
Received April 8, 2022, accepted May 12, 2022, date of publication May 23, 2022, date of current version June 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176817

A Multiresolution Approach for Large Real-World
Camera Placement Optimization Problems
V. ANIRUDH PULIGANDLA , (Member, IEEE), AND SVEN LONČARIĆ , (Senior Member, IEEE)
Image Processing Group, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb,
10000 Zagreb, Croatia

Corresponding author: V. Anirudh Puligandla (apuligandla@fer.hr)

This work was supported by the ImmerSAFE Project under the European Union’s (EU’s) H2020-MSCA-ITN-2017 Call and is part of the
Marie Sklodowska-Curie Actions—Innovative Training Networks (ITN) Funding Scheme under Project 764951.

ABSTRACT There have been numerous attempts at solving the optimal camera placement problem across
multiple applications. Exact linear programming-based, as well as, heuristic combinatorial optimization
methodswere shown to be successful in providing optimal or near-optimal solutions to this problem.Working
over a discrete space model is the general practice when solving the camera placement problem. However,
discretized environments often limit the methods’ usage only to small-scale datasets due to resource and
time constraints that grow exponentially with the number of 3D points collected from the discrete space.
We propose a multi-resolution approach that enables the usage of existing optimization algorithms on large
real-world problems modelled using high resolution 3D grids. Our method works by grouping together the
given discrete set of possible camera locations into clusters of points, multiple times, resulting in multiple
resolution levels. Camera placement optimization is repeated for all resolution levels while propagating the
optimized solution from low to high resolutions. Our experiments on both simulated and real data with grids
of varying sizes show that using our multi-resolution approach, existing camera placement optimization
methods can be used even on high resolution grids consisting of hundreds of thousands of points. Our results
also show that the strategy of grouping points together by exploiting underlying 3D geometry to optimize
camera poses is not only significantly faster than optimizing on the entire set of samples but, it also provides
better camera coverage.

INDEX TERMS Image decomposition, integer linear programming, heuristic algorithms, pareto
optimization.

I. INTRODUCTION
Advanced Driver Assistance Systems (ADAS) that provide
surrounding view or top view from vehicles using multiple
in-vehicle cameras have recently found lot of interest
and applications in the vehicle industry, [1], [2]. Multiple
camera systems for vehicle surround-view generally use four
wide-angle or fish-eye lens cameras placed on the vehicle
to generate new perspectives from the obtained images.
For small vehicles, like cars, it is intuitive to place four
cameras on four sides of the vehicle. Assembling a multi-
camera surround-view system for larger vehicles, such as,
construction equipment, is complicated due to large sizes
and irregular shapes of these heavy machines. Calibration
of multiple cameras is a complex task. It is known that

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

vehicle surround view systems rely on camera calibration,
[3], to estimate the cameras’ poses with high accuracy.
An optimal camera placement setup proposed using, high-
resolution, realistic 3D vehicle models can aid in camera
calibration by providing an initial accurate estimate of
cameras poses in real-world.

Camera placement optimization or optimal camera place-
ment (OCP) is a decades old problem. OCP problems have
been applied to a wide range of applications such as, video
surveillance, [4], 3D reconstruction of objects, [5], human
behaviour monitoring and motion capture systems, [6], [7],
OCP with VR interface, [8], and so on. Problem formulation
frameworks range from simple single objective, minimization
or maximization problems, [9], to more complex, multi-
objective or non-linear problems, [10]. Despite the variety,
one thing common to all of them is that the modelled
space is discretized. It is an established practice in OCP

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61601

https://orcid.org/0000-0002-9682-2433
https://orcid.org/0000-0002-4857-5351
https://orcid.org/0000-0001-8781-7993

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

problems to discretize the space and use combinatorial
optimization algorithms to find the optimal locations for
placing cameras. For example, for surveillance applications,
points are sampled randomly or at equal intervals over a
floor plan. While it is true that continuous space model
would provide better accuracy, continuous models are not
used due to their complexity (e.g., estimating camera
coverage requires calculating intersection between polygons
or volumes). Using sets of points for optimization is not
an efficient process when compared with continuous space
model, but it has shown to be a successful approach for all the
existing OCP problems across various applications. A large
number of sampled points are required for an acceptable
approximation of the continuous space. However, a greater
number of input points imply a larger solution search space
for the optimization algorithms resulting in an increase in the
time required for finding the solution to the OCP problem.

This work focuses on the use-case scenario of finding
optimal locations and directions of multiple cameras that
need to be placed on a vehicle to achieve surround-
view vision. Vehicle surround-view camera systems produce
surround-view outputs by combining the video streams of
individual cameras. Slight variation in a camera’s orientation
may result in serious artefacts in the surround-view output.
Therefore, it is necessary to ensure that the OCP problem is
applied on high-resolution, realistic 3D models of vehicles
so that the resulting optimized camera poses precisely
adhere to the real vehicle’s structure and surface boundaries.
To show applicability in real-world scenarios, we use
high-detailed realistic 3D models of vehicles in a space
modelled using high-resolution 3D grids where each voxel
represents few millimeters on the real vehicle’s surface.
While OCP problems used in this work consist of tens of
thousands of decision variables, the widely used branch-
and-bound optimization algorithm (a method that guarantees
the global optimal solution), [11], cannot handle more than
a few hundred variables due to limitations on the amount
of required resources, rendering it impractical for most
real-world OCP problems.

To overcome the limitations on the amount of resources
and time required by the optimization process, we propose
a new multi-resolution (MR) approach that works on only a
small subset of the input points at one time, thus, reducing the
size of the solution search space for any given optimization
algorithm. Our method is an iterative process that works,
at each iteration, by grouping the input points into a given
number of clusters and optimizing camera poses on the
clusters of points. At the end of an iteration, only the selected
clusters of points (i.e., solution obtained from optimization)
are propagated as input points for optimization in the next
iteration, while the rest of the points are discarded. Our
proposed multi-resolution representation can be compared
to the image representations used in different ‘‘multi-scale’’
image processing methods. We choose the term ‘‘resolution’’
because, when a number, N , of camera positions are grouped
into a number,K , of clusters, whereK < N , the cluster center

points, computed as the mean of all the points belonging to
the cluster, are represented as the new set of camera positions
for an iteration. This implies that the vehicle’s surface is
represented by K number of points instead of N resulting in
a ‘‘low-resolution’’ description of the vehicle’s 3D surface.
But, as the algorithm progresses through iterations, fewer
number of points get grouped together into clusters, result-
ing in a ‘‘high-resolution’’ representation of the vehicle’s
surface.

Primary advantage of our proposed MR method comes
from low-resolution descriptions as they reduce the size of
the search space for any optimization method irrespective of
the choice of the algorithm. This quality enables us to use
branch and bound-optimization methods on large real-world
models without encountering the resource constraints that
are integral to those methods. While it may be assumed
that working with only a subset of the points may result in
lower coverage accuracy, our results show that, in fact, our
approach improves the coverage accuracy that is obtained
when camera poses are optimized on the complete set of
sampled points. We believe this improvement arises due to
two factors; 1) by clustering the sampled points based on
their 3D position and surface orientation, we can effectively
capture the geometrical features of the vehicle’s surface,
thereby identifying important regions on the vehicle for
camera placement; 2) by representing the clusters of points by
the mean position, we can achieve sub-voxel accuracy on the
vehicle’s model, thereby adding some degree of continuity to
an otherwise discrete optimization problem.

Camera placement optimization on the entire set of sam-
ples without clustering will be called as single resolution (SR)
optimization in the remainder of this document. The results
from SR optimization on the same data are used to establish
the efficacy of our proposed MR method. It is important to
note that all discrete optimization problems used in different
OCP applications require a ‘‘look-up’’ table describing the
coverage of every point in the dataset. This look-up table,
known as visibility matrix, is computed beforehand as a pre-
processing step. In fact, this step is expensive in terms of time
required as it involves millions of geometrical calculations.
Existing literature in this field overlooks this problem as it
considered to be a pre-processing step, where the visibility
matrix can be computed once per dataset and stored in a file,
for example. However, our experiments show that, for large
real-world data, computing this matrix is impractical as it
takes several hours when the number of sampled points range
in tens of thousands. Our results show that by reducing the
number of input camera points, the MR method significantly
reduces the time required for the overall optimization process
(including the time required for the pre-processing step of
visibility calculations) while improving the camera coverage
quality.

The rest of the document is organized as follows: Section II
provides an overview of prior relevant research, Section III
describes the optimal camera placement problem for vehicle
surround-view, Section IV describes the multi-resolution

61602 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

method and the results and conclusions are discussed in
Sections V and VI, respectively.

II. BACKGROUND WORK
The origins of optimal camera placement trace back to
the art gallery problem, [12]. Work done by Hörster
and Lienhart, [9], and by Erdem and Sclaroff, [13], can
be considered pioneering in the field of optimal camera
placement for indoor surveillance scenarios. Given an indoor
setting with a floor plan, their work aims to optimally place
a certain number of cameras in designated regions to cover
as much of the floor as possible. They proposed multiple
problem statements, such as, to minimize the cost of the
multi-camera network, maximize coverage given a desired
number of cameras, etc. They use binary decision variables
to model possible camera locations and the points that are
to be covered by the placed cameras (named control points).
They use the branch-and-bound method which is classified
as non-heuristic as it can provide provable bounds around
the optimal solution, [11]. The proposed linear programming
framework is aptly named binary integer programming (BIP),
and has been proven, over the past decade, to be the most
accurate model, although, expensive in terms of time and
resource consumption.

