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ABSTRACT Heart disease is the leading cause of mortality worldwide, and it is of utmost importance that
clinicians and researchers understand the dynamics of the heart. As an electrical measure of the heart’s activ-
ity, the electrocardiogram, or ECG, is the gold standard for recording the cardiac state, whether monitoring
the structure of the traces that make up the ECG or indicating key metrics such as heart rate variability. Long-
term monitoring of ECG is often required to identify cardiovascular issues but proves impractical; therefore,
patients will remotely collect their data. However, ECG signals can become contaminated with various noise
sources during data collection. This paper proposes a custom loss function capable of denoising electrode
motion artefact in ECG data to a higher standard than other, more common loss functions. We implement our
custom loss function with a convolutional neural network to return high-quality ECG, suitable for calculating
the aforementioned key metrics from a previously unobtainable state. The proposed model improves ECG
signals overall signal-to-noise ratio and preserves the R waves structure. The model outperforms a standard
mean squared error loss functionwith an improvement of 0.5 dB in terms of signal to noise ratio and improves
the heart rate estimation by 25%.

INDEX TERMS Convolutional neural network, custom loss function, electrocardiography, signal denoising.

I. INTRODUCTION
The electrocardiogram (ECG) is a non-invasive method to
measure the heart’s electrical activity and diagnose heart
disease. According to theWorld Health Organisation (WHO),
chronic heart disease was the number one cause of death
from 2000-2019 [1]. Heart disease has also shown the most
significant increase in deaths during this period. Long-term
ECG monitoring is currently the gold standard for diagnos-
ing cardiovascular diseases (CVDs). Unfortunately, obtaining
reliable, long-term measurements of the cardiac state is a
logistical challenge faced by health care professionals due
to the time and resources involved. As a result, patients are
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frequently required to collect their ECG data remotely on a
wearable device, indirectly leading to noisemanifesting in the
ECG signals. Contaminated signals can suppress the essential
pathological biomarkers and, in some cases, will render the
ECG completely unusable.

A clean ECG signal of a typical, healthy patient is shown
in Figure 1. The ECG signal contains essential information
about the cardiac pathologies affecting the heart, charac-
terised by five peaks known as fiducial points, represented
by the P-wave, QRS complex, and T-wave.

ECG signals can be contaminated by many types of noise
such as: baselinewander, powerline interference, electromyo-
graphic (EMG) noise, electrode motion artefact noise [2].
Baseline wander is a low-frequency artefact in electro-
cardiogram signal recordings that arises from breathing,
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FIGURE 1. Typical ECG traces with fiducial points labelled.

electrically charged electrodes, or subject movement [3].
Muscle artefacts are generated due to skeletal muscle activ-
ity [4], and electrode motion is caused by changes in
electrode-skin impedance and changes in skin potential [5].

In the remote setting, where clinicians cannot readily
inspect ECG traces for artefacts, noise can become heavily
involved in the signal, leading to a poor signal-to-noise ratio
(SNR). This may conceal features that are important for diag-
nosis. For example, the interbeat interval (IBI), calculated
using the R-wave which is valuable for heart rate variabil-
ity (HRV) measurements, can become difficult to estimate if
the introduced noise heavily disfigures the R wave. There-
fore, denoising becomes fundamental to downstream ECG
signal processing tasks.

Identifying and removing artefacts in the ECG signal can
help improve patients diagnosis and treatment [6]. As more
recordings are being conducted in the remote setting, this
implies the manifestation of more artefacts in the ECG.
Artefact detection approaches have been implemented in the
literature to detect disturbances and help better estimate the
quality of the recorded ECG signals [7]–[9]. Rather than tak-
ing an artefact detection approach, we seek to automatically
suppress the artefact and improve the ECG signal structure
essential for HRV analysis.

