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ABSTRACT Trend prediction based on sensor data is an important topic in the thickness control system of
lithium battery electrode mills. As the number of sensors increases, we can measure and store more and more
data. The characteristics of nonlinearity, uncertainty, and time-variability in the lithium battery electrode
thickness control system. The increase of control system complexity and data volume does not effectively
improve the prediction performance. This paper proposes a physical-data fusion modeling prediction method
based on a multiform coupling model and Bayesian LSTM (Bayesian Long Short-TermMemory) to achieve
dynamic prediction of lithium battery electrode thickness, overcome data irrelevance and sensor noise,
ensure the consistency of electrode thickness, and improve the operational efficiency of battery electrode
production: Firstly, we establish the underlying physical model of the roll to further obtain the specific
parameters affecting the thickness control and overcome the data irrelevance and sensor noise; secondly,
we use Bayesian method to obtain the characteristics of the weight distribution of the sub-prediction network
and construct the Bayesian LSTM predictor. An MLP (Multilayer Perceptron) is used as the fusion layer
to fuse the results of different sub-predictions to improve the robustness of the nonlinear control system
predictionmodel and solve the problems of slow approximation speed and ease to fall into local minimization
of traditional neural networks. Finally, the advantages of the deep learning model are analyzed in terms of
data feature self-extraction and model generalization generalizability. Compared with other neural network
models, Bayesian LSTM has better generalizability for small sample data. The results show that the predictor
can effectively model the large measurement data of the thickness control system of lithium battery electrode
mills and improve the prediction performance.

INDEX TERMS Multiform coupling, time series forecasting, Bayesian LSTM, deep fusion predictor.

I. INTRODUCTION
The lithium-ion battery electrode coating process is a key
process in the manufacture of lithium-ion batteries, and
the uniformity of the processed electrode thickness directly
affects the safety, consistency, and other key indicators of
lithium-ion batteries. Therefore, the real-time monitoring and
control of the thickness of the electrode piece are crucial. [1].
The process flow of the lithium battery wafer is shown in
Fig.1. In the production process of battery wafer, the most
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important process is coated drying and electrode compaction.
The coating is the uniform coating of a stable, viscous, and
liquid slurry on the positive and negative collectors. In the
electrode coating process ensure that the parameters before
and after the electrode are consistent, to effectively avoid
problems such as differences in battery capacity and large
differences in cycle life. The electrode compaction process
relies on the formation of friction between the roll and the
electrode, which continuously drags the electrode between
the upper and lower rolls, and then under the pressure
provided by the rolling pressure system, the electrode is
plastically deformed. As shown in Fig. 1, the rolling force
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FIGURE 1. Process flow diagram of lithium battery electrodes.

set by the upper and lower rolls is P, and the compaction
running speed of the electrode piece with V . The increase
of the relative density of the lithium-ion particles in the
electrode sheet is mainly manifested in the displacement
of the particles, which are displaced between the pores by
the roller rolling, filling the particles in the base material.
At the same time, a small part of the deformation of the
particles occurs, when the rolling force is continuously
increased, the void of lithium-ion slurry is filled after a
larger deformation [2]. The substrate foil strip is denser
(ρc0 > ρc) with the active material attached to the surface.
The electrode’s compacted density is maintained in a certain
range of space and the consistency of the electrode thickness
is maintained. After that, the electrodes are slit and stacked,
and finally encapsulated and filled with liquid.

In the electrode rolling process, the thickness of the
electrode sheet is not uniform after rolling due to the uneven
thickness of the electrode sheet in the previous coating
process. When the thickness of the electrode sheet is not
uniform, the rate of lithium-ion and electron transport and
conduction in the electrode sheet will be different. It is
easy to cause the precipitation of lithium dendrites, which
is unfavorable to the performance of the electric core.
In addition, the contact resistance between the active material
and the collector fluid is also different when the thickness
of the electrode is different, and the thicker the electrode
is, the greater the internal resistance, and the more serious
the battery polarization is, which affects the capacity of the
electrode. Therefore, it is a key part of the whole processing
process to ensure the consistency of the thickness of the
electrode.

To solve the problem of inconsistent electrode thickness,
many scholars have used real-time thickness measurement to
achieve continuous high-quality production. The laser thick-
ness measurement method is characterized by high sensitivity
and fast sampling speed, using dual laser displacement
sensors up and down differential thickness measurement
and adding calibration devices to keep the thickness consis-
tency [2]–[4]. However, the optical measurement method is
easily disturbed by impurities in the external air and is prone
to errors.

And with the rapid development of artificial intelli-
gence technology, machine learning algorithms are grad-
ually applied to machinery production status prediction.

Fu et al. [5] established a multi-intelligence collaborative
control system to achieve dynamic and synchronous control
of the rolling mill. However, due to the complexity of
the rolling process and the uncertainty of the influence of
various unknown factors, it is difficult to obtain accurate
mathematical models of thickness and plasticity coefficients.
Therefore, he established the thickness AGC prediction
intelligence and used the fuzzy neural network approach
to encapsulate the neural network-based thickness and
plasticity coefficient predictions into two bits of intelligence
respectively, which replace the ordinary simple mathematical
models and interact with other intelligence as auxiliary
intelligence, thus further improving the system accuracy.
In addition, machine learning algorithms have been applied
to the field of power system prediction [6], [7], pho-
tovoltaic power generation prediction [8], [9] and Agri-
environmental prediction [10], [11], among others. In the
field of machining, many scholars have found that the
factors affecting the thickness of rolled parts in steel rolling
mills are temperature [12], [13], irregular vibration of the
machine base [14]–[16], and rolling force [17]–[19]. It was
found that machine learning models can be used instead
of mathematical models to eliminate irregular vibrations of
the machine [14]–[16]. Starting from the characteristics of
hot-rolled strip steel production data, Li et al. [16] used
systematic clustering to determine the number of clusters and
then used the K-means algorithm to divide the production
data into K clusters. Each data cluster is used to build its own
BP neural network prediction model, PSO (Particle Swarm
Optimization) is used to optimize the network parameters
to avoid the neural network from falling into them. While
the stability of rolling force is one of the key parameters
affecting the quality of rolled parts, Wang et al. [18] proposed
two rolling force prediction methods combining improved
PSO and BP (Back Propagation) neural networks in order
to improve the prediction accuracy of rolling force during
dynamic rolling in reversible cold rolling mills, using a large
amount of actual data as the neural network training input
and fully considering the effect of influence between the input
parameters.

