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ABSTRACT The study of metagenomic sequences brings a deep understanding of microbial communities.
One of the crucial steps in metagenomic projects is to classify sequences into different organisms, named the
binning problem. In the emerging methods for classification, deep learning is a potential technology to be
applicable with high accuracy. However, it is well-known that reference databases, which are highly required
by deep learning based methods, are not always available. As a result, some existing binning solutions have
applied unsupervised learning processes, but utilizing the strength of deep learning in an unsupervised model
is still a challenging problem. This work proposes a binning algorithm for metagenomic sequences, called
MetaDEC, which applies a deep unsupervised learning approach. By following the two-phase paradigm, the
algorithm firstly divides sequences into groups of overlapping sequences. The groups are then classified into
clusters using an adversarial deep embedded clustering technique. Experimental results show that MetaDEC
achieves competitive performance compared to existing methods on both simulated and real metagenomic
data.

INDEX TERMS Algorithm, clustering, deep learning, metagenomics, DNA sequence.

I. INTRODUCTION
Metagenomics is the study of genetic content collected
directly from the environment, bypassing the need for cul-
turing and isolating in laboratories. The field offers oppor-
tunities to get a deep inside into microbial communities
that are infeasible with traditional methods of single-genome
sequencing technologies. There are many fields of applica-
tions from metagenomic studies such as biomedical science,
biotechnology, energy, and agriculture [1].

Some initial metagenomic projects, e.g. Acid Mine
Drainage, and Sargasso Sea are based on Sanger sequenc-
ing technology [2], [3]. The technology produces quite long
sequences which provide meaningful information for the bin-
ning process. Unfortunately, because it requires high costs
and is very time-consuming, the technology is impractical for
most current projects, which require analyzing a huge amount
of data. Thanks to the development of Next-Generation
Sequencing approaches such as Illumina, and 454 pyrose-
quencing [4] which are appropriate for nowadays metage-
nomic projects. The technologies are able to process millions
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of reads per run in a short time with low costs. However,
one of the limits of the sequencing technologies is that
they produce sequences with short lengths, and thus brings
research challenges for communities because of the lack of
information in short sequences.

Due to the fact that DNA fragments in metagenomic sam-
ples are from multiple genomes, one of the major steps in
metagenomic projects is to classify sequences into groups
of closely related genomes. The step is referred to as bin-
ning problem. Binning results are beneficial to reconstruct-
ing genomes by assembly approaches or used for analyzing
sequences directly from every single genome.

Some binning approaches such as TIPP2 [5], and
mOTUs2 [6] use marker genes, e.g. 16S rRNA, recA for
profiling metagenomic sequences. The strength of those
methods is that they require low computing costs because
of not needing to analyze the whole genomes of organ-
isms. However, the classification quality of the methods
is affected by the fact that many different species con-
tain the same marker genes, and others may have a small
ratio of 16S rRNA genes [7], [8]. This work focuses on
whole-genome sequencing approaches which analyzing all
genome sequences ofmicrobial organisms. Those approaches
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can be classified into groups of supervised, and unsupervised
methods.

Supervised methods are based on homology or compo-
sition information from an available reference database to
support the classification process. MEGAN CE [9], and
MEGAN-LR [10] use homology search tools such as DIA-
MOND [11], or LAST [12] to determine the similarity
between input sequences with reference sequences. The algo-
rithms then assign the sequences into groups of known organ-
isms. One of the drawbacks of the methods is that they
are very time-consuming. Kraken2 [13] deal with the chal-
lenge by extracting long k-mers from sequences and com-
paring them with reference databases. On the other hand,
DeepMicrobes [14] is composition-based supervised meth-
ods that utilizes genomic signatures extracted from sequences
to classify the metagenomic data. The method applies a deep
learning-based computational framework for its classification
task.