Most BIP-based formulations are NP-complete. Branch-
and-bound algorithms, due to this reason, often require
impractical amounts of time and resources to find exact
optimal solutions for even small datasets. To circumvent
this limitation, numerous approximate optimization methods
have been proposed. Despite being prone to local optima,
approximate methods find widespread interest in research
and practical applications due to lower algorithmic complex-
ity. Hörster and Lienhart, [9], presented an adaptive greedy
algorithm that works by creating a rank-matrix for all the
possible camera locations. The rank is calculated as the total
number of control points covered by each camera pose. The
algorithm iteratively picks a camera pose with the highest
rank until the required number of cameras are placed. It is an
adaptive greedy heuristic because once a camera is selected,
that position and the covered control points are removed
and only the remaining points are considered for the next
camera. Such a feature, however, removes the combinatorial
aspect of the OCP problem, but enables it to provide a
feasible solution in significantly less time than branch-and-
bound-based optimization. Due to their lower complexity,
Greedy algorithms are often used for an upper bound on the
solution or as a solution initialization step in a more complex
algorithm, [14].

The authors in [15] proposed a search heuristic method
called particle swarm optimization (PSO). The method works
by initializing a number of particles spread randomly across
the search space. The particles are compared in terms of
the objective function value and the best one is picked
as the solution to the OCP problem. In the category of
genetic algorithms, Gupta et al., proposed an algorithm
that works in a similar fashion to the genes present in the

human body. It starts with an initial solution and makes
mutations and crossovers of the initialized solution while
keeping a record of the objective function values of each
candidate solution. The candidate with the best objective
function value is selected as the final solution after a
certain number of mutations. Evolutionary algorithms like
PSO have been extensively studied in camera placement
optimization problems. Wang et al. proposed two variants
of PSO algorithm in [16] and [17], respectively. While
the core algorithm remains same as the standard PSO,
in RPSO, they use a weighted particle re-sampling scheme to
maintain diversity in the particle population. Similarly, in LH-
RPSO, [17], they replace the re-sampling strategy of RPSO
with a new Latin Hypercube-based particle sampling strategy.
Both their methods are claimed to improve solutions obtained
by the standard PSO algorithm. Some other approximate
optimization techniques, including probabilistic search space
sampling techniques and evolutionary algorithms are detailed
in [18]–[20].

All the approximate optimization methods try to uniformly
search the solution space without having to go through
all the combinations. Due to this reason, they are faster
than exact BIP-based optimization. But, unlike BIP-based
method, they fail to find the global optimal solution and
often end up in local optima. In, [21], citing the difficulties
in solving real-world OCP problems due to its NP-hard
characteristic, Ahn et al. proposed a two-phase algorithm
as an approximate optimization algorithm. Their method is
similar to the method we propose in this work, as both
try to solve a simplified OCP problem at lower image
resolutions first. However, their method works only in two
resolutions and is proposed only for two-dimensional data.
Additionally, they use different optimization algorithms for
the two resolution levels. In contrast, we propose a general
method that is applicable to 3D data of any kind and
size. The only requirement for our method is that the dis-
cretized possible camera locations have an associated camera
view-direction vector.

Despite the vast amount of literature in this field, their
applicability to real world OCP problems is challenging.
One of the algorithms presented by Kritter et al. [14] is a
row weighting local search (RWLS) algorithm that was
originally proposed by Gao et al., [22], for the general
unicost set covering problem. The RWLS optimization
method was recently explored in the context of OCP in [23].
Kritter et al.mentioned in [24] that RWLSwas not yet studied
in OCP scenarios. They proved the method’s superiority
in [14] where they studied the OCP problem for large 3D
models of European cities. However, citing the method’s
complexity, they mention that their models were sampled
sparsely at large intervals to obtain a feasible solution
in reasonable amount of time. In contrast, we test our
method on models with tens of thousands of sampled points.
Apart from these application-specific methods, some surveys
give a comprehensive overview on various modelling and
optimization strategies for the OCP problem, [24], [25].

VOLUME 10, 2022 61603

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

There also exist some bi-objective methods that aim to
maximize coverage while simultaneously minimizing the
cost of the multi-camera system, [26]. Although, triangular
or pyramidal camera field-of-view models are prevalent,
there exist many other types of camera coverage models
in usage, [27]. Finally, it is to be noted that the choice of
coverage quality metric is also important to achieve reliable
results, [28].

III. OCP FOR VEHICLE SURROUND-VIEW
The optimal camera placement problem includes few steps
such as: discretizing the space, defining binary decision
variables, defining an objective function (e.g., maximizing
camera coverage), and finding the optimal value of the
objective function while enforcing certain constraints on
values taken by the variables. Our proposed formulation of
the problem of OCP for vehicle surround-view is detailed
in the following sub-sections. Our problem formulation
is like the BIP-based framework proposed in [9]. Some
modifications were made to the problem to allow greater
degrees of freedom for camera poses and extension to three-
dimensional space. Because the camera view directions have
an additional degree of freedom, these modifications only
increase the complexity of defining the variables, whereas,
the objective function, constraints and the optimization
procedure remain unchanged.

A. MODELLING SPACE
We model the space as a volume using a structured grid.
Structured grids are a collection of points forming a symmet-
ric 3D grid, [29]. These points usually represent the centroids
of encompassing voxels. Such a representation is discrete in
nature, hence, there is no further need to sample the space
for discrete data. The space for the optimization problem
is defined within the volume. To keep the simulations
realistic, we collected 3Dmodels of different heavymachines
used in the construction industry, that are freely available
on crowd-sourced internet platforms, such as, [30]. The
polygonal models were voxelized into a structured grid using
an open source tool called binvox, [31], [32].

The linear programming formulation for the optimal
camera placement problem requires definition of two discrete
sets of variables: (1) possible camera poses, and (b) points
that are viewed by the placed cameras (commonly known as
control points). In the problem of OCP for vehicle surround-
view, the voxelized vehicle model is placed at the center of
the volume, with the slice of voxels at y = 0 representing
the ground plane. The control points are defined around the
vehicle on a spherical cap surface, [33], with a radius of
12 meters from the center of the vehicle. This value of radius
was chosen as it gives a level of visibility that is required for
surround-view under safety critical conditions, [34]. Fig. 1
shows an example visualization of the modelled space with a
voxelized bulldozer vehicle model placed at the center of the
volume. The vehicle is shown in red and the control points
are shown in blue.

For simplicity, we consider voxels on the entire surface
of the vehicle as possible locations where cameras can be
placed. To extract the vehicle’s surface, first, a morphological
dilation operation is performed on the voxels representing
the vehicle to grow its boundaries by one unit. Then,
the original volume is subtracted from the dilated volume,
leaving behind a one-voxel thick boundary on the vehicle’s
surface. These boundary voxels are defined as possible
locations for camera placement, xi ∀i ∈ N , where N is the
number of boundary voxels. Each position xi is associated
with a camera view direction vector, x̂i, computed using the
marching cubes algorithm, [35], on the vehicle’s surface.
Each camera is rotated in the pitch and yaw directions about
the primary view direction, at equal steps up to 90o on either
side.

If there are a total of 8 rotations for each camera, then the
set of all possible camera poses can be written as,

xiφ =

1 if a camera is placed at location

i with orientation φ
0 otherwise,

(1)

where, φ = 1, . . . , 8. The spherical cap around the vehicle
is defined by three parameters: radii of the top and bottom
circular segments and the height of the spherical cap. As a
spherical cap is defined in continuous space, all the voxels
that lie within 0.5 units of the surface of the spherical
cap are set as control points. The control points are given
as,

cj =

1 if control point j is covered

by at least one camera
0 otherwise,

(2)

for all j = 1 : J , where J is the total number of voxels on
the spherical cap surface. The objective function to maximize
multi-camera coverage by optimally placing a pre-defined
number of cameras, n, is given as,

max
∑
j

cj. (3)

The poses for these n cameras are selected from the set of all
possible camera poses xiφ , such that they maximize the sum
of control points cj that are covered by the n cameras.

B. MODELLING CAMERA’s FoV
The camera’s field-of-view (FoV) has been previously
defined in numerous ways, in both two and three dimensions,
for various optimal camera placement problems. Depending
on the application, a camera’s FoV can have multiple
coverage criteria, such as, visibility/occlusion, resolution,
etc., [27]. Moreover, some applications define multiple
types of cameras (for e.g., wide-angle lens, fish-eye lens,
etc.). For simplicity, we define only one type of camera
for our optimization problem with only one criteria for
visibility/occlusion. Defining and handling multiple types of
cameras and criteria is a simple and scalable process, but

61604 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

FIGURE 1. Example visualization of modelled space with bulldozer vehicle model. The voxels in red represent the set of possible camera locations,
whereas, voxels in blue show the control points.

with a downside of increased complexity of the optimization
problem. For our problem, we adopt the commonly used
pyramidal FoV model in three dimensions. The pyramidal
FoV is described using three parameters, namely, depth of
the view frustum, zf , horizontal field of view angle, αh and
vertical field of view angle αv. Additionally, the origin p and
view direction vector θ̂ associate the FoV pyramid to possible
camera poses xiφ .