Conventional noise reduction methods focus on overall
improvement in signal SNR but ignore the preservation of
essential peaks. These peaks are necessary for heart rate, IBI,
and HRV measurements for monitoring exercise, stress, and
cardiovascular disease [10], [11]. In this paper, we demon-
strate a Convolutional Neural Network and custom loss func-
tion for ECG signal denoising and R-wave preservation.
This novel approach yields improved SNR and cardiovascu-
lar measures while allowing for less complex deep-learning
models, thus advancing the development of simpler, more
reliable remote patient monitoring devices.

II. RELATED WORKS
In the early stage of ECG denoising research, low-pass fil-
ters [12], adaptive filters [13] and filter banks [14] were
utilised. An and Stylios [15] provide a review on the afore-
mentioned filtering methods for motion artefact reduction

methods in ECG and find that adaptive filtering performs
better than the other reviewed denoising methods. Recently,
there has been a move towards data-driven approaches for
ECG signal denoising that are more suited to non-linear
and non-stationary time series signals. Jin et al. [16] propose
an ECG denoising framework through combining low-pass
filtering and sparsity recovery that overcome issues present in
statistical approaches such as the L1-norm. Chatterjee et al.
provide a review of techniques for noise removal in ECG
signals [2]. The authors review six methods of ECG signal
denoising, namely empirical mode decomposition (EMD),
wavelet-based models, sparsity-based models, Bayesian-
filter-based models, hybrid models and deep-learning models
based on autoencoders. In this paper, we opt for a deep-
learning-based approach to denoising our ECG signals.

Corneliu et al. review deep-learning-based models for
removal of noise in ECG signals [17]. The authors mainly
focus on Long short-term memory networks (LSTMs) [18]
and Convolution Neural Networks (CNNs). They find that
CNNs outperform LSTMs in the deep-learning models.

Convolutional Neural Networks have contributed tremen-
dously to the success of machine learning since their intro-
duction in the 1990s. They are an example of neuroscientific
principles influencing deep-learning [19], in that they are
designed to mimic the processing of images in the visual
cortex of the human brain [20]. Fully automatic learning of a
CNN allows the neural network to extract features that are
salient in the input data across different layers. Given the
correct training, a CNN allows for the implementation of high
accuracy classifiers without the need for signal processing
or feature extraction knowledge. This had contributed to
their success in practical applications, particularly with image
classification. Here, we implement a CNN-based architecture
with a custom-loss function for denoising our ECG signals.

Loss functions are used in statistical models to define an
objective function that evaluates themodel’s performance and
enables the model to learn its parameters by minimising a
said loss function. The Mean Squared Error (MSE) is among
the most popular loss functions used in machine learning
problems. Mean squared error is calculated as the average
of the squared differences between the predicted and actual
values. Barton et al. introduce a non-standard loss function
in Raman Spectra denoising by adding another term to the
MSE loss to balance between overall signal denoising and
excessive smoothing of spectral peaks [21]. The authors iden-
tified that traditional denoising algorithms, including CNNs
with standard loss functions, successfully remove noise at the
expense of smoothing or blurring the sharp spectral peaks, the
heights of which are important in the context of Raman based
diagnostics. Here, we identify the same problem for ECG
signals, whereby traditional denoising methods can adversely
distort the underlying heart signal. We extend the work of
Barton et al. through the addition of multiple terms in the
standard MSE loss, which helps improve signal denoising
while maintaining the QRS complex structure, and in turn,
the overall signal-to-noise ratio of the ECG.
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III. METHODOLOGY
A. COMPUTING PLATFORM
The experiments for this project were run on an Nvidia Titan
Xp with PyTorch and Google Colaboratory in the interest of
making the project readily deployable. The code for these
experiments are available online.1

B. DATASETS
We use two datasets in this work; both datasets are open
source and freely available on PhysioNet [22]. The first and
primary dataset we use is theMIT-BIHArrhythmia Database.
This dataset contains 48 half-hour recordings of two-channel
ambulatory ECG, including less common but clinically sig-
nificant arrhythmias. The ECG recordings were digitised
at 360 Hz with an analogue-to-digital converter (ADC) gain
of 200 [23].