Due to the limitation on reference databases, some binning
algorithms apply an unsupervised learning process for clas-
sifying sequences. MetaCluster 2.0 [15] and MetaCRS [16]
aim to cluster metagenomic data of long sequences or contigs.
Both of the algorithms use composition features and apply
k-means algorithm in their process. Focusing on analyzing
short sequences, MetaCluter 5.0 [17] applies a two-round
binning approach that classifies effectively samples with
low-abundance species. Another binning algorithm for short
reads, AbundanceBin [18] is only based on abundance levels
of species in metagenome, and thus it does not work well for
samples of species with similar abundance levels.BiMeta [19]
and MetaProb [20] are other clustering algorithms that uti-
lize sequence overlapping information and k-mer frequency
extracted from groups of reads.While BiMeta uses Euclidean
distance of k-mer frequencies between data points in its sec-
ond phase, MetaProb applies probabilistic signatures to get
better classification quality. MetaProb 2 [21] is an improve-
ment of MetaProb which requires an assembly task on the
group of reads and a graph clustering algorithm for classify-
ing sequences.

Recent studies on unsupervised deep learning-based clus-
tering approach achieve significant improvement [22], [23]
and are applied in a few metagenomic binning algorithms.
Among them, the binning algorithm of Isis et al [24] uses an
autoencoder architecture to compress composition-based rep-
resentation of sequences and applied k-Means++method on
compressed representation to classify data. On the other hand,
VAMB algorithm [25] only focuses on analyzing metage-
nomic contigs. It uses a variational autoencoder architecture
to compress data into a latent posterior distribution (multi-
variate Gaussian distribution) in the clustering process.

This study proposes a novel unsupervised binning
method for metagenomic sequences called MetaDEC
(i.e.,Metagenomic binningwithDeepEmbeddedClustering).
The proposed approach follows the paradigm of two phases
as used by previous studies [19], [20] in which the first
phase does preprocessing works to groups sequences using

the sequence overlapping information. However, different
from previous works, MetaDEC then uses ADEC [23] - a
novel unsupervised deep learning approach - to classify the
sequence groups in its second phase. The method utilizes
an autoencoder architecture with latent space interpolation
factor to learn the underlying representation of data and
optimize the learned representation toward the clustering
objective.

The next section presents the details of the proposed
method. The Experiments and Results section shows the
strength of MetaDEC comparing with available binning
approaches. Some conclusions are presented in the final
section.

II. METHODS
In order to overcome the lack of phylogenetic information
in short sequences, the proposed method applies a two-phase
paradigm in the clustering process (Fig. 1). Phase 1 does
preprocessing work to build groups of sequences using over-
lapping information between them. Clustering features are
then extracted from the sequence groups. Phase 2 uses the
features to continue classifying the groups into clusters of
close organisms.

A. PHASE 1: GROUPING SEQUENCES AND BUILDING
SEEDS
Derived from the work in [19], the phase classifies reads
that share sufficient long l-mer into the same groups and
builds group representative. Based on an observation that the
l-mers are unique in genomes [17], [26]. MetaDEC firstly
builds a graph whose vertices are reads, and each edge is
the connection between two reads that have sufficient sub-
string overlapping. While previous methods [19], [20] used a
greedy approach to build groups, this work applies a multi-
level partitioning algorithm [27] to create a coarsened graph
and acquires groups from connected components.

An observation in [19] revealed that genomics signatures
of k-mer nucleotide frequency are also preserved in a group
of non-overlapping short reads as in long sequences. Thus,
MetaDEC selects a subgroup of non-overlapping reads in
each group, called seed, as a representative of the group. The
technique does not only reduce noises in features extracted
from sequence groups that have unbalanced coverage but
also saves computation costs [19]. Next, k-mer frequency
distribution of each seed is computed as follows.

Given S = {r1, r2, . . . rn} is a seed, where n is the number
of reads in seed S. Let |ri|, i ∈ [1..n] be the length of read ri.
In order to find k-mers of each read, MetaDEC uses a sliding
window method with a window size of k . There is |ri|−k +
1 k-mers in each read. Thus, the total number of k-mer of
seed S, denoted |S|, is

∑n
i=1(|ri|−k + 1).

In other words, there are at most 4k different contents of
k-mers because each k-mer is a combination of 4 kinds of
nucleotides (A, T, G, C corresponding to Adenine, Thymine,
Cytosine, Guanine, respectively). However, either of the
DNA strands can be obtained from their reversed complement
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FIGURE 1. Process of MetaDEC. Phase 1: Grouping sequences and building seeds. Phase 2: Classifying sequence
groups using deep clustering.

strands (e.g., ATTT - TAAA, GCGC - CGCG). The frequency
of a k-mer and its reversed complement are the same. As a
result, the number of total k-mer values could be reduced
by half, from 4k to 4k/2 if k is odd, (4k + 4k/2)/2 if k
is even. Studies in [15], [28], and [19] showed that value
k = 4 in computing k-mer frequency is the best choice for
extracting compositional features from DNA sequences or
contigs. Thus, we also choose k = 4 in this work. It means
that there are 136 k-mers in total.