C. VISIBILITY CHECKS
It is necessary to define an additional variable giφj specifying
if a control point cj is covered by a camera pose xiφ or not.
It can be precomputed for all camera poses xiφ using simple
geometrical calculations and stored in a two-dimensional
visibility matrix. The variable is described as,

giφj =

1 if control point j is

covered by a camera placed at
position i with orientation φ

0 otherwise.

(4)

Visibility of a control point cj by a camera at xiφ is determined
by using point in plane calculations. If a control point lies
inside all the five planes of the camera’s FoV pyramid,
then the corresponding entry in the visibility matrix is
marked as 1. This pre-processing step can be expensive when
the set X consists of tens of thousands of points. For N
camera positions, J control points and 8 orientations for
each camera position, the time complexity of our visibility
algorithm is O(N8J). This complexity can be considered to
be simpler when compared to other state-of-the-art methods
as we do not consider any static or dynamic occlusions
(except for self-occlusion) in our model. However, without
parallel computations, the time required for these calculations
may be impractical for real-world OCP scenarios. As the
geometrical calculations are mutually independent, to speed

up the process of creating the visibility matrix, we perform
these calculations parallel on the GPU using OpenCL.

In our experiments, the largest model has over 14 million
points in the initial set xiφ , and over 1500 sampled control
points. As it is not possible to construct a matrix of this size,
we introduce two additional conditions to filter out camera
poses that do not make any significant contribution to the
solution. The first condition is used to remove cameras whose
FoV is occluded by the vehicle itself. A threshold value,
covself , defines a tolerance value on the number of vehicle
points that are allowed to fall within a camera’s FoV. All
camera poses with occlusion more than the threshold are not
included in the final visibility matrix. Additionally, camera
poses that do not cover any control points (e.g., cameras
pointing directly up) do not contribute to the solution.
Similarly, cameras covering too few control points also do
not contribute to the solution of a coverage maximization
problem with fixed pre-defined number of cameras. A pre-
set parameter covmin, defines a lower bound on the number
of control points a camera needs to cover. All cameras that
cover less than covmin control points are not included in the
final visibility matrix.

D. INTEGER PROGRAMMING MODEL
Having defined the binary variables and the objective func-
tion, we need to enforce certain constraints that describe cov-
erage or place some restrictions on camera placement. First,
a constraint that expresses coverage defining variable, giφj,
in terms of other variables defined in (1) and (2), is given as,

cj ·
(∑

iφ

xiφ · giφj − 1
)
≥ 0. (5)

The above inequality is non-linear as it involves the product
of two binary variables. It can be linearized by adding a
binary variable, viφj, representing the product, cj · xjφ , and

VOLUME 10, 2022 61605

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

the following two constraints,

cj + xiφ ≥ 2 · viφj (6)

cj + xiφ − 1 ≤ viφj. (7)

The following constraint is required to ensure that n camera
poses are selected, ∑

iφ

xiφ = n. (8)

Lastly, to ensure that one possible camera location does not
have more than one camera placed, the following constraint
needs to be added, ∑

φ

xiφ ≤ 1. (9)

The integer programming model for the optimal camera
placement problem for vehicle surround-view coverage is
defined as,

maximize
∑
j

cj

subject to (5), (6), (7), (8) & (9). (10)

IV. MULTI-RESOLUTION METHOD
All approximate optimization methods used for optimal cam-
era placement problems build on the core idea of effectively
exploring only a subset of the solution search space without
having to search all of it for the global optimal solution.
Our proposed multi-resolution method, on the other hand,
is built to explore only the important regions in the modelled
space, therefore, reducing the size of search space before
even the optimization procedure begins. In fact, with fewer
number of points in the set of possible camera positions,
xi, our method can exponentially decrease the number of
calculations required in the pre-processing step of visibility
checks. The idea behind the multi-resolution method is to
group the initial set of possible camera placement locations,
xi, into K clusters of points, and optimize for n camera poses
while considering the cluster centroids as the new set of
possible camera locations. The clustering step reduces the
size of xi from N to K , where K � N , therefore decreasing
the total number of combinations of possible solutions (i.e.,
the solution search space). The two steps of clustering and
optimization are repeated iteratively, while propagating the
solution from one iteration to the next. It means that only the
camera points comprising the n clusters of points, selected in
this iteration as the optimal camera poses, are passed onto
the next iteration, while the rest of the camera points are
discarded. The iterative process stops when the number of
camera points comprising the selected n clusters, in a certain
iteration, is less than a user-defined limit, l. At this stage,
camera poses are optimized, for one last time, without any
further clustering of the input set of points, xi. Figure 2
shows an illustration of the multi-resolution method, and, the
next paragraph explains, through an example, the iterative

FIGURE 2. An illustration of the multi-resolution optimization method
showing an example situation of placing two cameras on the data points.
At each resolution the selected camera points are highlighted in solid
color. Only the sets of points shown in solid color propagate to the
subsequent resolution level, with the rest being discarded.

process and the reasoning behind naming the method as
multi-resolution.

Consider a 3D model of a bulldozer vehicle. A standard
bulldozer vehicle would measure 4.5 meters in its longest
dimension (length). When it’s 3D model is voxelized into a
cube of length 128 voxels, the longest dimension is fit exactly
into 128 voxels. It implies that each voxel in the voxelized
3D model would measure 4.5

128 ≈ 35mm, i.e., r = 35mm
is the 3D image’s resolution. Assuming the bulldozer model
consists of N = 11, 000 voxels representing the surface
of the vehicle and that the voxel surface is uniformly one
voxel thick, the surface area can be calculated as N × r2.
Now, if the surface voxels are grouped together into K =
100 clusters, assuming that all the clusters are uniform in
shape and size, the resolution of the resulting clustered image

will be
√

N×r2
K ≈ 367mm. Because the vehicle’s surface is

represented by larger voxels than the original image, we call
the clustered data as low-resolution image. Say we want to
optimize poses of n = 5 cameras. Given that the approximate
size of each cluster in this case is 110 voxels, we will have
N = 550 points, belonging to the 5 clusters that were selected
as the solution in this iteration, that will be passed as input to
the next iteration. Assuming l = 200, the input points will
be clustered again into K = 100 clusters because 550 > l.
This results in a resolution of 82mm for this iteration. It is to
be noted that this resolution is higher than previous iteration
but it is still lower than the original resolution of 35mm. The
clustering and optimization steps are repeated until when N
becomes lower than l. When N < l, the input points are not
clustered any further and the set xi for optimization at this
stage is a small subset of the original set of points with the
resolution, r = 35mm. Because the resolution of the last
iteration is same as the resolution of the original voxelized

61606 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

model, we call it as the highest resolution, while, the first
iteration is called lowest resolution.

A. CLUSTERING BASED ON POINT ORIENTATION
3D image clustering is an extensively studied topic in the field
of computer vision. Well-known, unsupervised clustering
methods such as the K-means and the Gaussian mixture
model algorithms, [36], [37], are proven to be efficient on
general 2D/3D point data. There also exists a vast variety
of application specific clustering methods, such as, for 3D
point cloud data, [38], [39], 2D images, [40], 3D image
(RGB+D) data, [41], etc. The data we use here for OCP is
like 3D point clouds, i.e., each camera position is represented
using 3D spatial coordinates along with an associated 3D
vector representing the camera’s view direction. However,
to our knowledge, clustering methods tailored specifically for
OCP problems do not exist. We propose a new clustering
method adapted from the SLIC algorithm proposed by
Achanta et al., [42].

Our clustering algorithm is an iterative process, where all
the points are assigned to a set of cluster centers, while at
each iteration, new clusters centers are added or existing
ones are removed depending on the number of outlier points.
The input to the algorithm is a set of N 6D vectors, ai =
[xi yi zi ui vi wi]T , that are a merger of the set of possible
camera positions, Pi = (xi, yi, zi), and their associated
primary orientation vectors, P̂i = (ui, vi,wi). It is to be noted
that clustering is done based only on the primary orientations
of the camera points. At this stage, the rotations, 8, for the
camera positions do not yet come into play as those rotations
about the primary view direction vector are computed after
clustering, and before optimization, to form the set, xiφ ,
of possible camera poses. The input set of points are grouped
together into a set of K clusters, where the value of K is
chosen by the user and passed as input to the algorithm.
Initially, a set of clusters seeds, Ck = [xk yk zk uk vk wk]T

, k = 1, . . . ,K are selected from the input set of points, ai.
The output of the algorithm is a labels vector of values k for
each point ai indicating the cluster it belongs to, and a set of
cluster centers Ck that are estimated as the average of all the
points ai belonging to each cluster k . The clustering process
can be broadly categorized into three steps: 1) initialization
2) assignment and 3) update.

