roy, and B. Mandal, ‘‘Chaotic biogeography-
based optimization (CBBO) algorithm applied to economic load
dispatch problem,’’ in Proc. Nat. Conf. Emerg. Trends Sustain.
Technol. Eng. Appl. (NCETSTEA), Feb. 2020, pp. 1–5, doi:
10.1109/NCETSTEA48365.2020.9119956.

[43] K. Burrage, P. Burrage, D. Donovan, and B. Thompson, ‘‘Populations
of models, experimental designs and coverage of parameter space by
Latin hypercube and orthogonal sampling,’’ Proc. Comput. Sci., vol. 51,
pp. 1762–1771, Jan. 2015, doi: 10.1016/j.procs.2015.05.383.

[44] Z. Zhao, J. Yang, Z. Hu, and H. Che, ‘‘A differential evolution
algorithm with self-adaptive strategy and control parameters based
on symmetric Latin hypercube design for unconstrained optimization
problems,’’ Eur. J. Oper. Res., vol. 250, no. 1, pp. 30–45, Apr. 2016, doi:
10.1016/j.ejor.2015.10.043.

[45] D. Donovan, K. Burrage, P. Burrage, T. A. McCourt, B. Thompson, and
E. Ş. Yazici, ‘‘Estimates of the coverage of parameter space by Latin
hypercube and orthogonal array-based sampling,’’ Appl. Math. Model.,
vol. 57, pp. 553–564, May 2018, doi: 10.1016/j.apm.2017.11.036.

[46] F. Zhao, S. Qin, Y. Zhang, W. Ma, C. Zhang, and H. Song, ‘‘A
two-stage differential biogeography-based optimization algorithm and
its performance analysis,’’ Expert Syst. Appl., vol. 115, pp. 329–345,
Jan. 2019, doi: 10.1016/j.eswa.2018.08.012.

[47] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016, doi:
10.1016/j.knosys.2015.12.022.

[48] W, Long, T. Wu, X. Liang, and S. Xu, ‘‘Solving high-dimensional
global optimization problems using an improved sine cosine algo-
rithm,’’ Expert Syst. Appl., vol. 123, pp. 108–126, Jun. 2019, doi:
10.1016/j.eswa.2018.11.032.

[49] S. Gupta and K. Deep, ‘‘Improved sine cosine algorithm with crossover
scheme for global optimization,’’ Knowl.-Based Syst., vol. 165,
pp. 374–406, Feb. 2019, doi: 10.1016/j.knosys.2018.12.008.

[50] C. Li, Z. Luo, Z. Song, F. Yang, J. Fan, and P. X. Liu, ‘‘An enhanced
brain storm sine cosine algorithm for global optimization
problems,’’ IEEE Access, vol. 7, pp. 28211–28229, 2019, doi:
10.1109/ACCESS.2019.2900486.

[51] H. Nenavath, D. R. K. Jatoth, and D. S. Das, ‘‘A synergy of the sine-cosine
algorithm and particle swarm optimizer for improved global optimization
and object tracking,’’ Swarm Evol. Comput., vol. 43, pp. 1–30, Dec. 2017,
doi: 10.1016/j.swevo.2018.02.011.

[52] X. Zhao, Y. Ji, and J. Hao, ‘‘A novel biogeography-based optimization
algorithm with momentum migration and taxonomic mutation,’’ in Proc.
Int. Conf. Swarm Intell. Cham, Switzerland: Springer, 2020, pp. 83–93,
doi: 10.1007/978-3-030-53956-6_8.

[53] X. Zhang, D. Wang, Z. Fu, S. Liu, W. Mao, G. Liu, Y. Jiang, and
S. Li, ‘‘Novel biogeography-based optimization algorithm with hybrid
migration and global-best Gaussian mutation,’’ Appl. Math. Model.,
vol. 86, pp. 74–91, Oct. 2020, doi: 10.1016/j.apm.2020.05.016.

[54] X. Zhang, D. Wang, and H. Chen, ‘‘Improved biogeography-based
optimization algorithm and its application to clustering optimization and
medical image segmentation,’’ IEEE Access, vol. 7, pp. 28810–28825,
2019, doi: 10.1109/ACCESS.2019.2901849.

[55] J. Cui, S. Wang, S. Wang, X. Zhang, S. Ma, and W. Gao, ‘‘Hybrid Laplace
distribution-based low complexity rate-distortion optimized quantization,’’
IEEE Trans. Image Process., vol. 26, no. 8, pp. 3802–3816, Aug. 2017, doi:
10.1109/TIP.2017.2703112.