Let f S = {f S1 , f
S
2 , . . . , f

S
136} is the set of k-mer frequency

representation of seed S. f S is normalized by dividing each
entry by |S|. It is then normalized a second time into a
normal distribution xS with mean µ = 0 and variance
σ = 1. As a result, the final representation of seed S is xS =
{xS1 , x

S
2 , . . . , x

S
136}, in which each x

S
i is in the range of [−1, 1].

B. PHASE 2: CLASSIFYING SEQUENCE GROUPS USING
DEEP CLUSTERING
Given n groups of sequences which are represented by a set
of n normalized frequencies of seeds constructed in phase 1
X = {xS1 , xS2 , . . . , xSn}, in which Si, i ∈ [1..n] be seeds
of the groups. In this phase, MetaDEC classifies X into
m clusters with m centroids C = {c1, c2, . . . cm} applying
a deep clustering method called ADEC (Adversarial Deep
Embedded Clustering) [23]. The phase consists of two steps:
Cluster initialization, and Clustering optimization.

1) STEP 1: CLUSTERS INITIALIZATION
The first step aims to find a sufficient initialization of clusters
(presented in Fig. 1 and Algorithm 1). Instead of using simi-
larity measurement directly on X , the proposed method uses
an autoencoder to learn the latent space representation of X .
In detail, the autoencoder composes of two parts, encoder,

and decoder. The encoder is a non-linear mapping function
Eθ : X −→ Z that transforms X space into a smaller dimen-
sionality latent feature space Z = {zS1 , zS2 , . . . , zSn}, in which
each zSi corresponds to encoded xSi , i ∈ [1..n]. The decoder
is another non-linear mapping function Dφ : Z −→ X̂ that
transforms latent space Z back to the original data space of
k-mer frequency representation. In our work, both encoder
and decoder are modeled by neural networks. MetaDEC also
adds interpolation factor on latent space based on a frame-
work proposed from ACAI [29] by using another neural net-
work called critic Cψ to improve the quality of latent space.
The information from the critic is used as a regularization
term in the autoencoder optimization process.

In this step, autoencoder (encoder Eθ , decoder Dφ) and
critic Cψ are trained in predefined iterations. Each iteration
updates Cψ using a loss function LC (1) and Eθ , Dφ using a
loss function LE,D (2).

LC = ||Cψ (x̂Sα )− α||
2

+||Cψ (γ xSi + (1− γ )Dφ(Eθ (xSi ))||2 (1)

LE,D = ||xSi − Dφ(Eθ (xSi ))||22 + λ||Cψ (x̂
S
α )||

2 (2)

in which x̂Sα = Dφ(αEθ (xS1 ) + (1 − α)Eθ (xS2 ). xS1 , xS2
are randomly picked data points in X and α, λ are randomly
sampled in range [0, 1]. It is noted that instead of using square
root function for each term in LC and LE,D as the work in [23],
MetaDEC uses square function for a better model training.

After the optimization of the autoencoder and critic, latent
space Z = Eθ (X ) is computed, and centroidsC are initialized
by applying k-means algorithm on Z .

2) STEP 2: CLUSTERING OPTIMIZATION
In this step, MetaDEC continues optimizing the clustering
result from step 1. The process performs two sub-steps
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iteratively, which computes soft clustering assignment and
learns from high confidence assignment. It runs until conver-
gence, or a threshold met.

Firstly, soft cluster assignment for latent space Z is com-
puted. This study uses the Student’s t-distribution in calculat-
ing the distance from zSi , i ∈ [1..n] and cluster’s centroid cj,
j ∈ [1..m]. The probability qij ∈ Q that data point ith belongs
to cluster jth is computed as the following formulation.