The initial seeds are selected through a strategy that
exploits the orientations associated with the camera positions.
Assuming that all the clusters are uniform in size, the
approximate size of each cluster is given as, csize = N

K . Under
another assumption that the clusters are uniform in shape,

the length of each cluster can be given as, S = 3
√

N
K . The

input points ai are first voxelized using the voxel grid filter
provided as part of the Point Cloud Library API, [43], with
S as the length of the resulting voxels. The voxel grid filter
essentially downsamples the points using a 3D grid, where the
centers of each cell represent the mean of all the points that
fall within that cell. Selecting a length of S for the voxel grid
ensures that the resulting points are all spaced at least S units

apart. Downsampling with a voxel grid results in a number of
points that is usually larger than the number of clusters, K .
We randomly select K points, from the downsampled set of
points, to represent the initial set of clusters centers, Ck .
In the assignment step, the points ai are, each, assigned

a label k corresponding to the cluster center Ck that it
belongs to, based on a distance metric D. D is computed
as a combination of the Euclidean distances between the
position and the normal vectors of a point ai and a cluster
center Ck . If the Euclidean distance between the position
vectors of a camera point and a cluster center is given
as, ds =

√
(xi − xk)2 + (yi − yk)2 + (zi − zk)2, and the

Euclidean distance between their normal vectors is given
as, dn =

√
(ui − uk)2 + (vi − vk)2 + (wi − wk)2, then the

distance metric is written as,

D =

√
d2n +

m
S
· d2s ,Changes (11)

where, m, is a user-defined parameter that acts as a relative
weight between ds and dn. The spatial distance has to be
normalized by the search radius S because, dn is usually under
1 as it is computed using unit normal vectors, whereas, ds
varies from model to model. During assignment of points to
clusters, only the points lying within a radius of S units from
a cluster center are searched and compared using the distance
metric. It implies that the farthest point assigned to a cluster
center cannot be more than S units away from it, spatially.
Therefore, normalizing by S brings the value of ds similar to
that of dn.
We go through each cluster center sequentially, search a

spherical neighbourhood of radius S around it, and assign the
encountered points to the cluster center if it is the smallest
distance, D, the point has seen so far. There can be some
overlap between different clusters as the search radius around
a cluster center is same as the distance between two cluster
centers (recollect that both are equal to S). Due to the overlap,
it might happen that some points initially assigned to one
clustermay get reassigned to another. This, however, provides
some flexibility to the size of clusters, allowing some clusters
to be larger or smaller to better fit the vehicle’s 3D structure.
Once the neighbourhoods of all the initialized cluster centers
are checked, the outlying points that have not been assigned
to any of the cluster centers are collected (Let us call the
count of outlying points as Nol). At the same time, the size
of each cluster, i.e., the number of points assigned to each
cluster center are also counted. The number of unassigned
points together with sizes of exiting clusters give us an
estimate on howmany cluster centers to be added or removed.
This feature makes the clustering process dynamic in nature,
helping to accurately cover the vehicle’s entire surface.

In the update step, first the cluster centers that do not
have any assigned points are removed. If Kr cluster centers
are removed, the remaining K − Kr cluster centers, Ck ,
are updated as the mean of all the points, ai, assigned
to the each cluster center. An estimate of cluster centers
that need to be added is obtained by diving the number of

VOLUME 10, 2022 61607

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

outlying points by the, previously calculated, approximate
cluster size, csize, i.e., cadd =

Nol
csize

. The set of outlying
points is processed in the same way as the initialization
step, to initialize cadd number of new cluster centers. This
process of adding and/or removing cluster centers changes
the number of clusters (say, the final number of clusters after
completion is K ′) that was initially selected by the user.
The approximate cluster size, calculated previously from
the user-inputted number of clusters, K , however, remains
constant throughout the clustering, making csize (or S) as
the primary parameter that controls the clustering process.
Therefore, the two parameters, K and S, are interchangeable
as input to the clustering algorithm. We run the clustering
process with k as input.
The assignment and update steps are repeated iteratively

until, either the number of outlying points changes by less
than 10% from the previous iteration, or if there are no more
cluster centers required to be added. For example, when
Nol < csize, cadd , as an integer division, becomes zero,
implying that no additional cluster centers can be initialized.
Our experiments show that the algorithm usually runs until
there is no possibility of adding any more clusters. Hence,
when the stopping criteria is satisfied, the existing cluster
centers are updated as the mean of all the points assigned
to the cluster, and the outlier points (if any) are checked
against all the cluster centers using the distancemetric,D, and
assigned to the closest cluster center, as a last step. At the end,
the total number of clusters may be different than the value
of K initially chosen by the user, but the dynamic process
ensures that the surface of the vehicle is effectively captured
by uniform clusters. The complete algorithm is detailed in
Algorithm 1. The clustering algorithm has a time complexity
of O(N).

B. ALGORITHM
The initially collected set of voxels representing the vehicle’s
surface, Pi, and their primary orientation vectors, P̂i (together
represented as a set of 6D points, ai), and the set of control
points, bj = [xj, yj, zj]T are passed as input to the multi-
resolution (MR) algorithm.Additionally, the required number
of cameras to be optimally placed, n, is also passed as
input to the algorithm. As illustrated at the beginning of this
section, the MR method involves two steps: 1) Clustering
of input points, and; 2) Optimizing for camera poses
considering the cluster centers as the new set of possible
camera locations. These two steps are repeated iteratively
until the total number of variables in the set ai is more
than the pre-defined limit, l. The algorithm starts with a
loop where the two steps of clustering and optimization are
repeated.

Initially, the set of points ai are clustered into K ′ clusters.
Following this step, the set ofK ′ cluster centers,Ck , represent
the new set of possible camera locations, ai, thus, decreasing
the size of input from N to K ′. These points are then rotated,
about the associated primary direction vector (remember that
Ck [xk yk zk uk vk wk]T is 6D vector representing both position

Algorithm 1: Clustering Based on Point Orientation

Input: K,ai = [xi yi zi ui vi wi]T ∀ i = 1 : N ;
Result: labelsi = k ∀ i = 1 : N , Ck ∀ k = 1 : K ′

S = 3
√

N
K ;

Initialize: Ck = [xk yk zk uk vk wk]T ∀ k = 1 : K ;
Di = inf, labelsi = −1 ∀ i = 1 : N ;
K ′ = K , t = 0, Nol(t) = N , csize = N

K ;
while (1) do

for k = 1 to K ′ do
for ai in neighbourhood of radius S do

D = D(ai,Ck) as in equation 11;
if D < Di then

Di = D;
labelsi = k;

end
end

end
outliers = collect points with label == −1;
Nol(t + 1) = size(outliers);
remove all centers with size(Ck) < 1;
cadd =

Nol (t+1)
csize

;

if (Nol (t)−Nol (t+1)Nol (t)
< 0.1) || (cadd < 1) then

break;
end
Re-estimate Ck as mean of all ai with labelsi == k;
Initialize cadd clusters and append to Ck ;
K ′ = K after adding and/or removing clusters;
t = t + 1;

end
Force assign outlying points to nearest cluster;
Re-estimate Ck as mean of all ai with labelsi == k;

and orientation) to form the set of variables xiφ . Together
with 8 rotations in the four directions, the resulting set of
possible camera poses consists of ((8 + 1) × K ′) number
of points (instead of (8 + 1) × N points when considered
without clustering). Followed by the rotation step, visibility
checks are performed on the sets of variables, xiφ and cj,
to create the visibility matrix, as detailed in Section III-C.
Post the visibility checks step, the accepted camera poses (the
exact number depends on parameters covself and covmin and
varies from model to model) comprise only a small subset
of the original set of points, as most of the possible camera
poses that do not fulfill visibility criteria are discarded. Binary
variables, xkφ and cj, are then initialized over the accepted
camera poses and the complete set of control points, and
passed as input to the user-chosen optimizationmethod, along
with the binary variables gkφj that represent the visibility
matrix.

This algorithm can work with any optimization method,
as all discrete combinatorial optimization methods take the
same input (integer decision variables, set of constraints and a
pre-computed visibility matrix) and produce the same output
(set of optimal camera poses). The optimization process

61608 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

then selects n (where n is a number chosen by the user
representing the number of cameras to be optimally placed)
optimal camera poses from the input set, by optimizing
the objective function while enforcing the constraints. After
completion of the optimization process, the obtained solution
is processed for the next iteration. The points belonging to
the n optimally selected clusters are extracted to represent the
new set of possible camera locations ai. The rest of the points
belonging to the remaining K ′ − n clusters are discarded.
If the number of points, N , in the new set ai are more
than l, then the steps of clustering, creating rotated direction
vectors, visibility checks, and optimization, are repeated.
Otherwise, the program exits the loop and optimization is
done on the remaining set of points ai, for one last time,
without clustering. As these points are not clustered any
further, this step of final optimization is called the highest
resolution level. It might sometimes happen that the solution
obtained at the highest resolution is worse than a solution
obtained in one of the previous iterations. Therefore, the
solution at each iteration is saved and the best of all solutions
is presented as the final result of the MR algorithm. The
output of the algorithm is a set of n 6D vectors, camSoln =
[xn yn zn un vn wn]T representing the poses of the optimally
placed cameras.

The multi-resolution optimization algorithm is detailed in
Algorithm 2. Initialization of parameters m, l,8, covmin and
covself is discussed later in Section V-A. In the algorithm, the
functions cluster(), rotate(), visibilityChecks() and optimize()
each perform a specific task as implied by their names, such
as; the function cluster() performs the clustering operation
as described in Algorithm 1; the rotate() function produces a
set of 8 rotated direction vectors about each camera pose’s
primary orientation, as described in Section III-A; visibility-
Checks() performs all the necessary calculations described in
Section III-C and sets up the visibility matrix, and; function
optimize passes all the variables and the parameter n to
the user-selected optimization method (such as, branch-and-
bound, greedy heuristic, etc.) to obtain the optimal camera
poses. In the rotate() function, the notation ‘‘·̂’’ refers to the
direction vector (P̂ = [u, v,w]T) part of the 6D variable.
Lastly, the optimize() function in the loop returns a vector of
labels, kn, of the n solution clusters. kn is shown in the while
loop, whereas it is omitted from the call to optimize() function
in the highest resolution because, the input points at this stage
correspond to points from the original voxel image without
any clustering. By saving the clusters’ labels, we can easily
track and retrieve all the camera points that belong to those
clusters.

