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ABSTRACT The principle of predictive control is applied to research on real-time dynamic route
optimization of traffic travel, and a real-time dynamic route optimization model based on predictive control
is proposed. Taking the driving time as the controlled variable, the driving speed as the manipulated variable,
some traffic conditions as disturbance factors, the desired driving time as the set value, the static shortest route
as the reference route of the control system, and the objective function with the shortest driving time, which is
defined as the control performance is established. According to the change in the road network state and the
optimal solution result of the objective function, the real-time dynamic route selection based on the shortest
driving time is realized by switching among different static shortest routes, and the rolling optimization and
combination of dynamic and static routes are implemented in the process. A unique method is also used to
obtain the optimal solution of the objective function in this study, which is scientific, reasonable, fast, and
convenient. The optimization model overcomes the shortcomings of determining the dynamic shortest route
by depending on traffic flow prediction and speed prediction. The simulation results and case study prove
that the predictive control model algorithm of real-time dynamic route optimization is correct and better.
The most important feature of the model algorithm is that it takes the static driving route and desired driving
time as the control goals, and it can achieve the global dynamic optimal solution of the shortest path and
the desired driving time can satisfy a driver’s demands flexibly. The proposed model algorithm has good
innovation and practical applications.

INDEX TERMS Traffic travel, route optimization, path selection, predictive control, intelligent traffic,
optimization method.

I. INTRODUCTION
For the study of traffic travel planning, most experts and
scholars focus on short-term traffic forecasting, mainly
forecasting traffic flow, traffic speed, etc. [1]. The prediction
models and algorithms involved can be divided into the
following three categories: short-term traffic forecasting
based on statistical theory [2]–[7], machine learning, and
deep learning [8]–[17]. Short-term traffic forecasting is
primarily used for the prediction of traffic congestion
and traffic light control. There are relatively few research
papers on the real-time dynamic shortest route optimization
problem [18]–[21]. The purpose of research on the shortest
route problem is to provide drivers with an effective route
between departure and destination, so the driving cost is the
least.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tamas Tettamanti .

According to road network attributes, the shortest route
selection problem can be divided into the following two
types: static shortest route selection and dynamic shortest
route selection [22]–[25]. The selection of the static shortest
route generally does not consider time characteristics, and
it takes the shortest route as the evaluation performance
to determine the shortest driving route. The shortest static
route is also the shortest driving distance. Research on the
dynamic shortest route is difficult and is a hot research
topic. According to the different research methods, dynamic
shortest route selection can be roughly divided into two types:
adaptive dynamic shortest route selection and deterministic
dynamic shortest route selection [19].

The adaptive dynamic shortest route selection model
undergoes multiple route searching processes, and the
shortest route determined under the traffic states of the
road network at the departure time is not the final driving
route. The route changes with the driving of the vehicle
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and the change in the traffic states of the road network.
Its disadvantages are as follows: (1) The shortest route to
the endpoint is calculated based on the current speed of
each road segment. Owing to the dynamic and real-time
change in road conditions, the cumulative driving route to the
endpoint is not necessarily the shortest, and the driving time
is not necessarily the shortest. (2) Multiple route searching
processes are required, route selection is not constrained, and
the search route is not necessarily optimal.

In deterministic dynamic shortest route selection, an opti-
mal driving route is determined by the traffic states of
the road network based on the shortest driving time at
the initial time, and the route does not change during
the driving process. One of these methods is based on
speed prediction. A definite driving route is calculated using
the predicted speed of the road network in the future at
the departure time, and the evaluation performance of the
dynamic shortest route is the driving time. The final shortest
driving route has the shortest driving time among all feasible
routes. Its disadvantages are as follows: (1) If the speed
prediction model is not well established, the prediction
accuracy is not better, which directly affects whether the
obtained dynamic shortest route is the actual shortest route.
Traditional statistical methods and deep learning algorithms
inevitably use historical data for modeling. If the data is
imperfect, the characteristics of the data are not obvious,
and there is little historical training data, which will have an
important impact on the accuracy of the prediction results.
For the real-time dynamic route optimization problem, the
existing methods are based on the prediction of traffic
flow, traffic speed, and road state before departure and
choosing the shortest route. Therefore, it is difficult to achieve
real-time optimization in the driving process because the
model algorithms are complex and the road state changes
rapidly. Therefore, although many prediction models exist
at present [22]–[25], they lack practicability. (2) Because
speed prediction is discrete in time, it is predicted at regular
intervals, which leads to different predicted speeds on the
same road segment. Therefore, a road segment is divided into
several subsections to calculate the driving time, which is
very complex. Particularly for complex road networks, there
are multiple driving routes and multiple road segments for
each driving route, and it is more difficult to achieve real-time
modeling and real-time calculation.