Algorithm 1: Cluster Initialization
Input: Input groups: X ; max iterations for pretraining

autoencoder and critic: max_iter_ae; learning rate: δ;
number of clusters: m.

Output: Clusters’ centroids: C = {c1, c2, . . . cm}
Initialize θ, φ,ψ, ω;
// Pretraining autoencoder and critic

1: for i← 1 to max_iter_ae do
2: Compute LC ,LE,D using (1) and (2)

// Update parameter
3: θ ← θ − δ1LE,D; φ← φ − δ1LE,D;
4: ψ ← ψ − δ1LC
5: end for

// Initialize clusters’ centroids
6: Z = Eθ (X )
7: Initialize C by applying k-means algorithm on Z

qij =
(1+ ‖zi − cj‖2/η)−

η+1
2

m∑
j′=1

(1+ ‖zi − cj′‖2/η)−
η+1
2

(3)

in which, zSi = Eθ (xSi ) ∈ Z , η is degree of freedom in
t-student distribution. Assignment of data point i is computed
as yipred = argmaxj(qij).
Secondly, auxiliary target distribution P = pij, i ∈

[1..n], j ∈ [1..m], is computed by deriving from high con-
fidence assignment as follows.

pij =
q2ij/freqj

m∑
j′=1

q2ij′/freqj′
(4)

in which freqj′ = 6iqij′ is the frequency of soft assignment.
An objective here is to minimize the difference between
soft cluster assignment distribution Q and auxiliary target
distribution P. MetaDEC then minimizes Kullback-Leibler
divergence (KLD) between P and Q to optimize Eθ and
clusters’ centroids ci ∈ C .

Beside optimizing KLD loss function, MetaDEC adds a
neural network into the clustering optimization step, called
discriminator Gω, to help improve the quality of latent
space produced by encoder Eθ . The discriminator network
is optimized to be able to distinguish real groups and recon-
structed groups by minimizing loss function LG (equation 5).
The information produced by discriminator Gω is used as

a regularization term in optimizing Eθ and clusters’ cen-
troids C . The regularization term penalizes the encoder when
it generates meaningless latent space for decoding. Equa-
tion 6 describes the final loss function Lcls used for optimizing
Eθ and clusters’ centroids C .

The proposed method keeps optimizing decoder Dφ in the
training process. The decoder in this step plays a role as a
monitor for assuring the quality of the latent space. Thus,
it needs to be trained to catch up with the changes from
encoder Eθ by optimizing reconstruction loss LD in (7).

LG = Ex∼p(x)[log(Gω(x)]

+Ex∼p(x)[log(1− Gω(Dφ(Eθ (x)))] (5)

Lcls = KLD(P||Q)

+Ex∼p(x)[log(1− Gω(Dφ(Eθ (x)))] (6)

LD = ||x − Dφ(x)||22 (7)

Algorithm 2 presents the details of clustering optimization
step. It firstly does pretraining discriminator before finding
assignment results for elements in X to clusters.

C. PERFORMANCE METRICS
The quality performance of binning algorithms are evaluated
using threemetrics precision, recall andF-measure (also used
in [17], [20], and [19]). While precision measures the ratio
of reads classified into a cluster that comes from the same
species, recall presents the percentage of reads that belong to
the same species are clustered into the same clusters. Because
each of the twometrics cannot fully reflect the performance of
a binning algorithm, F-measure is used as a harmonic metric
between them. The three metrics are defined as follows.

precision =

k∑
i=1

maxjAij

k∑
i=1

m∑
j=1

Aij

(8)

recall =

m∑
j=1

maxiAij

k∑
i=1

m∑
j=1

Aij+ 6= unassigned reads

(9)

F − measure = 2 ∗
precision ∗ recall
precision+ recall

(10)

in which Aij is the number of reads that come from species
j classified into cluster i, m is the number of species in the
metagenome, and k is the number of clusters revealed by
binning algorithms.

III. EXPERIMENTS AND RESULTS
A. DATASETS
The proposed method is tested on 25 simulated datasets
which were used in previous studies [19]. Among them,
there are 16 datasets following Illumina sequencing tech-
nology, named from S1 to S10, and from L1 to L6, which
are paired-end short reads with the length of 80bp. Datasets
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Algorithm 2: Cluster Optimization
Input: Input groups: X ; maximum clustering iterations:

max_iter ; auxiliary iterations: aux_iter ; maximum
iterations for pretraining discriminator: max_iter_dis;
discriminator learning rate:δdis; cluster learning rate:
δ,clusters’ centroids: C , target update iterations:
targ_iter ; tolerance threshold: tol.

