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ABSTRACT Protein structure prediction (PSP) is essential for drug discovery. PSP involves minimising
an unknown scoring function over an astronomical search space. PSP has achieved significant progress
recently via end-to-end deep learning models that require enormous computational resources and almost
all known proteins as training data. In this paper, we develop a conformational search method for PSP based
on scoring functions involving geometric constraints learnt by deep learningmodels.Whenmachine learning
models achieve generality and thus obviously loose accuracy, conformational search methods could perform
protein-specific fine tuning of the predicted conformations. However, effective conformational sampling in
PSP remains a key challenge. Existing conformational search algorithms adopt random selection approaches
for neighbor generation and thus greatly depend on luck. We propose a new approach to analyse geometric
constraint-based scores, to identify the regions of the current conformations causing inferior scores, and to
alter the identified regions to generate neighbour conformations. Our approach prefers informed decisions to
random selections from an artificial intelligence perspective. The proposed method also provides promising
search guidance as it obtains significant improvements from given initial conformations. On a set of
35 benchmark proteins of varying types and sizes, our algorithm significantly outperforms state-of-the-art
PSP search algorithms that use random sampling with a similar scoring function: the improvement is about
1Å better average in root mean square deviation (RMSD) values. Our sample generation approach could be
used in other bioinformatics research areas requiring search.

INDEX TERMS Protein structure prediction, search-based optimisation, neighbour generation.

I. INTRODUCTION
Proteins are sequences of amino acid (AA) residues. Pro-
teins fold into three dimensional structures. A protein’s AA
sequence essentially determines its native structure having
the lowest free energy and the native structure essentially
determines its function. By docking on a disease protein’s
native structure, drug molecules inhibit its functions. Pro-
tein structure prediction (PSP) by in vitro methods are time
consuming, costlier, and failure prone. Computational PSP
approaches minimise unknown scoring functions over astro-
nomical search spaces and find decoy structures.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

PSP has achieved significant progress recently via
AlphaFold2’s end-to-end deep learning models [1]. However,
AlphaFold2 needs enormous computational resources and
uses almost all known and unknown proteins in its training.
Moreover, AlphaFold2’s algorithmic details are not open.
Although its trained model is available, because of the com-
putational resource requirement, most research labs cannot
run it locally. Its google Collab interface provides only a
restricted access to AlphaFold2.

After AlphaFold2, for further scientific advancement, the
immediate challenge to the PSP community is to obtain
at least AlphaFold2’s accuracy level but using simpler and
more efficient PSP methods that depend on fewer training
proteins. Further, alternative methods that are based on con-
formational search approaches could also be investigated.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 54991

https://orcid.org/0000-0003-0763-5634
https://orcid.org/0000-0001-5655-0683
https://orcid.org/0000-0002-7619-787X
https://orcid.org/0000-0002-4964-6609


R. Zaman et al.: Constraint Guided Neighbor Generation for Protein Structure Prediction

Furthermore, PSP methods should be made available. In this
paper, we investigate conformational search methods for
PSP using proxy energy functions i.e. scoring functions
based on geometric constraints learnt by deep learning
models [2]–[4]. PSP search methods include Monte Carlo
algorithms [5], evolutionary algorithms [6], multi-objective
optimisation [7], sequential search [8], differential evo-
lution [9], memetic algorithms [10], [11], and gradient
descent algorithms [2], [4], [12]. In general, these itera-
tive search algorithms generate neighbour conformations i.e.
three dimensional protein structures randomly from the cur-
rent conformations, evaluate the generated neighbour confor-
mations using chosen scoring functions, and select the best
neighbour conformations as the current conformations for the
next iterations. As such the conformation evaluation phase
only indirectly guides the search while the conformation
generation phase largely remains unguided and dependent on
luck.

From artificial intelligence perspectives, our motivation
is to generate neighbour conformations based on informed
decisions. So we detect problematic parts of the current con-
formations andmake changesmainly in those identified parts.
To detect the problematic parts, we use a constraint-guided
approach that helps analyse unsatisfied geometric constraints
causing inferior scores of the current conformations. Our
approach is simple and it explains the selection decisions
made by the neighbourhood generation procedure. To the
best of our knowledge, this is the first attempt in taking
an informed approach in neighbour generation for PSP. The
proposed strategy could be useful in other bioinformatics
search problems that include structure based drug design.

We evaluate our constraint guided neighbour generation
approach within a simple local search framework. For protein
structure representation, we use dihedral angles but also com-
pute Cartesian coordinates of the atoms. Moreover, we con-
sider only the main chains or the backbones of the protein
structures and exclude the side chains of the amino acid
residues. For protein structure evaluation, we use scoring
functions based on predicted residue-residue distances. Our
algorithm has been implemented on our newly developed
constraint-based PSP search platform Koala. We use a set of
benchmark proteins of varying types and sizes. Experimental
results show that our constraint-based neighbour generation
approach significantly outperforms other random-based PSP
search approaches. Our proposed approach also significantly
outperforms state-of-the-art PSP search algorithms that use
random sampling with similar scoring functions.