The time complexity of our proposed MR algorithm
depends on three factors, i.e., the individual complexities
of clustering, visibility checks and optimization steps. Time
required for the clustering step, with a linear complexity
depending on the number of input points in set xi, varies
from one resolution level to another. It requires highest
computational time for the lowest resolution level when the
size xi is equal to N , whereas, the computational time for

Algorithm 2:Multi-Resolution Optimization

Input: ai = [xi yi zi ui vi wi]T ∀ i = 1 : N ,
cj = [xj, yj, zj]T ∀ j = 1 : J , K, n;
Result: camSoln = [xn yn zn un vn wn]T ∀ 1 : n
Initialize parameters m, l,8, covmin and covself ;
covbest = 0;
/* lower resolutions */
while N > l do

[Ck , labelsi] = cluster(ai,K);
Ckφ = rotate(Ĉk);
xkφ = VisibilityChecks(Ckφ, cj);
[soln, kn, cov] = optimize(xkφ, cj, n);
if cov > covbest then

camSoln = soln;
covbest = cov;

end
ai = all points with labelsi = k ∀ k = kn;
N = size(ai);

end
/* higest resolution */
aiφ = rotate(âi);
xiφ = VisibilityChecks(aiφ, cj);
[soln, cov] = optimize(xiφ, cj, n);
if cov > covbest then

camSoln = soln;
covbest = cov;

end

subsequent resolution levels decreases with each level as
the number of points in input set xi at a resolution level
t + 1 is always less than the number of points in xi at
level t . The complexity of visibility checks step is given
as O(K ′8J), as after the clustering step, the MR method
works with only K ′ points. This is significantly lower than
the corresponding complexity for SR method (O(N8J))
as K ′ � N . The complexity of the optimization step
depends on the chosen optimization algorithm. For example,
the linear programming based-branch-and-bound algorithm
has an exponential complexity whereas the particle swarm
optimization method has a linear complexity in the number
of particles. The number of points passed as input to the
optimization algorithm, after visibility checks operation,
represent only a small subset of the points in xiφ . Consider
the number of input points after visibility checks for to be N ′

for SR method and N ′′ for MR method. Then for the simplest
of all cases, if we assume that all the chosen optimization
methods have linear time complexity, the complexity of MR
method can be given as, O(N ′′), which is again significantly
lower than the complexity for SR method (O(N ′)) because,
N ′′ is a subset of the set with K ′ × 8 points whereas, N ′

is a subset of the much larger set with N × 8 points. If the
values of parameters covmin and covself are kept same for
MR and SR methods, then N ′′ will always be much lesser
than N ′.

VOLUME 10, 2022 61609

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

V. RESULTS
Experiments were conducted on synthetic data as well as on
3D models of real vehicles used in the construction industry.
The need for synthetic data arises due to large sizes of
high detail 3D models of real construction equipment. The
main problem arises with the binary integer programming
formulation-based branch-and-bound optimization algorithm
that has high memory or time requirements. Due to this
shortcoming OCP environments with large sizes cannot be
handled using the available resources. Therefore, we created
simulated data using simple geometrical structures, roughly
resembling vehicles. As, this data has small number of
samples, we present a detailed comparison of all the
considered optimization methods. However, tests on real
data further validate the efficacy of our method. We created
four models resembling a car, a van, a truck and a bus in
four different sizes, S, M , L and H . All the models in the
four size categories have about, 75, 200, 650 and 1300 voxels,
respectively (or possible camera locations). The number of
control points remains same for the four vehicle models at
about 320, 530, 1650 and 3360, control points, for the four
sizes, respectively. In total, the simulated data consists of
16 instances. Similarly, there are 16 instances of real data, i.e,
four vehicle models, namely, bulldozer, JCB, mining truck
and tractor scraper, in four sizes labelled as 32, 64, 128,
and 256. The real data was obtained as 3D polygon models
which were voxelized into cubes of lengths 32, 64, 128 and
256 voxels. The JCB vehicle model, being the smallest of
the four has ∼ 2300 voxels on the surface of the model
(possible camera locations) when voxelized into a cube of
32 voxels, and ∼ 115000 camera locations when voxelized
into a cube of 256 voxels. Whereas, the mining truck vehicle
model, being the largest of the four has ∼ 6600 and ∼
360000 surface voxels when voxelized into cubes of 32 and
256 voxels, respectively. The tractor scraper and bulldozer
models have similar size with ∼ 170000 surface voxels at
size-256. It is to be noted that for every instance, the total
number of variables, for each model, before visibility checks
is given by the number of boundary voxels multiplied by8 =
97. This implies that for the largest model (Mining truck-
256), the total number of input variables before visibility
checks is ∼ 35 million. The polygon and voxelized models
of real vehicles have been made publicly available.1

On simulated data, for each of the 16 instances, we test five
optimization methods using the single resolution (SR) and
multi-resolution (MR) optimization strategies. To recollect,
SR is when we optimize for camera poses on all the camera
locations (voxels) that are part of the vehicle’s surface,
without any clustering or sub-sampling. Whereas MR is
when we cluster the sets of vehicle’s surface voxels multiple
times and optimize camera poses on the set of cluster
centers. To validate our proposed MR optimization strat-
egy, using C++ programming language, we implemented

1https://github.com/AnirudhPuligandla/multi-resolution-optimal-
camera-placement.git

the Greedy Heurisitc (GH) proposed in [9], Metropolis
Sampling (MS) proposed in [19], row weighting local
search heuristic (RWLS) algorithm proposed in [22] and
the LH-RPSO algorithm proposed in [17]. The LP-based
branch-and-bound algorithm (LP) provided by CPLEX, [44],
is the fifth optimization algorithm that we used for validation.
As the branch-and-bound algorithm is known to provide
provable bounds on the optimal solution, it is a good
choice to compare against the results from approximate
algorithms on the data that we used for this work. However,
on the 16 instances of real data, we chose to test only one
of the two evolutionary algorithms (MS and LH-RPSO).
In consequence, we dropped MS method as coverage results
on simulated data showed that LH-RPSO is better and
consistent than the MS method. Control point coverage for
simulated data and real data are shown in Table 1 and Table 3,
respectively. Whereas, the total optimization times for tests
on simulated and real data are presented in Tables 2 and 4,
respectively. Figure 3 shows an example visualization of the
bulldozer, JCB and mining truck vehicle models at size-
256. The second row in the figure shows visualizations of
three OCP solutions. The next two sub-sections detail the
values for all the parameters and somemodifications to SOTA
algorithms, respectively. Detailed analysis of the results is
presented in Section V-C.

A. PARAMETERS
The value of the limit is decided based on the system’s
hardware, i.e., the number of variables and constraints the
LP-based branch and bound algorithm can handle without
running into the out-of-memory error. All the experiments
were run on an Intel Core i7-8700K CPU with 12 processing
cores and 32GB of RAM. Parallel processing was done using
the 12 processing cores of the same CPU. Given our system’s
hardware, and through trial-and-error, we chose a value of
l = 200 for all our experiments. In all our experiments spatial
distance was given twice the importance as compared against
dn, therefore, we chose m = 2.0 for the clustering process.
The primary direction vector at each possible camera location
was rotated at steps of 3.75◦ in each direction, producing a
total of 96 rotations, i.e., for each possible camera position,
8 = 97, including the primary camera orientation. covself =
0, for all experiments ensured that camera poses occluded by
the vehicle were excluded from the visibility matrix. In all
cases, we optimized to place five cameras, i.e., n = 5 for all
experiments.

Choosing a uniform value for covmin is tricky as, a small
value may allow too many variables in the visibility matrix,
leading to a possible out-of-memory error when using the
branch-and-bound algorithm, whereas, a lager value may
lead to too few variables in the visibility matrix, thereby
removing the combinatorial aspect of the optimization
problem. To maintain uniformity across all the experiments,
we chose a value for covmin in such a way that an accepted
camera pose would cover at least 70% of an expected number
of control points for one camera, under ideal circumstances.

61610 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

FIGURE 3. Figure showing 3D models of (a) Bulldozer, (b) JCB, and, (c) Mining truck, heavy vehicles, voxelized into cube of length 256 voxels. The bottom
row shows visualizations of OCP results with five optimally placed cameras, obtained using (d) LP method at multiple resolutions for bulldozer model,
(e) GH method at single resolution for JCB model, and, (f) GH method at multiple resolutions for mining truck model.

For example, if a space model of a particular size category
contains J number of control points, the expected coverage
for one camera in the ideal scenario will be J

n . A value
covmin = 0.7 × J

5 was set which remains constant across
all vehicle models for one size category. The maximum time
limit for each test, i.e., the total time for the individual steps
of clustering, visibility checks and optimization, was set at
48 hours.