Output: Assignment results to element in X to specific
cluster.
// Pretraining discriminator

1: for i← 1 to max_iter_dis do
2: Compute LG using (3)

// Update parameter
3: ω← ω − δ1LG
4: end for

// Clustering optimization
5: for i← 1 to max_iter do
6: if i % targ_iter == 0 then
7: Compute Q using (3)

// Save ypred result of previous step
8: ypred_old ← ypred
9: Compute ypred

10: Compute P using (4)
11:

12: if 1
N6(ypred 6= ypred_old ) < tol then
break

13: end if
14: end if
15: Compute LG,LD,Lcls using (5), (6), (7)
16: if i % aux_iter <= (aux_iter/2) then
17: φ← φ − δ1LD
18: else
19: θ ← θ − δ1Lcls; φ← φ − δ1LD;
20: ω← ω + δ1LG; C ← C − δ1Lcls
21: end if
22: end for

from L1 to L6 contain sequences of species with different
abundance levels. Besides, 9 datasets of Roche 454 single-
end long reads named from R1 to R9, have the length of
700bp. The details of the datasets are presented inAppendix I.
Furthermore, this study also evaluates the proposed algorithm
on a real metagenome, Acid Mine Drainage (AMD) [2]. The
dataset is downloaded from National Center for Biotech-
nology Information (NCBI) trace archive. This work tests
MetaDEC, and compares it with published results of BiMeta,
MetaCluster 2.0, AbundanceBin, MetaCluster 5.0 on those
datasets [19].

B. EXPERIMENTAL SETTINGS
In the experiment, we use a specific machine for each phase
of the proposed algorithm. Phase 1 is run on a machine
with 500GB memory and Intel(R) Xeon(R) Gold 6152 pro-
cessor. Phase 2, which includes the process of training

neural networks, is run on a machine of NVIDIA Tesla P100
16GB GPU to accelerate the training time.

In the first phase of MetaDEC, two sequences are consid-
ered to be overlapped with each other if they share at least
noolp overlapping l-mer substrings. This work empirically set
noolp = 5 for short sequence datasets and noolp = 45 for
long sequence datasets. Besides, the value of l of l-mer to
determine overlapping sequences in phase 1 of the proposed
algorithm is set to 30 empirically.

The second phase of MetaDEC is performed with four
types of architecture including Tiny, Small, Large, Xlarge
which are presented in Appendix II. Experiments for simu-
lated datasets in this work uses Small architecture.
In the other hands, the step of cluster initialization trains

autoencoder and critic parts for 2000 iterations using Adam
optimizer with a fixed learning rate at 0.001. Besides, in the
cluster optimization step, discriminator is trained using the
same optimizer with 200 iterations. The step continues to
train the model using Adam optimizer with learning rate
at 0.0001 with epsilon value 10e-8. The training will be
stopped if the ratio of changing clustered data points after two
consecutive iterations less than a threshold tol of 0.0001% or
reaching the maximum number of 300 iterations. In addition,
the degree of freedom η in t-student distribution used in step 2
of the phase is set as 1.

C. RESULTS ON SIMULATED DATASETS
1) RESULTS ON SHORT READ DATASETS
The proposed method is firstly compared with BiMeta, Meta-
Cluster 5.0 on short-read datasets from S1 to S10. The bar
charts in Fig. 2 present the precision and recall of the binning
algorithms. It can be seen from the chart that MetaDEC gets
higher precision values than BiMeta and MetaCluster 5.0 on
9/10 datasets. Besides, there are 6/10 cases in which the
proposed method returns better recall values than the two
remaining algorithms.

Furthermore, overall F-measures of the three methods are
presented in Table 1. The table shows that MetaDEC outper-
forms both BiMeta and MetaCluster 5.0 for 6/10 samples.
On average, MetaDEC gets higher 3.79% and 12.91% com-
pared with the two remaining methods, respectively.