During the production of electrode electrodes, the roll
rolling force stability and the thickness consistency of
the electrodes are the keys to improving the production
efficiency [20]–[22]. Wang et al. [21] studied a mill rolling
force prediction model based on an improved support vector
machine. A least-squares support vector machine based
on RBF kernel function and polynomial kernel function
was established, and the parameters of the hybrid function
were optimized using a cooperative quantum particle swarm
algorithm to improve the prediction performance of the
prediction model. The electrode thickness control system
of lithium batteries has the characteristics of nonlinearity,
uncertainty, and time variation, Xu et al. [22] used a genetic
algorithm and backpropagationmethod to optimize the neural
network and established the thickness control prediction
model, which eliminated the nonlinearity and uncertainty
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problems due to mechanical vibration, and the RMSE was
within 6.72, which effectively improved the accuracy and
precision of prediction.

In contrast to machine learning algorithms that require
manual input of features, deep learning algorithms can
automatically select features that affect the prediction results
of the model [23]–[25]. Deep learning can easily input
problem-specific constraints into the model, which can easily
reduce model bias [25]. RNN (Recurrent Neural Network) is
a special type of neural network model that has the ability of
short-term memory, which preserves the association between
data by ‘‘remembering’’ relationships [25]. Liang et al. [26]
used LSTM and Encoder-Decoder LSTM models to predict
the thickness of coal seams. When the hyperparameters were
not optimized, the error of the model’s coal seam thickness
prediction results was both large. The introduction of an
expert knowledge base and optimization of hyperparameters
such as the number of neurons, training period, and input-
output sequence step size can effectively fit the real coal seam
thickness true values. Relying only on data-driven models to
predict the operating state tends to ignore the characteristics
of the mechanical equipment itself. Zhang et al. [27] used
a theoretically simplified rolling force model and a bounce
model based on the theory to determine the prediction model
input parameters and established a DBN-LSSVM hybrid
model to predict the strip thickness, and the prediction accu-
racy was further improved compared with the conventional
deep confidence network model.

The essence of model-based methods is to predict the
system output by constructing an observer and to determine
the fault based on the residuals between the predicted and
observed values [28]. This type of approach is more intuitive
in terms of the predicted response of the system, but with
the increasing complexity of the structure and working
mechanism of mechanical equipment and the increase in
random disturbances, the complexity of modeling increases
significantly. Therefore, model-based methods have many
constraints in complex engineering application scenarios and
can no longer adapt to the current trend of mechanical
equipment [29]. The data-driven approach analyzes the
implied laws from historical data and trains the model
through continuous iterations to make its ‘‘input-output’’ fit
the distribution characteristics of historical data [30]. Given
this feature, the data-driven dynamic prediction and diagnosis
technology is largely free from the reliance on a priori
knowledge, without the need to establish complex physical
models, only need to select the appropriate parameters
from the sensor monitoring data center and supporting
the corresponding learning algorithm to achieve accurate
early warning. However, there is a contradiction between
computational speed and accuracy in the practical application
of online prediction methods that rely solely on physical
or data models for frequency dynamics. Hao et al. [31]
established a mathematical model based on the influ-
ence function method to accurately obtain the thickness
distribution during the angle rolling process. After that,

a real-time dynamic prediction model was established relying
on experimental data. The model can be applied to the
actual production process to develop effective plate shape
control strategies and flexible rolling protocols to meet
the various thickness requirements for custom production.
Wang et al. [32] proposed a method for online prediction
of frequency dynamics based on the idea of physical-
data fusion modeling: the transient frequency influencing
factors were divided into critical and non-critical factors,
the system frequency response model was applied to the
critical factors to preserve the causal link between electrical
information, and the error correction model based on the
limit learning machine was applied to the non-critical factors
to characterize the correlation. Therefore, we can introduce
the nonlinear deformation formulas (including boundary and
initial conditions) in battery electrode production into the
data-driven model as training constraints, which can achieve
the goal with fewer data samples.

In summary, the electrode thickness, as an important
indicator to assess the operating status of the electrode
mill, needs to be monitored in real-time. In order to solve
the problems of wasted industrial resources and increased
costs due to inconsistent sheet thickness, a more advanced
prediction method is needed to predict the machine operating
status for some time in the future. At present, the traditional
method of predicting the thickness of lithium battery
electrodes can no longer meet the demand for high precision
and still has the following problems:

1. Many current models can often only analyze data
purely based on data-based machine learning, without
actually considering the underlying physicalmechanics
more [32];

2. The processing of Li-ion battery electrodes is a very
complex non-linear system, and even two identical
electrodes may react differently when subjected to the
same environment;

3. We can predict the behavior of nonlinear systems based
on deep learning algorithms, but it is not easy to train
and validate this system, often requiring large amounts
of data.

In response to the above problems, we adopt a physical-
data fusion modeling prediction method based on the coupled
multimorph model and Bayesian LSTM to achieve dynamic
prediction of the thickness of lithium battery electrodes,
ensure the consistency of the electrode thickness, and
improve the operating efficiency of electrode production.
Firstly, we establish the underlying physical model of the roll
to further obtain the specific parameters affecting thickness
control and reduce the redundancy and complexity of the
data; secondly, we use LSTM and Bayesian LSTMmodels to
predict the electrode piece thickness under variable working
conditions, improve the robustness of the prediction model of
the nonlinear control system, and solve the problems of slow
approximation speed and easy to fall into local minimization
of the traditional neural network. The details of the research
are as follows:
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Firstly, the two upper and lower rolls of the mill will
give pressure to the electrode piece and produce a plastic
deformation state, which makes the thickness of the electrode
piece change, while the rolls are subjected to the reaction
force of the electrode piece and the bouncing phenomenon
occurs. In addition, the calculation accuracy of the rolling
force directly affects the quality and thickness of the lithium
battery electrode piece. Therefore, we establish a multi-
deformation coupled physical model based on the roll
stiffness deformation model, elastic bending model, and
rolling force model.