Considering the larger sizes of real data, the values
of parameters of individual optimization algorithms were
different for simulated and real data. Parameter l = 50was set
for simulated data as the smallest model has only 75 camera
poses. We set the same value of l for instances of simulated
data to maintain uniformity. The LP method provided by
CPLEX has multiple parameters that decide on optimality,
feasibility, choice of optimization algorithm, etc. For tests
on both real and simulated data, we chose to emphasise on
feasibility over optimality and allowed a tolerance of upto
6% in the gap of the feasible solution from the optimal
solution. The GH method does not have any parameters. The
MS algorithm was run until either all the available camera
poses were visited, or, until a number of iterations equal
to the available camera poses were completed. The RWLS
algorithm was run for 250 iterations on simulated data and
for 500 iterations on real data. The LH-RPSO algorithm was
run with 30 particles for both data, and, for 1000 iterations
on real data and 500 iterations on simulated data. These
values were chosen as a trade-off between coverage quality
and time required for optimization. All these values ensure
that optimization can be completed in reasonable amount of

time without noticeably compromising on coverage. As the
parameter values are kept same for bothMR and SRmethods,
it allows for a fair comparison between the two optimization
strategies.

B. IMPROVEMENTS TO SOTA METHODS
For the RWLS method, it is required to compute a matrix
describing neighbourhood relationships between all the
camera poses. A camera pose is considered a neighbour to
another if at least one control point is covered by both the
cameras. For an instance with α camera poses, the time
complexity for this step is given as, O(α2). Although this is
lower than the complexity of our visibility checks algorithm,
this step takes as much time, particularly for the SR method,
as in most cases the number of camera poses selected after
visibility checks is higher than the number of control points.
We perform these calculations parallel on our multi-core
CPU using OpenCL kernel code. Similarly, the GH method
requires re-computation of the visibility matrix after each
iteration. As we already perform parallel computations for
visibility checks, we re-use the same OpenCL kernel code
for the GH method to achieve an overall speedup.

C. ANALYSIS
In the presented tables, each row shows results for one
instance, with alternate columns presenting the results for SR
and MR methods, for the selected four or five optimization
methods. For each row in Tables 1 and 3, one entry is
highlighted in bold to represent the best obtained control
point coverage for that instance. Some entries in the tables

VOLUME 10, 2022 61611

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

TABLE 1. Table showing objective function value (in % of control points covered), obtained from the five optimization algorithms (LP, GH, MS, RWLS and
LH-RPSO) using both MR and SR methods for the four simulated vehicle models in four size categories (S,M,L,H) for each model.

TABLE 2. Table showing total optimization time (in seconds) taken by the five optimization algorithms (LP, GH, MS, RWLS and LH-RPSO) using both MR
and SR methods for the four simulated vehicle models in four size categories (S,M,L,H) for each model.

are marked as ‘–’ because, they could not be completed
either because of the out-of-memory error or because, the
entire optimization process could not be completed in under
48 hours. In the case of simulated data, experiments on any
of the four vehicle models for ‘L’ and ‘H’ sizes could not
be completed using LP method as the branch-and-bound
algorithm from CPLEX ran out of available RAM due to
high number of variables and constraints. From our trials,
we observed that with our available RAM the LP method
can be run till completion, only when the total number of
variables, i.e., the number of camera poses selected after
visibility checks plus the number of control points, is less than
∼ 3000. Similarly, for real data we omitted the entire column
for SR method using LP optimization because, none of those
tests were completed as all the sixteen instances had more
than 3000 variables. This shows that using the MR strategy
we can use LP optimization on large data where it was not
possible otherwise.

From Tables 1 and 3, we can see that optimization process
using LP method was completed for only eight of the thirty
two instances when using SR method. Whereas, with MR
method, optimization using LP method was completed for
thirty one out of the thirty-two instances. The only exception
is the tractor scraper 256 model where the total number of
variables exceeded 3000. Although this optimization can be
completed by lowering the value of parameter l, we did not
do that to maintain uniformity in parameter values across all
tests. By lowering the value of l we can set an upper bound
on the number variables that are passed to LP optimization
to thereby, avoid the out-of-memory error. It is to be noted
that changing the value of l will also change the number
of resolution levels, i.e., the number of iterations of the
MR method. We believe that a lower or higher number of
iterations changes the solution at that iteration but, it does not
have any effect on the overall best solution obtained using the
MR method.

61612 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

From Table 1, it can be seen that for simulated data,
MR strategy provides the best control point coverage for
twelve out of the sixteen instances. For three instances,
both MR and SR methods provided the same best coverage
while the SR method provided the best coverage in only one
instance. These results show that theMR strategy can provide
either the same or better coverage in 93% of the cases. Table 2
shows that, in fact, the MR method needs less computational
time than state-of-the-art methods to provide better control
point coverage. The same quality is re-iterated in the results
on real data (see Table 3) where, the MR method provides
the same or better control point coverage in 81% of the cases
(13 out of 16 instances). Overall, the best coverage was
obtained when using the LP optimization method in 18 out
of the 32 instances, i.e., in more than half of the cases.
This shows the importance of complex methods which
can guarantee global optimal solution or provide provable
bounds around the global optimum.Moreover, in some cases,
where other approximate optimization methods provide
better control point coverage, the LP method may also result
in a better solution if allowed to run until it finds the optimal
solution albeit at the cost of increased computational time.

If we observe on a case to case basis, including results for
all the instances from all the optimization methods, we can
see that the MR method provided better coverage accuracy
than the SR method in 55 out of the total 80 cases (68.75%)
on simulated data whereas, the SR method provides better
coverage accuracy in only 15 cases (18.75%)while the results
from both SR and MR methods are same in the remaining
10 cases (12.5%). In the cases where the result from MR
method is better than SR method (excluding the cases where
the SR method does not have a result), the average gap
between the two corresponding solutions is 1.86%. In cases,
where the SR method provided better coverage, the result
fromMRmethod is worse by an average of 0.56%. Similarly,
in results on real data, the MR method provided better
coverage than SR method in 54 out of a total 64 cases with
an average gap of 0.82% while it provided the same result
as SR method in one case, and, lower coverage in 9 cases
with an average gap of −0.86%. This implies that the MR
method provided either the same or better coverage than the
SR method in at least 80% of all the experiments on both
simulated and real data. Moreover, in some cases when it
provided lower coverage than SR method, the percentage
error between the two solutions is less than 1% in all cases.
On the whole, looking at these results, we can say that the
MR method provides a solution that is within −1% to +2%
of the solution from SR optimization in significantly less
computational time.

From Tables 1 and 3, it may be observed that camera
coverage decreases with the increasing number of voxels.
While it is intuitive to believe that camera coverage should
increase with the number of voxels, we would like to
emphasise that there are various parameters that influence
the overall coverage for OCP problems. When the size of the
vehicle model increases, the camera view frustum parameters

TABLE 3. Table showing objective function value (in % of control points
covered), obtained from the four optimization algorithms (LP, GH, RWLS
and LH-RPSO) using both MR and SR methods for the four real vehicle
models in four sizes (32, 64, 128, 256) for each vehicle model.

also change, so do the number of control points and their
sampling rates. Therefore, we emphasise that the coverage
values are to be compared per instance (per row in the tables)
and between different optimization methods but, not between
different sizes or vehicle models. Although the coverage
for the 32 size and 256 size for any model are similar, the
vehicle models at 32 size have severely distorted shapes
and low detail. At least the 128-size model is required for
a good approximation of the real-world vehicles. For the
32 and 64 sizes, we sample the set of control points at one
in every 20 points. This sampling frequency, however, results
in a substantial number of control points for the 128 and
256 sizes that is more than the limit of 3000. To test the LP
method, we decreased the control point sampling frequency
for 128 and 256 sizes down to one in a hundred points and
one in 250 points, respectively. As we can see from coverage
values for 128 and 256 sizes, sampling lesser number of
control points does not have any impact on the result if control
points are sampled uniformly from the original set.

As mentioned previously, the time complexity of MR
method is lower as, firstly, the size of input to the
pre-processing step of visibility checks is lower when
compared to SR method. The smaller input size to visibility
checks step implies that the size of input to optimization
algorithm is also, low. Therefore, even though we use
the same optimization methods, the overall computational
time required for pre-processing and optimization steps is
lower for MR method by several factors. the clustering
step has low complexity when compared against the steps
of visibility checks and optimization. For simulated data,
the time required for clustering varied from 1 − 10ms
for ‘S’ size category to ∼ 500ms for ‘H’ size category.
For the mining truck vehicle model in the highest size
category (256), computational time for the clustering step
was ∼ 10s. This is only a fraction of the total computational
time that includes times for clustering, visibility checks and
optimization (see the corresponding entry in Table 4). From

VOLUME 10, 2022 61613

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

TABLE 4. Table showing total optimization time (in seconds) taken by the four optimization algorithms (LP, GH, RWLS and LH-RPSO) using both MR and
SR methods for the four real vehicle models in four sizes (32, 64, 128, 256) for each vehicle model.