TABLE 1. F-measure performance of MetaCluster 5.0, BiMeta and
MetaDEC for S1 to S10 datasets.
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FIGURE 2. Precisions and recalls of MetaCluster 5.0 [19], BiMeta [19], and MetaDEC on datasets from S1 to S10.

Considering the ability to classify metagenomes of differ-
ent abundance levels, MetaDEC is compared with BiMeta
and AbundaceBin on datasets from L1 to L6. The datasets
contain two species of Eubacterium eligens and Lactobacil-
lus amylovorus, and have different abundance ratios. The
bar chart in Fig. 3 shows that MetaDEC achieves higher
F-measure than both BiMeta and AbundanceBin on all
samples of low-abundance ratios (Datasets from L1 to L4
with ratios of 1:1, 1:2, 1:3, 1:4, respectively). Especially,
MetaDEC outperforms BiMeta for all cases. Because the
strength of AbundanceBin is based on abundance ratios of
species in datasets to classify sequences, it gets better results
than BiMeta and MetaDEC for samples L5, and L6 (with
highly different abundance levels).

FIGURE 3. F-measures of AbundanceBin [19], BiMeta [19], and MetaDEC
on datasets from L1 to L6.

2) RESULTS ON LONG READ DATASETS
The proposed method is also compared with MetaCluster
2.0 and BiMeta on long sequence datasets from R1 to R9.
Table 2 shows that MetaDEC outperforms the two algorithms

for 8/9 cases. The proposed method gets 3.44% and 11.44%
higher F-measure on average than BiMeta and MetaCluster
2.0 on the samples, respectively. For more details, bar charts
in Fig. 4 show that MetaDEC returns higher precision values
than both the algorithms on 8/9 samples. Besides, there are
6/9 cases that the proposed method achieves better recall
values than MetaCluster 2.0 and BiMeta.

TABLE 2. F-measure performance of MetaCluster 2.0, BiMeta and
MetaDEC for R1 to R9 datasets.

D. RESUTLS ON A REAL DATASET
The proposed method is also tested on a real meta-
genome. It is compared with BiMeta on the dataset
of AMD. This dataset is revealed in previous stud-
ies that it contains five dominant species, including
Ferroplasma sp. Type II, Leptospirillum sp. Group II,
Leptospirillum sp. Group III, Ferroplasma acidarmanus
Type I, and Thermoplasmatalesarchaeon Gplwith abundance
ratios of 5:5:1:1:1, respectively [2]. In order to assess binning
results, assembled scaffolds of the five species are down-
loaded from NCBI. Reads from each cluster in the output
results are aligned with the scaffolds using the BLAST tool
to calculate roughly classification accuracy.

VOLUME 10, 2022 54353



H. Q. Bao et al.: Deep Embedded Clustering Algorithm for Binning of Metagenomic Sequences

FIGURE 4. Precisions and recalls of MetaCluster 2.0 [19], BiMeta [19], and MetaDEC on datasets from R1 to R9.

The dataset is tested using two network architectures
of Small and Large presented in Appendix II. Experimen-
tal results show that MetaDEC achieves F-measure values
of 68.85% and 70.1% when architecture Small and Large
applied, respectively. The results are very comparative to
BiMeta which was reported that it got a F-measure value of
68.3 on the dataset [19].

FIGURE 5. F-measures of MetaDEC on dataset S5 and R3 with different
learning network architectures.

E. NETWORK EVALUATION
The section evaluates the performance and running time
of MetaDEC on different sizes of model architectures. The
proposed algorithm is performed on four architectures Tiny,
Small, Large, and Xlarge presented in Appendix II on S5 and
R3 datasets. It is noted that the architectures are assigned
with different numbers of layers (Tiny is 3 layers, Small is
4 layers, Large is 5 layers, and Xlarge is 7 layers). Line
chart in Fig. 5 shows that MetaDEC reaches the highest
F-measures with architecture Large on sample S5 and with
architecture Small on sample R3. However, it gets the low-
est F-measures with architecture Xlarge on both datasets.

FIGURE 6. Running time of MetaDEC on dataset S5 and R3 with different
learning network architectures.