Second, the ordinary neural network predictive control
model has the following problems:
(1) Uncertainty about the initial connection and the size of

the threshold;
(2) Slower convergence of errors;
(3) Easy to fall into the problem of local miniaturization;
(4) Variable choice of network structure;
(5) The contradiction between prediction ability and train-

ing ability.
Therefore, we use LSTM deep learning model to solve

the problem of slow convergence and easy to fall into
local minimization. However, the number of hyperparameters
of LSTM is large, and the prediction accuracy of the
model is poor under the influence of noisy data. Further,
we use the Bayesian algorithm to optimize the LSTM model
and suppress the noise effect of the data. We use the
variable parameters of the deformation coupling model as the
input variables of the prediction model, and the predictions
based on the selected input data are fused by a nonlinear
fusion network, which effectively balances the predictive and
training capabilities of the model. In addition, we use MSE,
RMSE, MAE, R, and R2 metrics to evaluate the convergence
ability and fitting accuracy of the neural network.

Finally, we compare other deep network models with
the method proposed in this paper. The prediction accuracy
between the GA-BP model, DBN-LSSVM model, LSSVM
model, GRNN model, and the prediction model proposed in
this paper is mainly compared and analyzed. The advantages
of deep learning models in data feature self-extraction and
model generalization generalizability are analyzed. Com-
pared with other neural network models, Bayesian LSTM has
better generalizability for small sample data.

Our proposed multi-deformation coupled model and data-
driven method for battery electrode thickness prediction
control method have the following innovations:

1. In order to improve the prediction accuracy of lithium
battery electrode thickness, maintain the thickness consis-
tency and improve the mill operation efficiency. In this
paper, we innovatively propose a distributed predictionmodel
with multi-deformation coupled model and Bayesian LSTM,
in which the variable parameters of the deformation coupled
model are used as the input variables of the prediction model,
and the predictions based on selected input data are fused
by a nonlinear fusion network, which effectively balances
the prediction ability and training ability of the model.

The requirement of large data volume is reduced based on
improving convergence ability and fitting accuracy.

2. To solve the contradiction between computational speed
and accuracy of traditional data-driven online prediction
methods in practical applications. In this paper, we propose a
multi-deformation coupling model of rolls and a rolling force
model, which introduces the nonlinear deformation formula
(including boundary and initial conditions) in the production
of battery electrodes into the data-driven model as training
constraints, which can achieve the target with fewer data
samples.

3. Under variable working conditions, the uncertainty
of LSTM hyperparameters leads to poor prediction results.
To solve this problem. In this paper, we propose a Bayesian
statistical approach to optimize the LSTM hyperparameters,
which reduces the influence of noisy data on the prediction
results. We use MSE, RMSE, MAE, R, and R2 metrics to
evaluate the convergence ability and fitting accuracy of the
neural network.

4. To further analyze the applicability of the Bayesian
LSTM model, we compare other deep network models with
the method proposed in this paper. The results show that the
Bayesian LSTM has better generalization in small sample
data compared with other neural network models. It is also
more suitable for future prediction of the operating state of a
double-roller lithium battery electrode mill.

This paper is organized as follows: In Section 2, a coupled
model of the electrode mill roll deformation is developed,
including a stiffness deformation model, an elastic bending
model, and a rolling force model. In Section 3, the distributed
LSTM predictor and the MLP-based Bayesian LSTM depth
fusion predictor are proposed. In Section 4, we conduct
experiments to verify the accuracy of our proposed prediction
models.

II. DEFORMATION COUPLING MODEL
In the rolling process, there are two main reasons for changes
in the thickness of lithium battery electrodes: one is the
reason for the rigidity of the electrode mill itself; the other
is the reason for the battery electrodes themselves. While
the mill performance changes are often the main factor,
the battery electrode strip is generally a secondary factor.
Therefore, we study lithium battery electrode mill changes on
the impact of the electrode thickness. The following specific
introduction of mill stiffness deformation model, roll elastic
deformation model, and rolling force model.

A. STIFFNESS DEFORMATION MODEL
When the electrode mill stiffness is small, the frequent
fluctuation of the rolling force will affect the accuracy of
the electrode thickness. At the same time, because the rolls
work for a while along the roll surface wear distribution is not
uniform, which also causes the change of the mill stiffness,
so the electrode mill design generally uses a high stiffness
design.
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FIGURE 2. Seat elastic deformation.

The overall elastic deformation of the mill mainly includes
the elastic deformation of the mill plate [33], the elastic
deformation of the roll bearing seat, the elastic deflection,
and flattening of the rolls, etc. The overall elastic deformation
of the mill, which includes the deformation of various
components, is collectively referred to as the mill bounce.
Seat elastic deformation is shown in Fig.2.

During the rolling process of the lithium battery electrode,
the two upper and lower rolls of the mill will give pressure
to the electrode, producing a plastic deformation state, which
makes the thickness of the electrode change, while the lithium
battery electrode will act on the opposite force of the roll,
producing an elastic deformation state, making the roll gap
larger and the bouncing phenomenon occur [34]. Combined
with the mill operating parameters to establish the following
bouncing model:

S = S0 +
FP − F ′P

K
+ Sr + Sw + Se +10 (1)

where, S denotes the actual roll gap of the roll, mm. S0
denotes the original roll gap of the roll, mm. FP denotes the
preset rolling force, KN. F ′P denotes the preset rolling force,
KN. K denotes the mill stiffness coefficient. Sr denotes the
compensation amount of the roll wear, mm. Sw denotes the
compensation amount of the electrode width, mm. Se denotes
the compensation amount of the thermal expansion of the roll,
mm.

B. ELASTIC BENDING MODEL
To simplify the analysis process, we simplify the roll to a solid
stepped axis and use the reference systemmethod to establish
the deflection and angle synthesis relations of the beammodel
in multiple reference systems. The simplified model is shown
in Fig.3.