Theoretically, if there are no traffic jams or emergencies,
the static shortest route must be the route with the shortest
driving time. However, owing to traffic congestion, sudden
traffic accidents, traffic control, bad weather, and other
interference factors, it is necessary to choose the shortest
driving route dynamically. As described above, current
dynamic route optimization methods lack accuracy, and the
static shortest route lacks time variability. Therefore, the
best method is a combination of dynamic optimization and
static determination. As long as we start to drive on a road
segment, regardless of the condition of the road, the current
road segment must be finished before we consider choosing

the next road segment. The method of selecting routes
according to road conditions and given driving performance
is a type of rolling dynamic optimization idea, which is very
similar to the predictive control method in control theory.
The predictive control theory has been applied in different
fields [26]–[35]. Therefore, we propose a real-time dynamic
route optimization method based on the predictive control
principle.

The basic principle of predictive control is as follows: At
a certain time, the current state of a control system is taken
as the initial input, and the model, constraint conditions,
and objective function are combined to obtain the optimal
solution in finite time (an optimal control problem in the
finite time domain). After obtaining the optimal solution,
only the first control output is used in the system, whereas
the others are ignored. After control is applied to the system,
the state of the system is obtained, and the optimal control
output is solved again. There are three key elements in
the implementation of predictive control: predictive models,
rolling optimization, and feedback correction. The predictive
model is the basis of model predictive control, and its
main function is to predict the future output of the system
according to the historical information and future input
of the system. Rolling optimization means that the model
predictive control determines the control effect based on the
optimization of a certain performance, and the optimization
is not carried out offline at once, but repeatedly online. This is
the meaning of rolling optimization and is also the difference
between traditional optimal control and predictive control.
The purpose of feedback correction is to correct errors caused
by model mismatches or environmental disturbances.

The basic principle of the real-time dynamic route
optimization model based on predictive control is described
as follows. The initial static driving reference route and
given minimum driving time are set as the control goals, and
the driving speed and static route are controlled to achieve
the control goals. Driving time is the controlled variable,
driving speed is the manipulated variable, and some traffic
conditions are disturbance factors. The shortest driving time
is the set value, the static shortest route is the reference
route of the control system, and the objective function with
the shortest driving time is established. According to the
change in the road network state and the optimal solution
result of the objective function, the real-time dynamic
route solution based on the shortest time is obtained by
switching among different static shortest routes, and the
rolling optimization and combination of dynamic and static
routes are realized. The advantages of the model are as
follows. (1) It avoids predicting future road speeds or traffic
flow. (2) Because the initial static driving reference route
and given shortest driving time are designed as the control
goals, the global optimal solution of the shortest route and
shortest time can be achieved. (3) It makes up for the
shortcomings of the adaptive dynamic shortest route selection
model and the deterministic dynamic shortest route selection
model.
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FIGURE 1. A simple road network.

The remainder of this paper is organized as follows:
Section II introduces the mathematical description, concep-
tual definition of road networks, theorems, and lemma for the
research. Section III introduces the predictive control model
for real-time dynamic route optimization. Section IV shows
the model simulation. Section V verifies the proposed model
and discusses the results. Section VI provides a summary of
this study.

II. PRELIMINARIES
A. MATHEMATICAL DESCRIPTION AND CONCEPTUAL
DEFINITION OF ROAD NETWORK
In order To analyze the model, some of the concepts involved
are defined as follows: The road network shown in Fig.1
includes five roads and seven road segments.
Definition 1: Road network structure matrix, RS where

i and j denote the starting point and end point of a road
segment, respectively.

sij =

{
1 if there is a road from i toj
0 otherwise

A RS is described as follows:

RS=


s11 s12 . . . .. s1n−1 s1n
s21 s22 . . . . . . s2n−1 s2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . ..

sn1 sn2 . . . . . . .. snn


where 1 represents the starting point of the road network and
n represents the endpoint of the road network. Because a
road has two-way traffic, the above RS must be a symmetric
matrix, and sii = 0 (i = 1, 2, . . . . . . .. n).
For example, as shown in Fig.1, the RS is

RS =


0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0


Definition 2: Route matrix of driving road network,

RR where i and j denote the starting point and end point of a
road segment, respectively.

rij =

{
1 if driving from i to j
0 otherwise

FIGURE 2. A driving road network.

A vehicle is driving from point i to point j and is one-way
driving. As shown in Fig.2, the RR is

RR =


0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0


where 1 represents the starting point of the driving road
network and 6 represents the end point of the driving road
network.