Furthermore, with the shallow network Tiny, MetaDEC also
returns lower F-measures on the datasets compared with
architectures of Small and Large. The results reveal that if
a model is too shallow (e.g. Tiny with 3 layers), it is not
able to learn meaningful latent space that has the ability to
describe original data space. In contrast, a model that is too
deep (e.g. Xlarge with 7 layers) is prone to overfitting the
data instead of extracting meaningful features from it. In both
cases, latent spaces learned from these models would not
result in a good clustering performance.

As can be seen from the visualization of latent spaces
from results of cluster initialization for the both datasets
(section II-B1 in Phase 2 of MetaDEC) presented in
Appendix III, latent spaces of species from Tiny and Xlarge
models tend to be mixed together. It can result in poor cen-
troid initialization. In contrast, latent spaces of Small and
Large models give a more convex shape for each specie, and
result in a good centroid initialization.

In the aspect of processing time, the line chart in Fig. 6
shows that the running time of MetaDEC is proportional
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FIGURE 7. F-measure of the case with zero layer neural network and
MetaDEC with architecture neural network Small . The F-measure values
are the average F-measure on datasets S1-S10, L1-L6, R1-R9, respectively.

TABLE 3. Description of simulated datasets.

to the complexity level of model architectures. It can be
understood because the larger size of the model is used, the
higher computational resources are required.

Furthermore, this work also evaluates the performance of
the case of using neural network with zero layer (by applying
k-means directly on k-mer frequency representation). The
experiment result is compared with MetaDEC using Small
architecture on all of the simulated datasets. The chart in
Fig. 7 shows that MetaDEC performs better than the case
merely applying k-means on average. It means that applying

TABLE 4. Details of encoder part.

TABLE 5. Details of decoder part, which has the inverse order of encoder.

TABLE 6. Details of critic part. Last layer of the critic has 10 dimensions,
which are averaged into a scalar.

TABLE 7. Details of discriminator part.

ADEC method providing promising classification quality on
metagenomic data.

IV. CONCLUSION
The complexity of themicrobial community requires in-depth
exploration strategies to yield practical benefits. This study
takes advantage of deep learning techniques to effec-
tively solve the binning problem of metagenomic data.
The proposed method employs an adversarial deep embed-
ding approach to automatically learn a latent space of
k-mer frequency representation of sequence groups, and
is demonstrated to outperform state-of-art binning algo-
rithms. In future works, it is worth extending our method
to estimate the number of potential clusters in order to
be more suitable in the binning context. Besides, a deeper
investigation to find a better measuring function for soft
cluster assignment in the second phase of MetaDEC is
one of the potential research directions. Source codes
and datasets used in this work can be downloaded from
https://bioinfolab.fit.hcmute.edu.vn/MetaDEC.

APPENDIX I. DATASETS
See Table 3.

APPENDIX II. ARCHITECTURE TYPES
In the trainning process for neural networks in phase 2
of MetaDEC, each architecture consists of four parts of
encoder (θ ), decoder (φ), critic (ψ), discriminator (ω). Each
network is a multi layer perceptron. Each layer i of a network
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FIGURE 8. Visualization of R3 and S5 on Tiny architecture.

FIGURE 9. Visualization of R3 and S5 on Small architecture.

is defined as follows.

xi = gi(Wixi−1 + bi) (11)

where Wi and bi are layer’s parameters, xi−1 is the output
of previous layer, gi is the non-linear activation function.
MetaDEC uses ReLU for all layers’ gi, except the last layers
of encoder, decoder and critic, which are set to be the identity
function and the last layer of discriminator is set to be the
sigmoid function. We initialized all layers’ parameters to ran-
dom numbers drawn from a zero-mean Gaussian distribution
with a standard deviation of 0.01. Tables 4, 5, 6, 7 describe the
architectures used in our experiments for encoder, decoder,
critic, and discriminator, respectively.

FIGURE 10. Visualization of R3 and S5 on Large architecture.

FIGURE 11. Visualization of R3 and S5 on Xlarge architecture.

APPENDIX III. VISUALIZATION OF LATENT SPACE
The visualization of latent spaces from results of cluster ini-
tialization (section II-B1 in Phase 2 ofMetaDEC) for datasets
S5 and R3 on four architectures, which are Tiny (Fig. 8),
Small (Fig. 9), Large (Fig. 10), and Xlarge (Fig. 11).
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