As shown in Fig.3, respectively, take the roll left journal
midpoint, the two end faces of the roll surface, the roll right
journal midpoint, for four cross-sections: S1, S2, S3, S4. The
lengths between two sections are L1,L2,L3. The flexural
stiffness of the three segments are: EI1,EI2,EI3. The support
reaction force at P is RP and the shear force at S2 is QB.
In the dynamic system I, QB and RP can produce a relative
deflection of the section S4 in the beam model concerning

FIGURE 3. Simplified model of rolls.

section S1, which is set as f
S4
r1(Q)

, f S4r1(F), its calculation formula
is as follows:

f S4r1(Q) = −
QBL31
3EI1

−
QB(

L2
2 )

3

3EI2
−
QBL33
3EI3

−
QBL1
EI1

× (L1 + L2 + L3)(L2 + L3)−
QBL2
EI2

(L2 + L3)L3

(2)

f S4r1(F) =
FL31
3EI1

+
F(L22 )

3

3EI2
+
FL1
EI1

(L1 +
L2
2
)
L2
2

+ (
FL21
2EI1

+
F(L22 )

2

2EI2
+
FL1
EI1
·
L2
2
) · (

L2
2
+ L3) (3)

Then, the total relative deflection of section S4 in the beam
model for the dynamic system I am:

f S4r1 = f S4r1(Q) + f
S4
r1(F)

(4)

The cross-section B is at the support B, so its absolute
deflection is f Ba1 = 0. The static reference system is
represented by the support B [35], Then the absolute
deflection of section B is equal to the sum of the implicated
deflection of the section by the dynamic system I and the
relative deflection of section B to the dynamic system I,
i.e. f Ba1 = f Be1 + f Br1 , and the implicated deflection is f Be1 =
θA · (L1 + L2 + L3). The shear force and bending moment
at the section where the maximum deformation of the roll
is taken, and the relative deflection of the section m with
respect to the dynamic system I fixed to the beam section I
is f mr1(Q), f

m
r1(F)

, f mr1(M ):

f mr1(Q) = −
QmL31
3EI1

−
Qm(

L2
2 )

3

3EI2
−
QmL1
EI1

(L1+
L2
2
)
L2
2

(5)

f mr1(F) = f Br1(F) (6)

f mr1(M ) =
MmL21
2EI1

+
Mm(

L2
2 )

2

2EI2
+
MmL1
EI1

·
L2
2

(7)

So:

f mr1 = f mr1(Q) + f
m
r1(F) + f

m
r1(M ) (8)

And the implicated deflection of the dynamic system I to
the section m is:

f me1 = θA · (L1 +
L2
2
) (9)
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FIGURE 4. Rolling process plastic deformation area.

TABLE 1. Deformation amount classification.

Then the deformation of the section m is:

f ma1 = f me1 + f
m
r1 (10)

Therefore, in a certain dynamic system, the deformation
of the roll deformation section depends on some force
parameters, which are set as input parameters of the
prediction model in the subsequent establishment of the
prediction model using the equivalent transformation.

C. ROLLING FORCE MODEL
The rolling pressure model is used to calculate the rolling
pressure in the production of the electrode, and it is also a
very important variable in the mill control system, and its
calculation accuracy directly affects the quality and thickness
of the lithium battery electrode. We mainly study the area
where the plastic deformation occurs between the roll and
the lithium battery electrode piece in contact with the force,
as shown in Fig.4, to form a more ideal rolling model.

1) PLASTIC DEFORMATION
In the plastic deformation region, we defined the absolute and
relative deformations [36], as shown in Table 1.

Where, 1h refers to absolute depression, 1l refers to
absolute extension,1b refers to absolute spreading, ηh refers
to depression rate, ηl refers to extension rate, ηb refers to
spreading rate.
1h is the result of subtracting the exit thickness from the

entrance thickness of the lithium battery electrode, which is
defined as:

1h = H − h (11)

1l is the result of subtracting the exit height from the
entrance height of the lithium battery electrode, which is

defined as:

1l = LH − lh (12)

1b is the result of subtracting the exit width from the
entrance width of the lithium battery electrode, which is
defined as:

1b = BH − Bh (13)

ηh is the percentage of the pressed down the amount of the
lithium battery electrode to the entrance thickness, which is
defined as:

ηh =
1h
H
× 100% (14)

ηl is the extension of the lithium battery electrode as a
percentage of the entrance height, which is defined as:

ηl =
1l
LH
× 100% (15)

ηb is the percentage of thewidespread of the lithium battery
electrode to the entrance width, which is defined as:

ηb =
1b
BH
× 100% (16)

From expert experience, the volume of the lithium battery
electrode does not change before and after rolling, so:

HLHBH = hlhbh (17)

Deforming Equation (17), we can get:

HLHBH
hlhbh

= 1 (18)

where: H indicates the entrance thickness of the electrode; h
indicates electrode exit thickness; LH indicates the entrance
height of electrode; lh indicates the exit height of electrode;
BH indicates the entrance width of the electrode; bh indicates
the exit width of electrode.

2) FRONT-SLIP AND BACK-SLIP
During the rolling process, the thickness of the electrode
decreases gradually, but its rolling speed is slowly increasing,
resulting in a velocity difference between the electrode and
the roll. When the velocity of the electrode mass located in
the plastic deformation zone is larger than the velocity of
the horizontal component of the roll speed, the front slip
phenomenon is generated; when the velocity of the electrode
mass is larger than the horizontal component of the roll speed,
the back slip phenomenon is generated. The front-slip and
back-slip zones allow the rolling process to continue in an
equilibrium state. Assuming that the width of the electrode
does not change and no deformation occurs in the rolling, the
relationship between the thickness of the electrode before and
after rolling and the speed is:

vHH = vhh (19)

where, vH denotes the roll speed, vh denotes the velocity of
the electrode.
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FIGURE 5. Schematic diagram of the front slip zone I and the back slip
zone II.

As shown in Fig.5, we define the front-slip zone I and the
back-slip zone II. A neutral surface exists in the middle of
zone I and zone II, indicating that the horizontal speed of the
roll corresponding to this surface is equal to the horizontal
speed of the electrode (vH cosα = vh). The corresponding
roll point on this side is the neutral point F , the angle of the
line with the center of the roll is the neutral angle γ [37], [38].
fh is the difference between the electrode speed and the

electrode rolling speed and the percentage of the roll speed
at the exit of the electrode roll, which is defined as:

fh =
vh − v
v
× 100% (20)

fH is the difference between the speed of the horizontal
direction of the roll and the rolling speed and the percentage
of the horizontal speed of the roll, which is defined as:

fH =
v cosα − vh
v cosα

× 100% (21)

where: fh denotes front-slip value; fH denotes back-slip
value; v denotes rolling speed;
Therefore, we need to consider the front-slip value when

using continuous rolling with tension. The front-slip and
back-slip values need to be considered when calculating the
torque required to rotate the rolls and the tension between the
stands. In addition, the front-slip value needs to be calculated
when adjusting the mill, otherwise, the tension will be too
high and the electrodes will be pulled off.