[56] P. Collard and J. P. Aurand, ‘‘DGA: An efficient genetic algorithm,’’ in
Proc. ECAI, 1994.

[57] S. Yang andX. Yao, ‘‘Experimental study on population-based incremental
learning algorithms for dynamic optimization problems,’’ Soft Comput.,
vol. 9, no. 11, pp. 815–834, Nov. 2005, doi: 10.1007/s00500-004-0422-3.

VOLUME 10, 2022 56015

http://dx.doi.org/10.1016/j.cma.2004.09.007
http://dx.doi.org/10.1016/j.cor.2013.09.002
http://dx.doi.org/10.1016/j.apm.2013.10.052
http://dx.doi.org/10.1155/2016/5803893
http://dx.doi.org/10.1007/s00291-011-0274-z
http://dx.doi.org/10.1016/j.eswa.2016.10.035
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.asoc.2018.02.049
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00500-018-3351-2
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/s13369-020-05118-w
http://dx.doi.org/10.1007/s13369-020-05118-w
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1016/j.amc.2010.03.123
http://dx.doi.org/10.1016/j.eswa.2017.12.039
http://dx.doi.org/10.1007/s10489-019-01460-1
http://dx.doi.org/10.1007/s10596-020-10030-1
http://dx.doi.org/10.1007/s10951-021-00683-w
http://dx.doi.org/10.1016/j.mex.2021.101226
http://dx.doi.org/10.1007/s12652-021-03495-0
http://dx.doi.org/10.1007/s00521-016-2179-x
http://dx.doi.org/10.1109/TETCI.2017.2739124
http://dx.doi.org/10.1109/NCETSTEA48365.2020.9119956
http://dx.doi.org/10.1016/j.procs.2015.05.383
http://dx.doi.org/10.1016/j.ejor.2015.10.043
http://dx.doi.org/10.1016/j.apm.2017.11.036
http://dx.doi.org/10.1016/j.eswa.2018.08.012
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.eswa.2018.11.032
http://dx.doi.org/10.1016/j.knosys.2018.12.008
http://dx.doi.org/10.1109/ACCESS.2019.2900486
http://dx.doi.org/10.1016/j.swevo.2018.02.011
http://dx.doi.org/10.1007/978-3-030-53956-6_8
http://dx.doi.org/10.1016/j.apm.2020.05.016
http://dx.doi.org/10.1109/ACCESS.2019.2901849
http://dx.doi.org/10.1109/TIP.2017.2703112
http://dx.doi.org/10.1007/s00500-004-0422-3


Z. Zhang et al.: Dual BBO Algorithm

[58] J. Derrac, S. García, D. Molina, and F. Herrera, ‘‘A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,’’ Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011, doi: 10.1016/j.swevo.2011.02.002.

[59] G. Xiong and D. Shi, ‘‘Hybrid biogeography-based optimization with
brain storm optimization for non-convex dynamic economic dispatch
with valve-point effects,’’ Energy, vol. 157, pp. 424–435, May 2019, doi:
10.1016/j.energy.2018.05.180.

[60] X. Sang, X. Liu, Z. Zhang, and L. Wang, ‘‘Improved biogeography-based
optimization algorithm by hierarchical tissue-like p system with triggering
ablation rules,’’Math. Problems Eng., vol. 2021, pp. 1–24, Mar. 2021, doi:
10.1155/2021/6655614.

[61] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, ‘‘Metaheuristics in large-
scale global continues optimization: A survey,’’ Inf. Sci., vol. 295,
pp. 407–428, Feb. 2015, doi: 10.1016/j.ins.2014.10.042.

[62] Y. Ma and Y. Bai, ‘‘A multi-population differential evolution with
best-random mutation strategy for large-scale global optimization,’’ Int.
J. Speech Technol., vol. 50, no. 5, pp. 1510–1526, May 2020, doi:
10.1007/s10489-019-01613-2.

[63] W. Li, Z. Lei, J. Yuan, H. Luo, and Q. Xu, ‘‘Enhancing the competitive
swarm optimizer with covariance matrix adaptation for large scale
optimization,’’ Int. J. Speech Technol., vol. 51, no. 7, pp. 4984–5006,
Jul. 2021, doi: 10.1007/s10489-020-02078-4.

[64] N. Awad et al., ‘‘Problem definitions and evaluation criteria for the
CEC 2017 special session and competition on singe objective bound
constrained real-parameter numerical optimization,’’ Nanyang Technol.
Univ., Singapore, Tech. Rep., 2017.

[65] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’
Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, doi:
10.1016/j.advengsoft.2016.01.008.