Tables 2 and 4 we can see that the total computational time
for MR method is always less than the corresponding entry
for SR method. The only exceptions are the times shown
for LH-RPSO method for all size categories and all methods
for ‘S’ size in Table 2. For ‘S’ size category, for example,
the car model has 75 camera poses. By clustering them
into 20 clusters we do not gain any noticeable speedup.
In fact, when using MR method by optimizing twice (i.e.,
at two resolutions), computational time only increases as
the complexity of visibility checks step or optimization step
does not change noticeably when the number of variables
is so low. Computational time for most of our selected
optimization algorithms increases exponentially with an
increase in the number of input variables. Therefore the
gap between computational times, for SR and MR methods,
becomes visible with increasing size of the OCP instance.

Only the LH-RPSO method has constant complexity as it
depends on the number of particles rather than the number of
input variables. Therefore, in all cases for simulated data, the
times shown for LH-RPSO method using MR optimization
is higher than the corresponding entry for SR method,
primarily due to optimizing for camera poses multiple times.
The results for LH-RPSO method are however, different on
real data. From the last two columns in Table 4, we can
see that LH-RPSO (MR) method is 1.7 times (tractor
scraper-32) to 117 times (mining truck-128) faster than LH-
RPSO (SR). Despite doubling or tripling (depending on the
number of resolutions) the time required for optimization,
the MR method when using LH-RPSO takes overall less
time computational time on real data. This is because of the
significant amount of time saved during the visibility checks
step. High complexity of the pre-processing step, when
the size of input is large, overshadows the computational
complexity of the optimization step, particularly when using
GH or LH-RPSO optimization methods. LP and RWLS are
however, complex methods, and owing to this complexity,
they can produce better coverage when compared to GH

TABLE 5. Table showing computational time (in seconds) for the
individual steps of pre-processing and optimization for the tractor scraper
model using SR optimization and the bulldozer model using MR
optimization. The shown values are for the 32 and 128 size categories.

or LH-RPSO optimization methods. SR Optimization for
256 size category on real data could not be completed as
the visibility checks step took more than 48 hours for all the
vehicle models. Optimizations using RWLS method on real
data for 128 size category, also were not completed as the
total time for visibility checks and optimization took more
than 48 hours. Therefore, for the remaining 24 instances, i.e.,
all instances excluding ‘S’ size category in simulated data
and 256-size category on real data, the MR method is at
least 1.3 times (Truck-M (GH)) and up to 167 times (Mining
Truck-128 (GH)) faster than the SR method.

Table 5 shows the time taken for the individual steps of
visibility checks and optimization. In the table, we show the
computational times for the tractor scraper-32 and tractor
scraper-128 instances using SR optimization strategy and
bulldozer-32 and bulldozer-128 instances using MR method,
only as an example to highlight the share of computational
times of the pre-processing and optimization steps in the
total time. These trends, however, apply across all instances
with minor variations in the actual times as per the size
category and the number of variables contained in themodels.
We did not present individual times for all instances and
methods to keep the results concise, and also because, our
aim is to highlight gain in total computational times, i.e., time
taken for all steps including pre-processing, optimization and
clustering steps. The time required for the pre-processing
step of visibility checks at 128 size category is over

61614 VOLUME 10, 2022

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

500 times more than that at 32 size category when using SR
optimization, whereas, it is only 185 times when using MR
optimization. Similarly, the required time for optimization
using RWLS method at 128 size category is 23.7 times more
than the time at 32 size category when using SR method,
whereas, the increase is only 4.9 times when using MR
method. Finally, it can be said that by optimizing for camera
poses on smaller subsets of data at multiple resolution levels,
the overall computational time can be reduced significantly.
Moreover, as the MR method produces coverage within an
average gap of [−1, 2]% of the coverage obtained with SR
method, it can be said that our proposed clustering method
provides a good approximation of the vehicle’s surface.

Although it might be interesting to run t-tests on the
computational times to see if the difference in times are
statistically different, we did not perform those tests as it is
evident from Tables 2 and 4 that the computational times for
MR method are significantly less than those of SR method.
With the help of MR method, optimization was completed
in reasonable time on large instances where the SR method
took more than 48 hours, or, where the LP method could not
be used due to a large number of input variables. However,
the MR method also has a limitation when using the LP
method. Optimization for tractor scraper-256 (MR) using
LP optimization was not completed because, at the last
resolution, the number of variables after visibility checks
was high, leading to the out-of-memory error. While the tests
on the tractor scraper model were run with K = 110, the
optimization on tractor scraper-256 (MR) using LP method
was run until completion when the parameters were altered
as, l = 100 and K = 85 to obtain a coverage of 88.5%.
Looking at the results from other optimization methods on
this instance, it can be said that a lower value of K degraded
the result. As this optimization could not be completed on this
instance, it may be that this is the limit beyond which the LP
optimization cannot be used even with MR strategy.

Moreover, this brings us to the importance of the role
played by parameter K in the MR method. For the
experiments on real data, we selected the optimal value of
K for each vehicle model by running the GH method for
K = 90, 95, . . . , 105, 110 and picking K that provided best
coverage. On simulated data, we set K = 30, for all size
categories of car, van and truck models and K = 50 for
the bus model. In the case of real data, K = 95 produced
the best coverage for bulldozer and JCB models while K =
110 produced best coverage for mining truck and tractor
scraper models. We run GH optimization using MR method
on the tractor scraper-64 instance with the values of K from
90 to 110 at steps of one. The mean control point coverage
obtained in these tests was 89.3 with a variance of 0.98.
In general, the optimal value K varies from model to model
and there does not exist a general strategy to select an optimal
value of K . The user must manually choose a value K that is
appropriate to the data. However, it is possible that a small
perturbation around the chosen value ofK may produce better
results.

VI. CONCLUSION AND FUTURE WORK
We proposed a new clustering-based multi-resolution opti-
mization method for the optimal camera placement problem
for vehicle surround-view. It was shown that with our
proposed method the OCP problem can be solved for
large real world vehicle models in significantly less time.
Moreover, with the MR method, linear programming-based
branch-and-bound method can be used for large data where
otherwise, SR optimization strategy does not work due to the
optimization method’s high resource requirements. Results
from experiments on eight simulated and real vehicle models
of various sizes show that MR method produces the same or
even better camera coverage than the SR method, in only a
fraction of the time. Results show that our proposed method
is over 150 times faster than state-of-the-art. The fact that
the coverage values obtained using MR method lie within
1 − 2% difference of the coverage values obtained with
SR method, shows that our proposed clustering method
effectively captures the 3D geometry of the vehicle’s surface.
With the help of clustering into different resolution levels,
we can decrease size of the input and the number of variables,
thereby, decreasing the computational times of the pre-
processing step, as well as, the optimization step by a big
factor.

While, the MR method extends the applicability of LP
optimization method to large data, it still faces limitations,
when the number of clusters is kept high. It will be interesting
to study other clustering strategies to see if this problem can
be circumvented. We test the method only for the use-case
scenario of OCP for vehicle surround-view. The method must
be studied on other types of data (floor plan surveillance,
for example) to examine the generality of MR optimization
strategy. Establishing a relationship between the number of
clusters, K , and the overall camera coverage may also help to
generalize the method for general applications.

REFERENCES
[1] D. Buljeta, M. Vranjes, Z. Marceta, and J. Kovacevic, ‘‘Surround view

algorithm for parking assist system,’’ in Proc. Zooming Innov. Consum.
Technol. Conf. (ZINC), May 2019, pp. 21–26.

[2] V. Appia, H. Hariyani, S. Sivasankaran, S. Liu, K. Chitnis, M. Mueller,
U. Batur, and G. Agarwa, ‘‘Surround view camera system for ADAS on
TI’s TDAx SoCs,’’ White Paper, 2015.

[3] A. Hedi and S. Lončarić, ‘‘A system for vehicle surround view,’’ IFACProc.
Volumes, vol. 45, no. 22, pp. 120–125, 2012.

[4] F. Angella, L. Reithler, and F. Gallesio, ‘‘Optimal deployment of cameras
for video surveillance systems,’’ in Proc. IEEE Conf. Adv. Video Signal
Based Surveill., Sep. 2007, pp. 388–392.

[5] X. Zhang, X. Chen, J. L. Alarcon-Herrera, and Y. Fang, ‘‘3-D model-based
multi-camera deployment: A recursive convex optimization approach,’’
IEEE/ASME Trans. Mechatronics, vol. 20, no. 6, pp. 3157–3169,
Dec. 2015.

[6] P. Mantini and S. K. Shah, ‘‘Camera placement optimization conditioned
on human behavior and 3D geometry,’’ in Proc. 11th Joint Conf. Comput.
Vis., Imag. Comput. Graph. Theory Appl., 2016, pp. 227–237.

[7] P. Rahimian and J. K. Kearney, ‘‘Optimal camera placement for motion
capture systems,’’ IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 3,
pp. 1209–1221, Mar. 2016.

[8] B. Bogaerts, S. Sels, S. Vanlanduit, and R. Penne, ‘‘Interactive camera
network design using a virtual reality interface,’’ Sensors, vol. 19, no. 5,
p. 1003, Feb. 2019.

VOLUME 10, 2022 61615

V. A. Puligandla, S. Lončarić: MR Approach for Large Real-World Camera Placement Optimization Problems

[9] E. Hörster and R. Lienhart, ‘‘On the optimal placement of multiple visual
sensors,’’ in Proc. 4th ACM Int. Workshop Video Surveill. Sensor Netw.,
2006, pp. 111–120.

[10] N. Kirchhof, ‘‘Optimal placement of multiple sensors for localization
applications,’’ in Proc. Int. Conf. Indoor Positioning Indoor Navigat.,
Oct. 2013, pp. 1–10.