The secondary dataset used in this work is the MIT-BIH
Noise Stress Test Database that includes 12 half-hour ECG
recordings and three half-hour recordings of noise typical
in ambulatory ECG recordings [24]. We are only concerned
with using the noise recordings from this dataset. The noise
recordings were made using physically active volunteers and
standard ECG recorders, leads, and electrodes; the electrodes
were placed on the limbs in positions where the subjects’
ECGs were not visible. We select the electrode motion arte-
fact and artificially add it to the MIT-BIH Arrhythmia data.
Electrode motion artefact is generally considered the most
troublesome since it can mimic the appearance of ectopic
beats and cannot be removed easily by simple filters, as can
noise of other types [24]. We visually present some examples
of electrode motion artefact in Figure 2.

FIGURE 2. Examples of electrode motion artefacts that have are added to
the original ECG signals to create the contaminated dataset.

1) PREPROCESSING
For each of the 48 signals in the arrhythmia dataset, the
electrode motion noise signal mixed linearly with the clean
ECG record as defined by equation (1).

Xn = X + n ∗ λ (1)

1GitHub Repository: https://github.com/Brophy-E/ECG_Denoise_
Custom-Loss

where X is the original ECG signal, n is the electrode motion
noise artefact and λ is the hyperparameter that controls the
SNR of the noisy signal Xn. λ is important for creating our
datasets in that it allows us to specifically and accurately
control the SNR of the artificially created noisy data, it is
further defined in equation (2).

λ =
RMS(X )

RMS(n) ∗ (10(0.1∗a/2))
(2)

where a is the desired SNR value (in dB). The returned value,
λ can then be multiplied by the noise, n and linearly added to
the original ECG signal, X to return a noisy ECG signal, Xn
with a specified SNR value.

In addition, the dataset is divided into 80% of the data for
training and 20% testing. We chose the first 38 records for the
training set the last ten records for testing. We adopt a ‘leave
n-subjects’ out validation approach. Following this, we chose
a sliding window of 3-seconds over the data with an overlap
of 0.5 seconds.

C. MODEL
We designed a four-layer 1-D convolutional network with
batch normalisation and ReLU (Rectified Linear Units) fol-
lowed by a fully connected layer. The model architecture can
be seen in Figure 3. We chose our CNN model as it has
successfully estimated heart rate in previous works [25], [26].
In addition, CNNs are pervasive in embedded devices and
have achieved high performance in many real-world prob-
lems. However, their implementation often requires high-
performance hardware [27], [28]. Therefore, designing a
CNN model also allows us to demonstrate the benefits of our
custom loss function that can reduce the complexity of such
systems. See Section V for further details on computational
complexity regarding our proposed algorithm.

FIGURE 3. Architecture of CNN.

The input size of the network is 1080 samples (3s long
signal). The noisy data is input to the model, and the denoised
data is the output.

D. CUSTOM LOSS FUNCTION
We design a custom loss function to prioritise overall signal
improvement and preservation of important signal peaks. The
loss function plays a critical role in training deep-learning
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models. The Mean Square Error (MSE) is commonly imple-
mented as the loss function in signal denoising tasks. How-
ever, one problem that may occur when using it is that equal
priority is given to areas of limited signal information. While
removing noise throughout the signal is essential, it is impor-
tant that signal features should not be mistaken for noise and
smoothed. Hence, we utilised a more practical solution by
designing a loss function with twoMSE components; the first
is the global MSE, which is the typical loss function, and the
second is the MSE pertaining only to regions where the QRS
wave features exist. In addition, a weighting parameter, α,
is applied to the second MSE term, effectively enabling us
to control the weighting given to important signal features,
as opposed to ’flat’ regions in the signal. We opted for
doubling the weighting placed on the QRS and applying
a factor of 20 and 50 times importance on the segments
when selecting α values. Unlike previous studies, our loss
function considers all QRS complexes in the signal; see
equation (3). The average QRS complex range is 100ms in
healthy individuals; therefore, we select 100ms on either side
of the R-peak, which is easily identifiable by an automated
routine based on an intense local maximum. This ensures
we capture the regular QRS complexes and the complexes
with clinically significant arrhythmias present. The value α
is a hyperparameter that is used to determine the level of
importance placed on the QRS complexes by the loss function
relative to the ECG signal as a whole. The idea behind the
loss function needing the location of QRS holds for training.
When denoising the noisy test data, we use no labels, only
the noisy ECG time-series signal. So the intention here is that
during training, the loss function allows themodel parameters
to learn to emphasise the QRS part of the signal.