Compared with Fig.1 and 2, the road network structure
matrix is an undirected graph matrix, and the route matrix
of the driving road network is a directed graph matrix. Using
RR, all drivable routes can be derived from the starting point
to the end point.
Definition 3: Road length matrix of driving road network,

RL where i and j denote the starting and end points of a road
segment, respectively, and Lij represents the distance of the
road segment. As shown in Fig.2, RL is

RL =


0 1 0 4 0 0
0 0 5 0 2 0
0 0 0 0 0 3
0 0 0 0 3 0
0 2 0 0 0 3
0 0 0 0 0 0


Definition 4: Road speed matrix of driving road network,

RVwhere i and j denote the starting and end points of the road
segment, respectively, and vij represents the driving speed of
the road segment. As shown in Fig.2, the RV is

RV =


0 v12 0 v14 0 0
0 0 v23 0 v25 0
0 0 0 0 0 v36
0 0 0 0 v45 0
0 v52 0 0 0 v56
0 0 0 0 0 0


Definition 5: Road time matrix of driving road network,

RT where i and j denote the starting and end points of the
road segment, respectively, and tij represents the driving time
of the road segment. As shown in Fig.2, the RT is

RT =


0 t12 0 t14 0 0
0 0 t23 0 t25 0
0 0 0 0 0 t36
0 0 0 0 t45 0
0 t52 0 0 0 t56
0 0 0 0 0 0
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Definition 6: Road congestion rate matrix of driving road
network, RC where i and j denote the starting and end
points of a road segment, respectively, and cij represents the
congestion rate of the road segment with a value between
0 and 1. As shown in Fig.2, the RC is

RC =


0 c12 0 c14 0 0
0 0 c23 0 c25 0
0 0 0 0 0 c36
0 0 0 0 c45 0
0 c52 0 0 0 c56
0 0 0 0 0 0


Definition 7: Road state matrix of driving road network,

RST where i and j denote the starting and end points of a
road segment, respectively, and stij represents the congestion
state of the road segment, with a value of 0 or 1. As shown in
Fig.2, the RST is

RST =


0 st12 0 st14 0 0
0 0 st23 0 st25 0
0 0 0 0 0 st36
0 0 0 0 st45 0
0 st52 0 0 0 st56
0 0 0 0 0 0


If cij ≥ 0.6, stij = 1. It means that the road segment is

seriously congested and cannot be driven on the road.
If cij < 0.6, stij = 0. It means that the road segment is not

congested and can be driven on the road.
Definition 8 (Matrix Dot Division): If A and B have the

same number of rows and columns, A is divided by B, and
as the following formula shows, it is called the matrix dot
division.

C = A//B, cij = aij/bij

Definition 9 (Matrix Dot Multiplication): If A and B have
the same number of rows and columns, A is multiplied by
B, as the following formula shows; this is called matrix dot
multiplication.

C = A∗∗B, cij = aij ∗ bij

According to the above definitions, the following matrix
relationships can be derived.

RT = RL//RV

RL = RT∗∗RV

Definition 10 (Theoretical Driving Speed, Vt): If the
driving speed is determined by an optimization calculation
or experience, it is called the theoretical driving speed.
Definition 11 (Real Driving Speed, Vr):The current driving

speed of a vehicle is called the real driving speed.
Definition 12 (Enabled Driving Speed, Ve): The speed of

a road obtained by using the Gaode or Baidu online map is
called the enabled driving speed. The Gaode or Baidu online
map can provide real-time driving speed and congestion rates
of roads in a certain area, and it is also called the road traffic
situation.

Definition 13 (Predicted Driving Speed, Vp): According to
the past driving data of the road network and the current road
condition, at the next time the speed of a road is predicted by
a certain algorithm or model, which is called the predicted
driving speed.
Definition 14 (Limited Driving Speed, Vh): The maximum

driving speed on a road is called the limited driving speed.
Usually, this speed is fixed.

Under normal driving conditions, the relationship among
the above speeds is the following.

Vt ≤ Ve ≤ Vr ≤ Vh

Definition 15 (Static Shortest Driving Route): Among all
drivable routes from the starting point to the end point, the
route with the shortest length is called the static shortest route.
Definition 16 (Static Shortest Driving Time): The time

spent driving along the static shortest route is called the static
shortest driving time.

In practical applications, the shortest static driving time can
be determined by the route length and average driving speed,
or by experience.
Definition 17 (Static Driving Reference Route): The static

shortest driving rout is used as static driving reference route.
Definition 18 (Dynamic Driving Reference Route):

According to the predicted driving speed of the road network,
the route with the shortest driving time of all feasible routes
is determined, which is called the dynamic driving reference
route.

B. THEOREMS AND LEMMA
Theorem 1: For a given driving route, it is composed of
different road segments (L1, L2 . . . .Ln), and there is a set of
optimal road segment speeds (Vt1, Vt2. . .Vtn), that minimizes
the driving time of the route. The optimal driving speed is
defined as the theoretical driving speed.

T =
∑n

i=1

Li
Vti

(1)

where Li is the road segment length, which is constant.
Objective function T has a minimum value.