[11] S. Boyd and J. Mattingley, ‘‘Branch and bound methods,’’ Stanford Univ.,
Stanford, CA, USA, Tech. Rep., EE364b, 2007, pp. 2006–2007.

[12] F. Hoffmann, ‘‘On the rectilinear art gallery problem,’’ in Interna-
tional Colloquium on Automata, Languages, and Programming. Cham,
Switzerland: Springer, 1990, pp. 717–728.

[13] U. M. Erdem and S. Sclaroff, ‘‘Automated camera layout to satisfy task-
specific and floor plan-specific coverage requirements,’’ Comput. Vis.
Image Understand., vol. 103, no. 3, pp. 156–169, 2006.

[14] J. Kritter, M. Brevilliers, J. Lepagnot, and L. Idoumghar, ‘‘On the real-
world applicability of state-of-the-art algorithms for the optimal camera
placement problem,’’ in Proc. 6th Int. Conf. Control, Decis. Inf. Technol.
(CoDIT), Apr. 2019, pp. 1103–1108.

[15] Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, ‘‘Particle swarm
optimization inspired probability algorithm for optimal camera network
placement,’’ IEEE Sensors J., vol. 12, no. 5, pp. 1402–1412, May 2011.

[16] X. Wang, H. Zhang, S. Fan, and H. Gu, ‘‘Coverage control of sensor
networks in IoT based on RPSO,’’ IEEE Internet Things J., vol. 5, no. 5,
pp. 3521–3532, Apr. 2018.

[17] X. Wang, H. Zhang, and H. Gu, ‘‘Solving optimal camera placement
problems in IoT using LH-RPSO,’’ IEEE Access, vol. 8, pp. 40881–40891,
2019.

[18] P. Liu, Q. Hu, K. Jin, G. Yu, and Z. Tang, ‘‘Toward the energy-saving
optimization of WLAN deployment in real 3-D environment: A hybrid
swarm intelligent method,’’ IEEE Syst. J., early access, Apr. 5, 2021, doi:
10.1109/JSYST.2021.3065434.

[19] J. Zhao, R. Yoshida, S.-C.-S. Cheung, and D. Haws, ‘‘Approximate
techniques in solving optimal camera placement problems,’’ Int. J. Distrib.
Sensor Netw., vol. 9, no. 11, Nov. 2013, Art. no. 241913.

[20] M. Brévilliers, J. Lepagnot, L. Idoumghar, M. Rebai, and J. Kritter,
‘‘Hybrid differential evolution algorithms for the optimal camera place-
ment problem,’’ J. Syst. Inf. Technol., vol. 20, no. 4, pp. 446–467,
Nov. 2018.

[21] J.-W. Ahn, T.-W. Chang, S.-H. Lee, and Y. W. Seo, ‘‘Two-phase algorithm
for optimal camera placement,’’ Sci. Program., vol. 2016, pp. 1–16,
Sep. 2016.

[22] C. Gao, X. Yao, T. Weise, and J. Li, ‘‘An efficient local search heuristic
with row weighting for the unicost set covering problem,’’ Eur. J. Oper.
Res., vol. 246, no. 3, pp. 750–761, Nov. 2015.

[23] W. Lin, F.Ma, Z. Su, Q. Zhang, C. Li, and Z. Lü, ‘‘Weighting-based parallel
local search for optimal camera placement and unicost set covering,’’ in
Proc. Genetic Evol. Comput. Conf. Companion, Jul. 2020, pp. 3–4.

[24] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar, ‘‘On the optimal
placement of cameras for surveillance and the underlying set cover
problem,’’ Appl. Soft Comput., vol. 74, pp. 133–153, Jan. 2019.

[25] J. Liu, S. Sridharan, and C. Fookes, ‘‘Recent advances in camera planning
for large area surveillance: A comprehensive review,’’ ACM Comput.
Surveys, vol. 49, no. 1, pp. 1–37, Jul. 2016.

[26] M. Rebai, M. L. Berre, F. Hnaien, and H. Snoussi, ‘‘Exact biobjective
optimization methods for camera coverage problem in three-dimensional
areas,’’ IEEE Sensors J., vol. 16, no. 9, pp. 3323–3331, May 2016.

[27] A. Mavrinac and X. Chen, ‘‘Modeling coverage in camera networks:
A survey,’’ Int. J. Comput. Vis., vol. 101, no. 1, pp. 205–226, 2013.

[28] A. Mavrinac, X. Chen, and Y. Tan, ‘‘Coverage quality and smoothness
criteria for online view selection in a multi-camera network,’’ ACM Trans.
Sensor Netw., vol. 10, no. 2, pp. 1–19, Jan. 2014.

[29] J. F. Thompson, Z. U. Warsi, and C. W. Mastin, Numerical Grid
Generation: Foundations and Applications. Amsterdam, The Netherlands:
Elsevier, 1985.

[30] C. Trader. CGtrader. Accessed: Aug. 10, 2021. [Online]. Available:
https://www.cgtrader.com/

[31] F. S. Nooruddin and G. Turk, ‘‘Simplification and repair of polygonal
models using volumetric techniques,’’ IEEE Trans. Vis. Comput. Graph.,
vol. 9, no. 2, pp. 191–205, Apr./Jun. 2003.

[32] P. Min. BinVox. Accessed: Feb. 5, 2021. [Online]. Available: http://www.
patrickmin.com/binvox and https://www.google.com/search?q=binvox

[33] J. W. Harris and H. Stöcker,Handbook of Mathematics and Computational
Science. Cham, Switzerland: Springer, 1998.

[34] S. J. Ray and J. Teizer, ‘‘Computing 3D blind spots of construction
equipment: Implementation and evaluation of an automated measurement
and visualization method utilizing range point cloud data,’’ Autom.
Construct., vol. 36, pp. 95–107, Dec. 2013.

[35] W. E. Lorensen and H. E. Cline, ‘‘Marching cubes: A high resolution
3D surface construction algorithm,’’ ACM SIGGRAPH Comput. Graph.,
vol. 21, no. 4, pp. 163–169, Jul. 1987.

[36] A. Likas, N. Vlassis, and J. J. Verbeek, ‘‘The global k-means clustering
algorithm,’’ Pattern Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003.

[37] T. Hastie, R. Tibshirani, and J. Friedman, ‘‘The elements of statistical
learning: Data mining, inference, and prediction, 20 springer series in
statistics,’’.

[38] K. Klasing, D. Wollherr, and M. Buss, ‘‘A clustering method for efficient
segmentation of 3D laser data,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 4043–4048.

[39] H. Kisner and U. Thomas, ‘‘Segmentation of 3D point clouds using a new
spectral clustering algorithm without a-priori knowledge,’’ in Proc. 13th
Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., 2018,
pp. 315–322.

[40] P. Scheunders, ‘‘A comparison of clustering algorithms applied to
color image quantization,’’ Pattern Recognit. Lett., vol. 18, nos. 11–13,
pp. 1379–1384, Nov. 1997.

[41] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, ‘‘Voxel cloud
connectivity segmentation–supervoxels for point clouds,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2027–2034.

[42] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC
superpixels compared to state-of-the-art superpixel methods,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, May 2012.

[43] R. B. Rusu and S. Cousins, ‘‘3D is here: Point cloud library (PCL),’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.

[44] C. U. Manual, ‘‘Ibm ilog cplex optimization studio,’’ Version, vol. 12,
pp. 1987–2018, May 1987.

V. ANIRUDH PULIGANDLA (Member, IEEE)
was born in Hyderabad, Telangana, India, in 1992.
He received the B.Tech. degree in electronics
and communications engineering from Amity
University, Jaipur, Rajasthan, India, in 2014, the
B.Sc. degree in computer vision and robotics from
the University of Burgundy, France, in 2016, and
the M.Sc. degree in computer vision and robotics
from the University of Burgundy, the University of
Girona, Spain, and Heriot Watt University, U.K.,

in 2018, as part of the ErasmusMundus JointMaster’s Degree Program. He is
currently pursuing the Ph.D. degree with the University of Zagreb, Zagreb,
Croatia, under the Marie-Curie Actions ITN Fellowship. His research
interests include discrete and continuous optimization, signal and image
processing, and 3D reconstruction from multiple camera systems using
multi-view stereo.

SVEN LONČARIĆ (Senior Member, IEEE)
received the Ph.D. degree in electrical engi-
neering from the University of Cincinnati,
OH, USA, in 1994, as a Fulbright Scholar.
From 2001 to 2003, he was an Assistant Professor
at the New Jersey Institute of Technology,
USA. He is currently a Professor of electrical
engineering and computer science at the Faculty of
Electrical Engineering and Computing, University
of Zagreb, Croatia. He is the Director of the Center

for Computer Vision, University of Zagreb; and the Head of the Image
Processing Group. He is the Co-Director of the Center of Excellence in
Data Science and Cooperative Systems. He was the principal investigator
on a number of research and development projects. He has coauthored more
than 250 publications in scientific journals and conferences. His research
interests include image processing and computer vision. He is a member of
the Croatian Academy of Technical Sciences. He has received several awards
for his scientific and professional work. Hewas the Chair of the IEEECroatia
Section.

61616 VOLUME 10, 2022

http://dx.doi.org/10.1109/JSYST.2021.3065434