L = MSE(Xn,X )+ α ∗
j∑

i=1

MSE(RXni,RXi) (3)

Where j is the total number of QRS complexes in the 3-
second signal segment, RXi is the ith QRS complex in signal
X and RXni is the i

th QRS complex in signal Xn.

E. EVALUATION
To quantitatively evaluate our denoised data, we look at the
SNR improvement in the ECG signal, heart rate error pre-
diction, IBI and HRV of the denoised vs noisy ECG signals.
We also qualitatively evaluate our results through a visual
inspection in both the time-series domain of the ECG.

SNR is defined as the ratio of signal power to noise power,
often expressed in decibels. A ratio higher than 1:1 (greater
than 0 dB) indicates more signal than noise. For example,
a SNR of 12dB is a more heavily corrupted signal than a SNR
of 24dB, as more signal power is present in the 24dB signals.
The SNR of the contaminated ECG segment can be adjusted
by changing the parameter λ as in equation (4). Where X
is the ECG signal of interest, n is the artefact, and λ is the
hyperparameter that controls the SNR. Furthermore, it should
be noted λ is calculated through the RMS of the input signal x

and the RMS of the input motion artefact signal n.

SNRXn = 10 ∗ log10
RMS(X )
RMS(λ · n)

(4)

The Root Mean Square (RMS) of a signal is given in
equation (5). N is defined as the number of samples in the
ECG signal segment, and ai denotes the ith sample in the ECG
signal. N = 1080.

RMS(x) =

√√√√ 1
N

N∑
i=1

a2i (5)

1) INTERBEAT INTERVAL (IBI)
Heart rate in physiological studies is mostly derived from
measurements taken from the electrocardiogram. First, the
number of R waves per unit time, or the time between
these waves (interbeat interval), is measured. This time can
be translated to the rate of the heart for any collection of
beats. Such detailed measurements permit how the heart
reacts beat by beat to environmental and physiological stim-
uli. Unfortunately, while the interbeat interval is essential
for clinical diagnosis, it is easily corrupted by noise. For
the IBI, we calculate the location of the R-peaks using
scipy.signal.find_peaks [29] and return the R-peak differ-
ences in milliseconds.

2) HEART RATE VARIABILITY (HRV)
Informative cardiac metrics rely not just on the heart rate but
also on how the heart rate varies. Thus, another vital feature
of measuring the cardiac state is heart rate variation. HRV is
the temporal variation between consecutive heartbeats (RR
intervals). A higher heart rate variability is associated with
good health. On the other hand, a low HRV is associated with
ill health – it becomes a significant predictor of mortality
from several diseases [30]. In this experiment, we will use
the R peaks in calculating the HRV.

To reliably measure HRV and low-frequency cardiac com-
ponents, long-term ECG records of at least 24 hours are nec-
essary. However, short recordings can effectively capture the
higher-frequency cardiac components. Recordings as short
as 5 minutes are adequate for HRV but limit the sources
of variability [31], [32]. Therefore, we analyse the ECG
signals over 1 hour. The HRV analysis is computed using the
neurokit2 package [33].