Proof:
Because Li is known to be constant, the objective function

above can be simplified to

f (X ) =
∑n

i=1

1
xi

(2)

where xi > 0, the Hessian matrix can be deduced as follows:

H(X) = ∇2f (X)



2

x31
0 0 . . . 0

0
2

x31
0 . . . 0

0 0
. . .

. . . 0
...

...
...

...
. . .

0 0 0 . . .
2
x3n
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It is obvious that H (X) is a positive definite symmetric
matrix, and f(X) is a strictly convex function with a global
minimization optimal solution and minimum value.
Theorem 2: Suppose xi, ai ∈ R+ (i = 1, 2, · · · , n) and∑n
i=1 xi = m (constant)
While

xi =
m ∗
√
ai∑n

i=1
√
ai

(3)

And then the sum
∑n

i=1
ai
xi
has the minimum value, which

is
1
m
(
∑n

i=1

√
ai)

2
(4)

Proof:
Based on the Cauchy inequality, the following formula

holds.
n∑
i=1

xi ∗
n∑
i=1

ai
xi
=

n∑
i=1

(√
x i
)2
∗

n∑
i=1

(
√
ai
xi
)
2

≥

(∑n

i=1

√
x i ∗
√
ai
√
x i

)2

= (
∑n

i=1

√
ai)

2

(5)

Since
∑n

i=1 xi = m, we get∑n

i=1

ai
xi
≥

1
m
(
∑n

i=1

√
ai)

2
(6)

According to conditions for equality sign of inequality
in (6), we have

√
x1√
a1
x1

=

√
x2√
a2
x2

= · · · =

√
xn√
an
xn

(7)

So,

x2 =
√
a2
a1
x1, x3 =

√
a3
a1
x1, · · · , xn =

√
an
a1
x1∑n

i=1
xi = x1 + x2 + . . .+ xn = x1

√
a1
√
a1
+ x1

√
a2
√
a1
+ . . .

+ x1

√
an
√
a1

= x1 ∗

n∑
i=1

√
ai

√
a1

(8)

Since
∑n

i=1 xi = m, from (8), we have

x1 = (m ·
√
a1)/

∑n

i=1

√
ai (9)

And then, only xi =
m∗
√
ai∑n

i=1
√
ai
(i = 1, 2, · · · , n), the

equality sign of the formula (6) holds.
So the conclusion is that the sum

∑n
i=1

ai
xi
has theminimum

value, which is

1
m
(
∑n

i=1

√
ai)

2
(10)

Lemma 1:Based on Theorems 1 and 2, for the given driving
route, if each road segment length of route Li is known and the
average driving speed of route EV is also defined, the optimal
theoretical driving speed of each road segment can be solved
by the following formula:

Vti = (m ·
√
L i)/

∑n

i=1

√
L i (11)

where m = n ∗ EV and n is the number of road segments, i =
1,2,. . . . . . n.

Taking the driving route composed of three road segments
as an example.

Suppose L1 = 9 km, L2 = 16 km, L3 = 25 km
The total length of the route: 9+16+25 = 50 km
The desired arrival time: 0.8 h
The average speed: 50/0.8 = 62.5 km/h
We get

m = n ∗ EV = 3 ∗ 62.5 = 187.5 km/h∑n

i=1

√
L i =

√
L1 +

√
L2 +

√
L3

=
√
9+
√
16+

√
25

= 12 km

From (11), we have

Vt1 =
m ·
√
L1∑n

i=1

√
L i
=

187.5 ∗ 3
12

= 46.8 km/h

Vt2 =
m ·
√
L2∑n

i=1

√
L i
=

187.5 ∗ 4
12

= 62.5 km/h

Vt3 =
m ·
√
L3∑n

i=1

√
L i
=

187.5 ∗ 5
12

= 78.2 km/h

From (10), we obtain the mini driving time

T =
1
m
(
∑n

i=1

√
L i)

2
=

144
187.5

= 0.77 h

It is obvious that as long as the actual driving speed of the
road segment is greater than or equal to the theoretical driving
speed, we can reach the destination at the desired time, which
is also the minimum driving time.

C. EVALUATION PERFORMANCE INDEX
The evaluation performance index of the shortest route is the
basis for drivers to choose the shortest route. The meaning
of the shortest route also differs according to the different
factors considered by drivers. The shortest route evaluation
performance indices are as follows: the shortest driving
distance and the shortest driving time.

1) THE SHORTEST DRIVING DISTANCE
The index of the shortest driving distance is used to select
the shortest route among feasible routes from the departure
to the destination, the length of which is equal to the sum
of the lengths of each road segment. Because the length of
the road segment is constant, it is easy to search for the
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shortest route using an algorithm. However, they are only
suitable for static road networks. Because the actual road
traffic state changes dynamically with time, the shortest route
of the driving distance may consume more time when traffic
conditions are poor.