D. THICKNESS CONTROL INFLUENCING FACTORS
According to the first three sections, we can obtain the
expression for the polymorphic coupling model for the
thickness of the lithium battery pole piece:

Q =

√
1− ηh
ηh

[
S +

1
2

√
BH
bh

ln
1

1− ηh

√
H
h
ln
LH
lh

+
π

2
arctan(θA − θB)+

Th − fh
K · vh

−
γ

K

√
L2
1h

]
(22)

From the above equation, it can be seen that the electrode
thickness formula is complicated and the accuracy cannot be
guaranteed, which is not conducive to practical application.
Therefore, when the traditional pure mathematical model
is used to predict the electrode thickness, the maximum
deviation will reach more than 20% [32], this has not been
able to meet the demand in actual production. We summarize
the factors affecting thickness control according to the
previous article as:
• The thickness of the electrode entrance and the thick-
ness of the electrode exit, whose thickness variation
ultimately affects the actual thickness of the electrode.

• The variation of the rolling speed of the battery electrode
sheet. It directly affects the size of the front-slip and
back-slip, the size of the rolling force in the plastic
deformation zone at the exit of the electrode sheet, and
the actual thickness of the electrode sheet.

• Variation in the tension of the lithium battery electrode
sheet. In the winding and unwinding mechanism of a
rolling mill, the rolling tension can change the stress
state of the electrode and ultimately the deformation
resistance of the electrode [18]. The unwinding tension
and the winding tension can fine-tune the thickness of
the electrode sheet.

• The variation of roll gap. The electrode will be subject
to friction and plastic deformation between the roll and
the electrode piece during the rolling process, resulting
in a larger roll gap, which affects the actual thickness of
the electrode.

Through specific analysis of the rolling process and control
system, we can get that H (Thickness of the electrode
entrance), h (Thickness of the electrode exit), BH (Width of
the electrode entrance), v (Rolling speed), FP (Rolling force),
Th (Unwinding tension), TH (Winding tension), S (Actual
roll gap) are the main influencing factors that cause the
fluctuation of the thickness of the lithium battery electrode.
In subsequent sections, the control parameters affecting
thickness determined by the deformation coupling model are
used as input variables for the LSTM prediction model and
the Bayesian LSTM prediction model, ultimately enabling
real-time prediction of cell thickness. The deformation
coupling model can effectively simplify the input parameters
of the prediction model, reduce the complexity of the model,
and improve the efficiency of model training.

III. LSTM MODEL AND ITS VARIANTS
A. LSTM MODEL
When the network is too deep, standard RNNs tend to suffer
from long-time dependence and gradient disappearance [25],
[39], [40]. In other words, when the time step is too large, the
information carried by the preceding neurons is lost, because
no structure in the standard recursive layer can control
the flow of memory itself alone. To solve this problem,
long and short-term memory networks have been proposed,
which are improved recursive electrodeular structures whose
differences from RNNs are shown in Fig.6. The network
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FIGURE 6. (a) RNN neural network model; (b) LSTM neural network
model.

structure of LSTM is much more complex than that of RNN.
Microscopically, the LSTM adds three gate structures and a
unitary state structure to the RNN structure to achieve the
function of remembering the information state values at any
past moment [41].

In order to better characterize the coupling relationship
between variables, we adopt a single-to-single structure
LSTM model, and use the training error of each category of
variables as the input bias of the next category of variables,
and the model structure is shown in Fig.7. The gate structures
are: the oblivion gate, input gate, and output gate, which
are responsible for different functions in the LSTM. Among
them, the forgetting gate is mainly responsible for infor-
mation filtering, determining the trade-off of information,
and this decision is made by the ’’sigmoid’’ function in
the forgetting gate [40]; The input gate is the information
selection storage unit in the LSTM, which is responsible
for selecting the appropriate and useful information to be
retained in the LSTM; the output gate mainly determines the
output of the neural network.

The LSTM uses storage elements to transfer information
from past outputs, rather than making the output of the RNN
unit a nonlinear function of the weighted sum of the current
input and the previous output [41], [42]. In other words,
instead of using only the hidden state H , the LSTM uses the
electrode state C to preserve long-term information. LSTMs
mainly uses three gates (forgetting gate, input gate, and output
gate) to control the electrode state C . The forgetting gate is
used to control from previous electrode states Ct−1 to the
information of current electrode states Ct ; The input gate
determines how much input should be held in the Ct ; The
output gate determines the output Ht according to Ct .
Compute the LSTM output for step t using the following

equation:

Ft = σ (Wf · [Ht−1,Xt ]+ bf ) (23)

It = σ (Wf · [Ht−1,Xt ]+ bi) (24)

C̃t = tanh(Wc · [Ht−1,Xt ]+ bc) (25)

Ct = Ft ∗ Ct−1 + It ∗ C̃t (26)

FIGURE 7. Block diagram of the one-to-one LSTM model.

Ot = σ (Wo · [Ht−1,Xt ]+ bo) (27)

Ht = Ot ∗ tanh(Ct ) (28)

Among them, ’·’ represents the inner product between
variables, ’∗’ represents the outer product between variables,
W and b are trainable weights and biases, respectively, and
I ,F and O represent input gates, forgetting gates and output
gates, respectively. These three doors have the same shape,
[Ht−1,Xt ] different, and need to be learned in the training
process. The candidate state C̃t cannot be used directly,
it must pass through the input gate and then be used to
calculate the internal storage Ct . And Ct is not only affected
by the hidden state, but also by Ct−1, which is controlled by
the forgetting gate. On top of Ct , a layer of tanh functions is
applied to the output informationHt , which is bounded by the
output gate. The presence of gates allows the LSTM to fulfill
long-term dependencies in sequences, and by learning the
parameters of the gates, the network can find the appropriate
internal storage [25].