IV. RESULTS
The following section details the denoising results of the elec-
trode motion artefact on the ECG dataset at differing noise
and α levels. Figures 4 to 7 illustrate the clean, ground-truth
signal, the noisy ECG signal corrupted with electrode motion
artefact and the denoised ECG signal. We show qualitative
results for the same noisy input signal at 6dB, 12dB, 18dB
and 24dB SNR levels. This noise range was chosen to reflect
medium-to-high noise contamination introduced in the ECG
signals. It becomes readily apparent that the model denoises
the heavily corrupted ECG signals.
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FIGURE 4. ECG signals before and after denoising with an artificial offset
present in the noisy signal for visualisation purposes. The initial SNR of
the noisy signal is 6dB. The heavily corrupted 6dB signal shows no
distinct QRS structure. The denoised signal contains a more recognisable
QRS complex structure.

FIGURE 5. ECG signals before and after denoising with an artificial offset
present in the noisy signal for visualisation purposes. The initial SNR of
the noisy signal is 12dB. Although, not as heavily corrupted as the 6dB
signal the QRS complexes are difficult to visually discern. The denoised
signal has distinct QRS complexes similar to the clean signal.

We demonstrate our metrics for the 24, 18, 12 and 6dB
noisy input signal at varying α levels to evaluate the model
and custom loss function quantitatively. Firstly, we compare
the SNR at the input to SNR at the output and compare
the input and output signals’ heart rate error (HRE). The
HRE is defined here as the absolute difference between the
estimated heart rate for a given ECG sample and the heart
rate calculated from its corresponding ground-truth ECG
sample. Finally, we present the Pearson Correlation Coeffi-
cient (PCC) as a quantitative metric to measure the linear
relationship between our signals. The results for these metrics
can be found in Table 1.

As can be seen in the SNR, HRE and PCC metrics in
Table 1, the custom loss function outperforms the stan-
dard MSE loss function for medium-to-high noise levels.
With increasing noise levels, the higher α values perform
better. Furthermore, for the 12dB signal, the custom loss
function improves the SNR levels by 0.5 dB, the HRE by
eight beats per minute or 25% and improves the PCC from
0.71 to 0.8 versus the standard MSE loss function. However,
we consider this a good but not comprehensive evaluation
of the models as the purpose of the custom loss function is

FIGURE 6. ECG signals before and after denoising with an artificial offset
present in the noisy signal for visualisation purposes. The initial SNR of
the noisy signal is 18dB. The heavily corrupted 18dB signal shows no
distinct QRS structure. The denoised signal contains a more recognisable
QRS complex structure.

FIGURE 7. ECG signals before and after denoising with an artificial offset
present in the noisy signal for visualisation purposes. The initial SNR of
the noisy signal is 24dB. The mildly distorted 24dB signal contains clear
QRS locations with some noisy elements. The denoised signal still retains
these QRS complexes and a reduction in the overall noise present in the
signal.

to preserve the importance of QRS complexes. Therefore,
we further analyse the IBI and HRV of the denoised ECG sig-
nals below as they are concerned with the R-peaks of the sig-
nals. The results of which can be found from Figures 8 to 10.

For the remainder of this section, we show results for the
12dB signals at α = 2. Figure 8 illustrates the R-R intervals in
the ground-truth signal. Figure 9 illustrates the R-R intervals
for the denoised signals and Figure 10 for the noisy signal.
The R-R intervals are calculated over the whole test dataset
that contains around 1500 ECG segments, each segment is
3 seconds long. The denoised version shows an R-R variation
similar to the clean ground-truth, whereas the noisy ECG
signals lie far outside the ground-truth range. To be more
explicit, the distributions of the R-R intervals cover a range a
of 450− 750ms for the ground truth ECG vs 500ms− 700ms
range for the denoised ECG and a 300ms − 1000ms range
for the noisy ECG. The HRV values for the ECG signals
are as presented in Table 2. HRV Mean is the mean of the
R-R intervals, and HRV SDNN is the standard deviation of
the R-R intervals. The outliers in Figure 9 are also present
in Figure 8 of the ground truth signal. These outliers can
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TABLE 1. SNR Metrics of 24, 18, 12 and 6 dB signals with custom loss
function. α = 0 indicates standard MSE loss function and std is the
standard deviation of the HRE over the entire test set.