2) THE SHORTEST DRIVING TIME
The shortest driving time is often the priority factor for drivers
when they go to work or school, because they naturally do not
want to spend too much time on the way to avoid being late.
Therefore, the route with the shortest driving time is one that
drivers expect to obtain.

For a static road network, the shortest driving route must
also be that with the shortest driving time. For a dynamic
road network, the shortest driving route is not necessarily
the shortest driving time, and there is a certain contradiction
between the shortest driving route and shortest driving time.
Most drivers prefer the shortest driving time and want to have
a high driving efficiency; therefore, we chose the shortest
driving time as the dynamic route optimization evaluation
performance index.

III. PREDICTIVE CONTROL MODEL OF REAL-TIME
DYNAMIC ROUTE OPTIMIZATION
For the predictive control model, the driving time is the
controlled variable, driving speed is the manipulated variable,
and some traffic conditions are disturbance factors. The
shortest static route is set as the reference route for the control
system.

A. THE SET VALUE OF THE CONTROL SYSTEM
As a constant value control problem, the controlled variable
is the driving time; therefore, the minimum driving time must
be set as its set value, which is also called the desired time.
The purpose of predictive control is to control the speed and
select the route as far as possible to reach the destination at
the desired time. We have

|t− ts| ≤ δ

where t is the actual driving time, ts is the set time or desired
time, and δ is the maximum error. ts can be defined by the
driving experience or by the following formula:

ts =
S0
V̄

(12)

where S0 is the length of the initial static shortest route and V̄
is the estimated average speed of the route.

For the driving time control problem, as long as the
actual driving time is less than the set or desired time, it is
reasonable. However, the actual driving speed cannot exceed
the value ts+δ. Driving speed control is different from general
constant control.

B. REFERENCE TRAJECTORY (ROUTE)
A reference trajectory must be set for driving time control,
which is similar to the predictive model in a model predictive

control system. For real-time dynamic route optimization,
the static shortest driving route is selected as the reference
trajectory; however, it is changeable in the driving process.
A new static driving route Sk+1 must satisfy the following
conditions before it can be used as a reference route.

Suppose S0 is the length of the initial static shortest route,
Sk is the length of the current static shortest route, Sk+1 is the
length of the next static shortest route that will be used, and
Sp is the length that has been completed.
(a) Sk+1 < Sk
(b) Sk+1 ≤ S0– Sp
(c) Ve ≥Vt
Where k = 0,1,2..n. Formula (c) means that the first road

segment of the (k+1)th static shortest route should meet
the following requirement at least, and it is that the enabled
driving speed of the road segment is greater than or equal to
the theoretical driving speed.

(d) The (k + 1)th static shortest route must have a cross
node with the kth static shortest route, and the road segments
from the intersection node to the end must be the road
segments of the kth static shortest route (according to the
Dijkstra shortest path algorithm [19]. Otherwise, it may be
a miscalculation).

(e) If Sk+1 >S0–Sp, it must satisfy the following condition:

Sk+1 − (S0 − Sp)

V̄
≤ TL

where V̄ is the estimated average speed of the new reference
route and TL is the remaining time to reach the destination.

The static shortest driving reference route can be deter-
mined by the road length matrix of the driving road network
RL and Dijkstra’s shortest path algorithm.

C. OBJECTIVE FUNCTION
For a driving time control problem, the purpose of control
is to arrive at the destination at a given time; therefore, the
objective function is defined as

min ft = min
(∑n

i=1

Li
Vti
+ t0 − ts

)2

(13)

where, Li: length of road segment i, a constant.
Vti : theoretical driving speed of the road segment, which

will be solved.
t0 : previous driving time, which is known.
ts : desired time, which is the set value.
i:1,2,3. . . . . . . . . . . . . . . .n, number of remaining road seg-

ments in current driving route
The objective function is a constrained optimization

problem with a minimum value of 0. We denote
C = ts − t0, a constant, which represents the remaining

driving time.
The objective function is equivalent to

ft =
(∑n

i=1

Li
xi
− C

)2

(14)
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Because the objective function has amini value of 0, we get

∂f t
∂x i
= 0

∂f t
∂x i
= 2

(∑n

i=1

Li
xi
− C

)
· (−

Li
x2i

) = 0 (15)

Noting Li > 0, we obtain

∂f t
∂x i
=

(∑n

i=1

Li
xi
− C

)
· (−

1

x2i
) = 0 (16)

where i = 1,2,3. . . . . . n. N nonlinear equations are formed,
and the problem is transformed to find the solution of the
nonlinear equations. Suppose n = 3, we have

C

x21
−
L1
x31
−

L2
x2x21
−

L3
x3x21

= 0

C

x22
−

L1
x1x22
−
L2
x32
−

L3
x3x22

= 0

C

x23
−

L1
x1x23
−

L2
x2x23
−
L3
x33
= 0

When n is very large, solving n for nonlinear equations is
complicated.