B. BAYESIAN LSTM MODEL
The parameters in the LSTM model are divided into two
main categories, one is the model parameters, which are
updated by the gradient descent algorithm during training,
and the other is the hyperparameters, which are generally
fixed values or vary with predefined rules during training,
such as batch size, learning rate, weight decay, and gamma
in kernel functions, etc [43]. The goal of hyperparameter
tuning is usually to minimize the generalization error, but
other optimization goals can be customized for specific
tasks. Bayesian conditioning uses a continuously updated
probabilistic model to ‘‘focus’’ promising hyperparameters
by extrapolating past results and is suitable for optimization
on spaces smaller than 20 dimensions. Through Monte Carlo
sampling, Bayesian deep learning networks train the network
several times and take the average of all losses, which is
then used for back-propagation to obtain the distribution of
weights and biases.

In a normal LSTM network, the parameters including all
weights and biases are trained constants. Bayesian LSTM
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FIGURE 8. The difference between the normal LSTM network and the
Bayesian LSTM network.

can treat the weights and deviations as a random distribution
that is constantly updated with iterations. Each parameter
obtained through Bayesian LSTM network training is based
on the mean and variance of the weight and bias distribution
[44], [45]. Fig.8 shows the differences between the ordinary
LSTM network and the Bayesian LSTM network. The
ordinary LSTM network obtains a certain weight and bias
after training. In contrast, the Bayesian LSTM obtains
weights and biases after training as a distribution with mean
and variance.

Assuming training data D, Bayesian inference can be
used to compute the posterior distribution of the weights
P(w|D) [44]. The predicted distribution of the input data x
is given by P(y|x) = EP(θ |D) [P(y|x, θ)]. Until now, it is
still difficult to find a suitable collection function. Variational
approximation of the Bayesian posterior distribution of the
weights is a feasible approach. Variational learning finds the
parameter (µ, σ ) of a distribution overweights q(θ |µ, σ ) that
minimizes the Relative Entropy (RE) [45]. The true Bayesian
posterior probability is:

(µ, σ ) = arg min
µ,σ

RE[q(θ |µ, σ )||P(θ |D)] (29)

According to Bayesian theory:

P(θ |D) =
P(D|θ )P(θ )

P(D)
(30)

and RE, equation (29) can be transformed into:

(µ, σ ) = arg min
µ,σ

∫
q(θ |µ, σ ) log

q(θ |µ, σ )
P(D|θ )P(θ )

dθ (31)

For the evaluation of the effect of modeling the feature
dataset, we define the cost function:

L =
∫
q(θ |µ, σ ) log

q(θ |µ, σ )
P(D|θ )P(θ )

dθ (32)

For the variance to be expressed as a non-negative real
number, we make the following definition:

σ = log(1+ ep) (33)

θ = µ+ log(1+ ep)⊗ ϕ, ϕ ∼ N (0, 1) (34)

After that we can get:

L = log q(θ |µ, σ )− logP(θ)− P(D|θ )P(θ ) (35)

FIGURE 9. Model framework for predicting the thickness of lithium
battery electrodes.

∂

∂p
L =

∂L
∂θ

ϕ

1+ e−p
+
∂L
∂p

(36)

where ∂L
∂θ

is the gradient found by the backpropagation
algorithm on an ordinary LSTMnetwork. Thus, to understand
the mean and standard deviation, we can calculate the
gradient by backpropagation and then scale and transform
it [46], [47].

C. THICKNESS PREDICTION MODEL FRAMEWORK
We propose a distributed prediction model combining a
deformation coupling model and a deep learning network for
the thickness prediction problem of lithium battery electrode
mills. The model framework is shown in Fig.9, which
consists of three main components: data pre-processing,
data reorganization, and Bayesian LSTM sub-predictors.
Data pre-processing using K-means and Z-score methods
to reduce data dimensionality and eliminate redundant
data. Data reorganization classifies the processed features
with a total of data variables. For n data variables, n
Bayesian LSTM sub-predictors are designed. Finally, we use
fusion nodes to fuse the predictions of multiple sub-
predictors. The fusion node uses an artificial neural network
MLP. MLP is a fully connected combination of artificially
designed neurons, which applies a nonlinear activation
function to model the relationship between input and output.
Our proposed thickness prediction model framework is
able to mine the ‘‘historical information’’ of the data
while fusing the correlations between different feature
data.

IV. EXPERIMENTS
A. DATASETS
Our experiments use the data set of the lithium battery
electrode thickness control system of a battery equipment
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TABLE 2. Raw data of the sample section.

company in Xingtai, Hebei Province, China. These data
include system preset and actual thickness values. The
lithium battery electrode thickness was selected for pre-
diction to validate the proposed model. The dataset con-
tains electrode thicknesses under the action of 3 different
FP (45t-55t, 55t-65t, and 65t-75t). The data under different
working conditions are collected according to time steps,
and there is a strong correlation between the time series
data, that is, the data of the previous time step will have an
impact on the thickness prediction results of the next time
step. Datasets contains a total of 30,000 data samples, and
Table 2 shows some of the data. We selected the first 90%
of the data for training and the remaining 10% for testing.
Betweenmodel training, we need to normalize the parameters

to map the original data into the (−1, 1) interval, maintaining
the correlation between the input and output data [10].

B. MODEL PARAMETER SETTINGS
We use LSTM deep neural networks and Bayesian LSTM
deep neural networks for our experiments. We use Relu as
the linear activation function for the Bayesian LSTM layer
and the LSTM layer.

For the Bayesian LSTM layer, we set up an MLP
layer with the size of each layer set to 24. Supervised
training was performed using the Adam algorithm, and the
model was trained using small batch sampling. The model
hyperparameters, such as learning and batch size, were
obtained from experiments, as shown in Tab.3.

VOLUME 10, 2022 55043



Y. Xiao et al.: Model-Data-Fusion Pole Piece Thickness Prediction Method With Multisensor Fusion

TABLE 3. Hyperparameters for the experiments.

For the LSTM layer, we also use Adam’s algorithm for
supervised training. The training-test dataset partitioning
is kept consistent with the Bayesian LSTM layer. The
hyperparameters of the model are set based on expert
experience, as shown in Table 3.

The performance of themodel is evaluated by the following
five metrics. The mean square error (MSE) can reflect the
value of the convergence loss function of the neural network
and is defined as:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (37)

where ŷi is the prediction, yi is the ground truth, and n is the
number of data.