TABLE 2. HRV of the ECG signals for α = 2.

FIGURE 8. Distribution of R-R intervals in the clean (ground-truth) signal.

manifest themselves in many ways and are a testament to
why this task is not trivial to solve with standard methods.
From the denoised HRV, we can see that many outliers have
been denoised. A clean, distinct HRV can provide consider-
able reference to practitioners for the diagnosis of patients.
Overall, more accurate cardiac health can be deduced from
the cleaner HRV/IBI information following the denoising of
the ECG signals.

V. DISCUSSION
We have found that the proposed loss function outperforms
the standard mean squared error loss function based on the
experimental results shown in Table 1 where the output of
the SNR improves by 0.5 dB. More noticeably, the heart rate
error prediction improves using the custom loss across most
α and input SNR values. Specifically, the QRS complexes

FIGURE 9. Distribution of R-R intervals in the denoised signal with some
outliers present.

FIGURE 10. Distribution of R-R intervals in the noisy signal.

FIGURE 11. ECG signals before and after denoising with a less-complex
CNN and standard MSE loss. An artificial offset present in the noisy signal
for visualisation purposes. The initial SNR of the noisy signal is 24dB. The
reduced complexity CNN model using the standard MSE loss function
does not converge nor learn any characteristics of the ECG.

are better preserved by the custom loss function, leading to
the preservation of important, relevant ECG information. This
allows us to calculate heart rate more accurately as the QRS
complexes now have more importance placed on them by the
loss function.

We also completed a short experiment to demonstrate
that the proposed loss function further allows for less com-
plex and faster models for denoising the ECG signals.
Figures 11 and 12 presents qualitative evidence of the denois-
ing capabilities of a simple CNN model without and with the
custom loss function, respectively. The less computationally
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FIGURE 12. ECG signals before and after denoising with a less-complex
CNN and custom loss function. An artificial offset present in the noisy
signal for visualisation purposes. The initial SNR of the noisy signal is
24dB. The reduced complexity CNN model using the custom loss function
learns to denoise the ECG adequately well.

complex CNN model is made of 4 convolutional layers and
one output layer. The original model presented in Figure 3
contains 2,322,180 trainable parameters, whereas the reduced
complexity model discussed here contains only 1,562 train-
able parameters. A reduction of almost 1,500 times the num-
ber of parameters, hence lower computational complexity is
possible through the use of our proposed loss function.

It is clear that the reduced complexity CNN model using
the standard MSE loss function does not converge nor learn
any characteristics of the ECG. In contrast, the same model
with the custom loss function learns to denoise the ECG
adequately well and achieves better performance with the
same volume of training data and training epochs.

VI. CONCLUSION
This paper proposes a convolution network with a novel
loss function to preserve the QRS complex structure and
denoise noisy ECG signals. The proposed model and custom
loss function computes a weighted combination of global
and local Mean Square Errors and improves the denoising
performance of the ECG in terms of the SNR and heart
rate. This demonstrates the capability of the algorithm to bal-
ance between denoising the signal and preserving the peaks
effectively.

Furthermore, the HRV of the denoised ECG signals cor-
responds closely to that of the ground-truth ECG, which
significantly benefits HRV analysis, see Table 2. With high
noise reduction and low signal distortion, the practicality
and superiority of the proposed method become evident and
more suitable for clinical prognosis. Observing our additional
experiment, we show that our custom loss function can reduce
the computational cost associated with CNNs. Applications
such as TensorFlow Lite and PyTorch Mobile now allow for
on-device deep-learning frameworks. As such, this custom
loss function demonstrates that we can run accurate physi-
ological signal processing more sustainably in the interest of
green AI.
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