From (11), Li > 0, Li
x2i
> 0, we get

∑n

i=1

Li
xi
− C = 0∑n

i=1

Li
xi
= C (17)

From (17), theoretically, as long as the sum of the driving
times of each road segment is equal to the remaining driving
time, it can be guaranteed to arrive at the destination at the
desired time.

We define

EV =

∑n
i=1 Li
C

(18)

This is the average speed for the driver to complete the
remaining route with the remaining driving time. From (13)
and (14), we obtain∑n

i=1
xi =

∑n

i=1
Vti = n ∗ EV = m (19)

From Lemmas 1 and (11), the theoretical driving speed Vti
(or xi) can be solved. Vti is similar to the control output of a
model predictive control system.

D. FEEDBACK CORRECTION
After one of the road segments is completed by the driver,
the theoretical driving speed of the remaining road segments
must be calculated again. If one of the following conditions
is satisfied, we can continue driving along the current route.

(1) At least one of the road segments behind the current
driving road segment of the route is not congested, and the
driving speed of the road segments obtained from the online
map is greater than or equal to the theoretical driving speed,
Ve ≥ Vt .

FIGURE 3. Flow chart of the route optimization model.

(2) After the current road segment is completed, there is no
switchable road segment.

(3) Another static reference route is severely congested.
If the following conditions are satisfied, we can switch to

another static reference route:
(1) The actual driving speed of the current road segment

is less than the theoretical speed (Vr < Vt ), and traffic jams
occur.

(2) The enabled driving speed of the next road segment
(obtained online) of the route was less than the theoretical
speed (Ve < Vt ).

(3) The other reference route was not congested.
(4) After the current road segment is completed, a switch-

able road segment exists.

E. ROLLING OPTIMIZATION
Rolling optimization is an important feature of predictive
control, which is performed repeatedly online to enhance the
robustness of a control system.
Step 1: Drive on the initial static reference route and drive

on the first road segment of the route.
Step 2: After the current road segment is completed,

calculate the theoretical driving speed of the remaining road
segments and judge whether we can continue driving on the
current reference route. The method for determining the new
static reference route is based on the above analysis.
Step 3: Step 2 and rolling optimization until the endpoint

of the route.
Fig.3 shows the main flow chart of the real-time dynamic

route optimization.
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FIGURE 4. Simulation 1 of abstract road network 1.

FIGURE 5. Simulation 2 of abstract road network 2.

IV. SIMULATION
NetLogo is a development platform for multi-agent model
simulations that has a history of more than ten years.
The platform is suitable for modeling and simulation of
complex systems with time variation, and it can realize
the functions of simulation operation, simulation output,
experiment management, and so on. The latest version of
NetLogo has four main types of agent: turtles, patches,
observers, and links. Each type of agent has its own properties
(parameters) and behaviors (instructions and functions),
and we can also set new properties and functions for
them. NetLogo’s network extension function simulates and
analyzes the network. To verify the accuracy of the model in a
more complex road network, we use this platform to simulate
the driving process.

Fig.4, 5, 6, and 7 show the simulation results for the driving
road network on the NetLogo platform. A road network with
20 nodes (intersections) are randomly produced. Each node is
connected to neighboring nodes, and the link is representative
of the road segment and is also an agent in NetLogo. A certain
link has attributes, such as the length of the road segment,
driving speed, and congestion rate. By selecting the starting
node and the end node according to the predictive control
model algorithm of real-time dynamic route optimization,
it can simulate whether the driving route meets the control
requirements. In Fig.4, 5, 6, and 7, the red node represents

FIGURE 6. Simulation 3 of abstract road network 3.

FIGURE 7. Simulation 4 of abstract road network 4.

the static shortest driving route, and the red connection line
represents the simulation of the actual driving route.

Fig.4 and 5 show the simulation results under normal traffic
conditions without congestion. As the figures show, the red
line passes through all red nodes, and the initial static driving
reference route is the actual driving route. Fig.6 and 7 show
the simulation results in the case of congestion, and the red
line connection is not completely consistent with the red
node, but avoids congested road segments and finally returns
to the initial static driving reference route. The simulation
results prove that the predictive control model algorithm for
real-time dynamic route optimization is correct and better.

V. CASE STUDY
Fig.8 shows the road network from the starting node to the
end node, and it involves 9 roads, 13 intersections and 18 road
segments. Fig. 9 is the abstract road network structure of
Fig.8, and the starting point is node 1 and the end point is
node 15. The route matrix of the driving road network RR
and the road length matrix of the driving road network RL
can be established.