The root-mean-squared error (RMSE) is a better way to
describe the data and is defined as:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (38)

The mean absolute error (MAE) and Pearson’s corre-
lation coefficient (R) between the predicted and refer-
ence values were also explored in the experiments [48].
In addition, to describe the relationship between the pre-
dictor and response variables, we explored the R-squared
coefficient (R2):

MAE =
1
n

n∑
i=1

∣∣yi − ŷi∣∣ (39)

R =

n∑
i=1

(yi − ŷi)(ŷi − ¯̂yi)√
n∑
i=1

(yi − ŷi)2
n∑
i=1

(yi − ¯̂yi)2
(40)

R2 = 1−

n∑
i=1

(yi − ŷ)2

n∑
i=1

(yi − ŷi)2
(41)

C. EXPERIMENT I
Under this experiment, the performance of the LSTM
model was verified by predicting the electrode thickness

FIGURE 10. LSTM model training progress.

and evaluating the causality. We used 7 variables selected
to influence the thickness control as input data for the
distributed depth model. The tests are divided into three
groups, and there are 45t-55t, 55t-65t, and 65t-75t. The
training process of the LSTMmodel is to optimize the RMSE
by continuously iterating. The training process of the LSTM
model is shown in Fig.10. Using the 45t-55t condition as an
example, we experimentally set the total number of iterations
to 250, specified an initial learning rate of 0.005, and reduced
the learning rate after 125 training rounds by multiplying by
a factor of 0.2. As can be seen from the fig.10, the RMSE
is close to stabilization near the 80th generation and is in the
20-23 interval. Therefore, the LSTMmodel is fast to train and
has low approximation error.

We set the maximum time step in the time series to 250,
i.e., including 250 observations. The blue and yellow lines
indicate the basic facts of the thickness and the predictions
of the model, respectively. Fig.11 shows a comparison of the
measured data and the results of the 250-step prediction. The
best fits were obtained for Observation 17 and Observation
34 at 45t-55t conditions. The poor prediction of Observation
78 is due to the small-time variation trend of the measured
data, which leads to a poor fitting effect. The best fits were
obtained for Observation 20 and Observation 24 at 55t-65t
conditions. While the prediction results of Observation 42 are
located on both sides of the measurement results, the reason
is that as the number of data increases, the hyperparameters
and the amount of data does not fit. Under the conditions
of 65t-75t, Observation 84 has the best fitting effect. While
Observation 4 and Observation 28 have the same trend as
the measured data, but fluctuate more, because the data
itself is too noisy, which affects the prediction accuracy. The
maximumMAE of most observation points (Observation 20,
Observation 24) appears at the data inflection point, which
indicates that the data is noisy and the LSTM is not enough
to suppress the noise. However, the predicted trend is close
to the measured data, and most of the predicted values are
within the confidence interval.

We counted the RMSE of each observation point and the
results are shown in Fig.12. The frequency of RMSE=0
for the pole piece thickness samples is the highest in the
45t-55t and 55t-65t conditions, and the error curve has
a centrosymmetric distribution. Under the conditions of
65t-75t, the frequency of RMSE of the pole piece thickness
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FIGURE 11. (a) Measured and predicted values of electrode thickness at
45t-55t; (b) Measured and predicted values of electrode thickness at
55t-65t; (c) Measured and predicted values of electrode thickness at
65t-75t.

samples is the highest in the interval of [−10, 10], which
indicates that the data distribution is not uniform and the noise

FIGURE 12. (a) RMSE for electrode thickness prediction at 45t-55t;
(b) RMSE for electrode thickness prediction at 55t-65t; (c) RMSE for
electrode thickness prediction at 65t-75t.

is large. We counted additional metrics for the observation
sites, as shown in Table 4. We can find that the absolute error
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TABLE 4. Prediction performance with different observation.

TABLE 5. Prediction performance with MLP fusion predictor.

between predicted and observed values is smaller and the data
fits better in the 45t-55t condition; in the 55t-65t condition,
although the absolute error is larger, the correlation between
the data is stronger. However, the RMSE of the trainingmodel
is too large to meet the accuracy of pole piece production.
Therefore, an optimization algorithm is needed to adjust the
LSTM model hyperparameters.

D. EXPERIMENT II
In experiment I, the accuracy of the LSTM prediction model
could not meet the production requirements. Therefore,
in experiment II, we use the Bayesian LSTM model to
predict the pole piece thickness. Under this experiment,
we used RMSE to evaluate the error of the training data and
MAE, R, and other metrics to evaluate the model accuracy.
Experiment II verified the performance of the Bayesian
LSTM model and evaluated the causality. The test data
is the same as Experiment I. The Bayesian LSTM model
uses bidirectional logic parameter control, and the results
of each Bayesian LSTM predictor output the final thickness
prediction through the MLP network. The prediction results
of each sub-predictor after MLP fusion are shown in Fig.13.
The blue and black lines indicate the thickness measurement
data and the model prediction respectively. The Bayesian
LSTM model performs better than the LSTM model when
there is a large amount of data noise in each working
condition. In Fig.13 (a), there is spike noise in the data, but the
prediction results are not disturbed and the prediction results
remain in a stable range; Fig.13 (b) and (c) show that the
data from multiple sub-predictors contain a large amount of
attribute noise, resulting in a large range of data fluctuations,
but the prediction results remain in a stable range.

Similar to experiment I, we counted the MSE and RMSE
of the Bayesian LSTM predictor under three working
conditions, as shown in Fig.14. The MSE of the predictor
under 45t-55t working condition is 94.57 and the RMSE is

FIGURE 13. (a) Measured and predicted values of electrode thickness at
45t-55t; (b) Measured and predicted values of electrode thickness at
55t-65t; (c) Measured and predicted values of electrode thickness at
65t-75t.

9.72, which indicates that the convergence function error is
larger; the MSE and RMSE of the predictor under 55t-65t
and 65t-75t working conditions are lower, and the predictor
performance is better. In addition, the maximum R and R2

values of the proposed Bayesian LSTM model represent
the best fit between the predicted and observed values. The
results show that the fitted data are highly correlated and can
effectively reduce the uncertainty of some of the large-scale
parameters or parameter combinations. The specific predictor
indexes are shown in Table 5. Compared with the LSTM
predictor, the Bayesian LSTM predictor has a high fitting
ability and strong data denoising ability, which can effectively
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FIGURE 14. (a) RMSE and MSE for electrode thickness prediction at
45t-55t; (b) RMSE and MSE for electrode thickness prediction at 55t-65t;
(c) RMSE and MSE for electrode thickness prediction at 65t-75t.

characterize the relationship between the predictor variables
and the response variables.