[66] M. Jain, V. Singh, and A. Rani, ‘‘A novel nature-inspired algorithm for
optimization: Squirrel search algorithm,’’ Swarm Evol. Comput., vol. 44,
pp. 148–175, Feb. 2019, doi: 10.1016/j.swevo.2018.02.013.

[67] A. Sajwan and A. Yadav, ‘‘AEFA: Artificial electric field algorithm
for global optimization,’’ Swarm Evol. Comput., vol. 48, pp. 93–108,
Aug. 2019, doi: 10.1016/j.swevo.2019.03.013.

[68] F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and
W. Al-Atabany, ‘‘Archimedes optimization algorithm: A new metaheuris-
tic algorithm for solving optimization problems,’’ Appl. Intell., vol. 51,
pp. 1531–1551, Sep. 2020, doi: 10.1007/s10489-020-01893-z.

[69] M. Khishe and M. R. Mosavi, ‘‘Chimp optimization algorithm,’’
Expert Syst. Appl., vol. 149, Jul. 2020, Art. no. 113338, doi:
10.1016/j.eswa.2020.113338.

[70] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, ‘‘Marine
predators algorithm: A nature-inspired Metaheuristic,’’ Expert Syst. Appl.,
vol. 152, Aug. 2020, Art. no. 113377, doi: 10.1016/j.eswa.2020.113377.

[71] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany,
and S. Mirjalili, ‘‘Henry gas solubility optimization: A novel physics-
based algorithm,’’ Future Gener. Comput. Syst., vol. 101, pp. 646–667,
Dec. 2019, doi: 10.1016/j.future.2019.07.015.

[72] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, ‘‘An improved grey
wolf optimizer for solving engineering problems,’’ Expert Syst. Appl.,
vol. 166, Mar. 2021, Art. no. 113917, doi: 10.1016/j.eswa.2020.113917.

[73] G. Dhiman, M. Garg, A. Nagar, V. Kumar, and M. Dehghani, ‘‘A novel
algorithm for global optimization: Rat swarm optimizer,’’ J. Ambient
Intell. Humanized Comput., vol. 12, pp. 8457–8482, Oct. 2020, doi:
10.1007/s12652-020-02580-0.

[74] B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili, ‘‘African
vultures optimization algorithm: A new nature-inspired metaheuristic
algorithm for global optimization problems,’’ Comput. Ind. Eng., vol. 158,
Aug. 2021, Art. no. 107408, doi: 10.1016/j.cie.2021.107408.

[75] F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and
W. Al-Atabany, ‘‘Honey badger algorithm: New Metaheuristic algorithm
for solving optimization problems,’’ Math. Comput. Simul., vol. 192,
pp. 84–110, Feb. 2022, doi: 10.1016/j.matcom.2021.08.013.

ZIYU ZHANG received the B.Sc. degree from
the School of Mathematical Sciences, Sichuan
Normal University, China, in 2020. He is currently
pursuing the M.Sc. degree with North Minzu
University. His research interests include artificial
intelligence and global optimization algorithms.

YUELIN GAO received the B.Sc. degree from
Yan’an University, Yan’an, China, in 1984, and
the M.Sc. degree from the Dalian University of
Technology, Dalian, China, in 1991, and the Ph.D.
degree from the Xi’an Jiaotong University, Xi’an,
China, in 2002.

He is currently a Full Professor and a Doctor’s
Supervisor with the College of North Minzu Uni-
versity, Yinchuan, China. He has published more
than 150 Academic papers in important journals.

His current research interests include global optimization, evolutionary
computing, optimization theory and method, and financial statistics.

WENLU ZUO received the B.Sc. degree from the
School of Mathematics and Information Science,
Chongqing Normal University, China, in 2019.
She is currently pursuing the M.Sc. degree with
North Minzu University. Her research interest
includes intelligent optimization algorithms.

56016 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.energy.2018.05.180
http://dx.doi.org/10.1155/2021/6655614
http://dx.doi.org/10.1016/j.ins.2014.10.042
http://dx.doi.org/10.1007/s10489-019-01613-2
http://dx.doi.org/10.1007/s10489-020-02078-4
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.swevo.2018.02.013
http://dx.doi.org/10.1016/j.swevo.2019.03.013
http://dx.doi.org/10.1007/s10489-020-01893-z
http://dx.doi.org/10.1016/j.eswa.2020.113338
http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1016/j.future.2019.07.015
http://dx.doi.org/10.1016/j.eswa.2020.113917
http://dx.doi.org/10.1007/s12652-020-02580-0
http://dx.doi.org/10.1016/j.cie.2021.107408
http://dx.doi.org/10.1016/j.matcom.2021.08.013