The order of the conventional static route is obtained from
a short route to a long route, which is calculated using the RL
matrix and the Dijkstra shortest path algorithm.

Route 1: 1-2-3-4-13-14-15, 3259 m.
Route 2: 1-2-3-4-5-14-15, 3323 m.
Route 3: 1-2-3-12-13-14-15, 3412 m.
Route 4: 1-10-11-12-13-14-15, 4296 m.
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FIGURE 8. Actual regional road network.

FIGURE 9. Abstract road network of the Fig. 8.

Route 5: 1-2-3-4-5-6-9-15, 5482 m.
The route1 is the shortest static route, as shown by the

green line in Fig.9.
Using the Baidu online map, the road-enabled driving

speed matrix RV, road congestion rate matrix RC, and road
state matrix RST can be obtained, and we can judge whether
there are congested road segments. The set value or desired
time from departure to destination is 6 min, and it can be
divided into the following cases.

A. ANALYSIS OF NORMAL DRIVING CONDITION (NO
CONGESTION ROAD SEGMENTS)
Step 1: According to matrix RL, the Dijkstra algorithm is
called to find the initial static shortest route, which is route1,
and it is taken as the initial static driving reference route. The
desired time is 6 min.
Step 2: starting to drive on the first road segment L12.
Step 3: When road segment L12 is almost complete, the

theoretical driving speed of the remaining road segments of
the initial static reference route is calculated. The average
driving speed of road segment L12 is 40 km/h.
The time spent to finish driving L12:
(0.938/40)∗ 60 = 1.4 minutes
The remaining time: 6-1.4 = 4.6 minutes (0.077 h)
The average speed taken to complete the remaining road

segments:
(3.259-0.938)/0.077 = 30.14 km/h
Using (11), the theoretical driving speed of the remaining

road segments can be calculated.
m = n∗ EV = 5∗ 30.14 = 150.7 km/h∑n

i=1

√
L i =

√
0.432+

√
0.143+

√
0.806

+
√
0.595+

√
0.345

= 3.291 km

Vt23 =
m ·
√
L1∑n

i=1

√
L i
=

150.7 ∗ 0.657
3.291

= 30.1km/h

Vt34 =
m ·
√
L2∑n

i=1

√
L i
=

150.7 ∗ 0.378
3.291

= 17.4 km/h

Vt4−13 =
m ·
√
L3∑n

i=1

√
L i
=

150.7 ∗ 0.898
3.291

= 41.1km/h

Vt13−14 =
m ·
√
L1∑n

i=1

√
L i
=

150.7 ∗ 0.771
3.291

= 35.5km/h

Vt14−15 =
m ·
√
L2∑n

i=1

√
L i
=

150.7 ∗ 0.587
3.291

= 26.8km/h

According to the Baidu online map, the current-enabled
driving speeds of the remaining road segments can be
obtained.

Ve23 = 40 km/h, Ve34 = 35 km/h, Ve4−13 = 55 km/h
Ve13−14 = 45 km/h, Ve14−15 = 50 km/h
It is known that the enabled driving speed of the first two

road segments is greater than the theoretical driving speed (in
practice, all road segments meet the requirements), so we can
continue driving forward.
Step 4: Road segment L23 is almost finished, referring to

step 3 and calculating the theoretical driving speed of the
remaining road segments. The average driving speed of road
segment L23 is 35 km/h.

The driving time: (0.432/35)∗ 60 = 0.72 minutes
The remaining time: 4.6-0.72 = 3.88 minutes (0.065 h)
The average speed: (3.259-0.938-0.432)/0.065 = 29 km/h
The theoretical driving speed:
m = n∗ EV = 4∗ 29 = 116 km/h∑n

i=1

√
L i =

√
0.143+

√
0.806

+
√
0.595+

√
0.345

= 2.634 km

Vt34 =
m ·
√
L2∑n

i=1

√
L i
=

116 ∗ 0.378
2.634

= 17 km/h

Vt4−13 =
m ·
√
L3∑n

i=1

√
L i
=

116 ∗ 0.898
2.634

= 40 km/h

Vt13−14 =
m ·
√
L1∑n

i=1

√
L i
=

116 ∗ 0.771
2.634

= 34 km/h

Vt14−15 =
m ·
√
L2∑n

i=1

√
L i
=

116 ∗ 0.587
2.634

= 26 km/h

According to the Baidu online map, we obtained
the current-enabled driving speed of the remaining road
segments:

Ve34 = 35 km/h, Ve4−13 = 50 km/h

Ve13−14 = 45 km/h, Ve14−15 = 50 km/h

So Ve >Vt, we can continue driving forward.
The next step is the same as in step 3 or step 4, and we

obtain the following results:
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While the road segment L34 is almost finished, we have
Vt4−13 = 35 km/h, Vt13−14 = 30 km/h, Vt14−15 = 25 km/h
Ve4−13 = 40 km/h, Ve13−14 = 45 km/h, Ve14−15 =

50 km/h
So Ve >Vt, we can continue driving forward.
While the road segment L4−13 is almost finished, we have
Vt13−14 = 27 km/h, Vt14−15 = 21 km/h
Ve13−14 = 45 km/h, Ve14−15 = 50 km/h
Therefore, Ve >Vt, and we can continue driving forward.