E. EXPERIMENT II
In this experiment, we compared other deep network models
with the approach proposed in this paper. As there are few

TABLE 6. Prediction performance with other models.

studies related to thickness prediction for lithium battery pole
mills, the operating principle and deformation parameters of
steel rolling mills are similar to those of lithium battery pole
mills. Therefore, we have analyzed and compared the relevant
results from the thickness prediction studies of steel rolling
mills. Among them, no baseline model includes a feature
selection process and uses all features as network inputs.
In our previous study, we used a BP neural network prediction
model, but the model tended to fall into local minimization.
Later, a genetic algorithm was used to optimize the weights
and thresholds of the BP neural network [22]. Other model
prediction results are shown in Table 6.

We chose other network models including GA-BP [22],
DBN-LSSVM [27], LSSVM [49] and GRNN [50]. In order
to make the comparison results more accurate, we chose
the mean value of the metrics for analysis. The RMSE of
chosen models, the proposed LSTM and Bayesian LSTM in
this paper were 6.723, 5.514, 6.245, 6.682, 5.427 and 5.102,
respectively. The MAEs were 2.708, 2.325, 5.282, 2.539,
2.305 and 1.952. The RMSE of Bayesian LSTM decreased
by 6.37% and 30.97%, and MAE decreased by 18.08%
and 30.07% compared to LSTM and GRNN, respectively.
The results show that the Bayesian LSTM model has the
smallest RMSE of 5.102, decreased by 8.07% and 22.40%
respectively, and the smallest MAE of 1.952, decreased
by 19.11% and 170.59% respectively, compared with other
hybrid models such as DBN-LSSVM and LSSVM. The
above experimental data show that our proposed model
outperforms other models in terms of prediction accuracy and
result fitting, demonstrating the applicability of the model in
the field of rolled piece thickness prediction in rolling mills.

V. CONCLUSION
This paper mainly introduces a physics-data-driven predic-
tion model for the control of the thickness of lithium battery
electrodes. This paper analyzes the current development
status of the research on lithium battery electrode mills and
electrode thickness prediction control and summarizes the
development trend, research content, and shortcomings of
electrode thickness prediction control methods. To effec-
tively reduce the difficulty of data acquisition in industrial
production and further improve the operation performance
and productivity of the electrode sheet mill, this paper
establishes a multi-deformation coupling model based on
the elastic deformation of the roll and the rolling force.
Meanwhile, to improve the robustness of the prediction
model of nonlinear control system under variable working
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conditions and to solve the problem of slow approximation
speed of the traditional neural network, this paper proposes
to establish the thickness prediction model by combining
physical model and deep learning method and to optimize the
LSTM neural network by using Bayesian theory.

In building the physical model, we analyze the influence
of the elastic deformation of the roll on the thickness by
starting from the key components affecting the thickness
of the electrode and establishing the stiffness deformation
model and elastic bending model. Meanwhile, the rolling
force is also one of the factors affecting the thickness of the
electrode. We define the plastic deformation region of the
rolling process, determine the amount of plastic deformation
between the roll and the electrode, and also analyze the effect
of front slip and back slip on the consistency of the electrode.
We obtained mathematical expressions to control the pole
piece thickness production and determined the influencing
factors affecting the electrode thickness control.

In building the physics-data-driven prediction model,
we introduce the nonlinear deformation formula in battery
electrode production into the data-driven model as a training
constraint, considering the influence of the physical mechan-
ics factors of the underlying pole mill on the prediction
accuracy. Meanwhile, we use the LSTM predictor to learn the
prediction for long time-series data. We find that the LSTM
model does not have high prediction accuracy and does
not suppress noise well under variable working conditions
and insufficient data volume. Therefore, we use Bayesian
theory to optimize the hyperparameters of the LSTM neural
network, modeled by weighted sampling, and employ MLP
to fuse multiple sub-predictors to obtain a more stable output.
The Bayesian LSTM can automatically find the optimal
hyperparameters under different operating conditions and
can eliminate redundant data, which reduces the requirement
of large data volume while improving the convergence
capability and fitting accuracy. The RMSE, MSE, MAE, R,
R2 of the Bayesian LSTMmodel are 5.11, 2.25, 1.852, 0.800,
and 0.322, respectively. It has significantly lower errors and
better characterizes the correlation between data compared
with other prediction models.

Although we have improved the thickness prediction
accuracy of lithium battery pole pieces and evaluated the
correlation between different sensor data, there are still some
problems that we need to solve further:

1. The working environment of the lithium battery pole
piece rolling mill is complex. The related parameters of the
pole piece thickness should also include the original density,
coating quality and environmental factors. The thickness
prediction model should add more nonlinear factors to
improve its robustness of the thickness prediction model.

2. The deformation coupling model proposed in this paper
can reduce the network’s input to a certain extent and realize
feature dimension reduction. However, this method cannot
remove the redundant noise of the sensor and cannot extract
the high-dimensional hidden features of the data. We can
seek to adopt some feature extraction algorithms suitable

for real-world industrial data and consider the coupling
relationship between different features.

3. Although the Bayesian network can estimate the
model uncertainty, it relies on prior knowledge and is
computationally expensive. Other optimization algorithms
can be sought to improve the uncertainty expression ability
of the model.

With the demand for industrial production, the lithium
battery pole piece rolling mill is gradually converted from
the single-rolling mode to the double-rolling mode, and the
process technology will be more complicated. Therefore,
we will continue to study the coupling relationship between
the double rolls and the battery pole pieces, propose a
deformation coupling model that is more in line with the
actual operating conditions, and continuously improve the
thickness prediction model. The method proposed in this
paper can be combined with other parameter estimation
algorithms to study nonlinear parameter identification of
different disturbances of lithium battery pole piece rolling
mills and applied to other fields such as signal processing and
process control systems.
Data Availability:The code and data used to support the

findings of this study have been deposited in the battery
electrode thickness using polymorphic variable coupling
model and data-driven method repository and can be
obtained from the corresponding author upon request.
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