While road segment L13−14 is finished, the remaining road
segment L14−15 is the last road segment, which no longer
needs to be calculated and judged. The actual driving time
is 5.2 minutes, which is 0.8 minutes less than the set
driving time or the desired time, and it meets the control
requirements.

From the above analysis, if the road condition is good,
it is not necessary to switch the route, and the initial static
reference route can satisfy the control requirements. As the
actual driving speed is greater than the theoretical driving
speed under good road conditions, the driving time must be
less than the set value.

B. ANALYSIS OF DRIVING IN CONGESTION
During the period of going to work and getting off work, the
road from nodes 2 to 7 easily causes congestion. When we
begin to drive along the route 1 and arrive at the node 3, the
enabled driving speed of the remaining road segments is less
than the theoretical driving speed and there is the switchable
road segment L3−12, therefor, the new static shortest driving
reference route (3-12-13-14-15) is determined. We can drive
forward along the new reference route, and the method of
calculating the theoretical driving speed and judging the
switching route is the same as that in the above analysis.
However, when the Dijkstra algorithm is used to calculate the
new route, the length of road segment L34 should be set to the
original route length to avoid including road segment L34 in
the calculation process. Otherwise, the shortest route may be
the previous route.

C. ANALYSIS UNDER SPECIAL CONDITIONS (SPECIAL
CONGESTED ROAD SEGMENTS)
1) SERIOUS CONGESTION
The road from node 1 to node 4 is seriously congested,
and the enabled driving speed of the road segments is
less than the theoretical driving speed, the initial static
shortest route 1 cannot be used. Therefore, the fourth static
route (Route 4: 1-10-11-12-13-14-15) should be used for
driving.

2) SPECIAL CONGESTION
If we drive along the initial static shortest route 1 until
node 4, road segment L4−13 is congested and route 2
(4-5-14-15), which is the second static shortest route,
is selected as the new driving reference route. When we drive
to node 5 along route 2, road segment L5−14 is congested.

Because L56 + L69 + L9−15 > L5−14 + L14−15, if one of
the conditions is satisfied, the driving reference route can be
switched to the new reference route (Route 5: 5-6-9-15).

L5−14
Ve5−14

+
L14−15
Ve14−15

>
L56
Ve56
+

L69
Ve69
+

L9−15
Ve9−15

(20)

L56
Ve56
+

L69
Ve69
+

L9−15
Ve9−15

≤ LT (21)

where LT is the remaining driving time and Ve is the enabled
driving speed obtained from the Baidu online map.

Other special driving problems can be solved by referring
to the above methods.

VI. CONCLUSION
The purpose of research on real-time dynamic route opti-
mization is to provide drivers with an effective route between
departure and destination, so that the cost of driving is the
least. Generally, the shortest driving time is considered as
the evaluation performance to optimize the route selection.
At present, research on dynamic route selection is based on
the prediction of future traffic flow or driving speed, and
its deficiency is that the accuracy of prediction depends on
the accuracy of modeling. When the model is established,
it becomes a static model, which makes it difficult to
follow real-time dynamic changes. At the same time, some
modelling methods are complex, and the solutions of the
models are complex and lack applicability.

The problem of dynamic driving route selection can be
regarded as a special control problem, in which the driving
time is regarded as the controlled variable, the desired
driving time is set as the control target (set value), and the
driving speed is taken as the manipulated variable. Various
road conditions are considered as the disturbance factors.
According to an optimal control algorithm, the optimal
driving route and speed are provided to overcome all types
of disturbances and achieve the control goal. Therefore, the
driver can arrive at the destination within the shortest time.

In the driving process, the road condition changes at
any time, and all types of disturbance factors occur at
any time. Therefore, driving, prediction, selection, and
control are performed simultaneously. This control process is
consistent with the principle of predictive control; thus, a real-
time dynamic route optimization model algorithm based on
predictive control is proposed. The model algorithm does
not need to predict the future speed of roads or traffic flow.
The route selection is based on the enabled driving speed
which is obtained from Baidu online map and theoretical
driving speed which is solved from the objective function of
the remaining road segment, and the driving reference route
is the static shortest route. The calculation of the method
is convenient and simple, and the practical application and
simulation results show that the algorithm achieves the best
practical application and innovation.
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