The rest of the paper explores the related work, details of
the problem formulation, illustrates the main idea, describes
the implementation details, and presents our experimental
results and analyses, and also presents our conclusions.

II. RELATED WORK
Considering the relevance with this work, we mainly explore
the search and optimisation approach for PSP.

The free energy of a protein has not been precisely
known or defined so far, but physical (Van der Walls
forces), chemical (bond energies), and electrostatic (Coulomb
forces) energy components have been used in protein struc-
ture scoring functions based on molecular dynamics e.g.
in CHARMM [13]. Another such successful scoring function
used in PSP research is the ROSETTA [14] energy function.
Nevertheless, energy functions that involve all-atomic details
are computationally very expensive. Note that the energy
value is to be computed for each conformation generated
during search.

Quark [5] constructs structures using fragment assembly,
refines them using replica-exchange Monte Carlo simula-
tions, and uses a composite knowledge-based force field.
Quark’s force field has eleven terms that include atomic-
level, residue-level, and topology-level terms. These terms
are knowledge based but also have direct physical basis.

Differential evolution (DE) has been very effective in PSP.
An underestimation-assisted global and local cooperative
DE (GLCDE) improves the search capability of DE [6].
In GLCDE, the global phase tries to locate promising regions
quickly whereas the local phase serves as a local search for
improving convergence. To get the underestimation of the
objective function, on the basis of the abstract convexity
theory, GLCDE designs an adaptive underestimation model
in which the slope control factor of the supporting vectors
is dynamically updated based on the evaluated trial indi-
vidual. AIMOES [7] is a multi-objective optimisation tech-
nique, which reuses past search experiences carried by a
decision maker to select representative solutions. It includes
three different physical energy terms: bond energy, non-bond
energy, and solvent accessible surface area. MODE-K [9]
presents a multi-objective differential evolution algorithm
and maintains an archive of optimal solutions. MODE-K
uses RWplus [15] as the energy function and decomposes
the energy function into two terms to get multiple objec-
tives: a distance-dependent energy term and an orientation-
dependent term.

SAINT2 [8] uses sequential search along with an indepen-
dent fragment-assembly approach to predict both sequential
or non-sequential structures. SAINT2 uses a combination of
knowledge based and physical potentials as energy functions.

PSP search methods also include memetic algorithms.
A knowledge based memetic algorithm [11] shows the
angle Probability List strategy is quite useful in identi-
fying distinct structural patterns. As an energy function,
it uses ROSETTA [14] and solvent accessible surface area
(SASA) [16].

Recently, trRosetta [2], [12] claims that gradient descent
algorithm is useful in solving PSP problems. As energy func-
tion, trRosetta uses ROSETTA [14] energy function.

As alternatives to scoring functions based on molecular
dynamics, knowledge based scoring functions obtained by
machine learning algorithms have also been used in PSP
search e.g. residue-residue distance maps and residue-residue
contact maps (whether residue-residue distances are within
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FIGURE 1. Left: an amino acid (dotted boxed) and protein backbone
angles φ, ψ , and ω. Middle: a protein’s full backbone folded in a three
dimensional shape. Right: protein secondary structures i.e. helixes,
sheets, and loops when shown as cartoons within the three dimensional
structure.

8Å). In distance and contact maps, residues are represented
by Cβ atoms except by Cα for Glycine. SPOT-Contact [17]
is a recent contact map prediction method and CONFOLD
[18], [19], MULTICOM [20], and CGLFOLD [3] are recent
methods that use contact maps in PSP search. Recently
residue-residue distance map based scoring functions have
shown promise [21], [22]. Consequently, RaptorX [23]–[25]
and AlphaFold [26] predict distance maps and use them in
their search algorithms for protein structures.

III. PROBLEM FORMULATION
PSP search starts with a protein’s given AA sequence. FIG-
URE 1 Left shows AAs comprise N , Cα , C , O, and Cβ

atoms among others. Cα atoms are central to AAs. AAs
are of 20 types and can appear any number of times in any
order in a protein. Each instance of an AA in a protein is
a residue. One residue’s C atom is connected with another
residue’s N atom to form a peptide bond. Thus, we get
the main chain or the backbone of a protein. Besides the
main chain, each AA except Glycine has a unique side chain
starting from the Cα atom and Cβ is the first atom in a
side chain. Assuming standard bond distances and angles, the
main chain of a protein can be represented by three rotatable
dihedral angles φ, ψ , and ω that allow folding. These three
angles are respectively defined by each four successive atoms
from the sequence Ci−1, Ni, Cαi , Ci, Ni+1, C

α
i+1. For most

proteins,ω is 180◦ [27], but φ andψ can take any values from
−180◦ to+180◦. The side chains at individual AAs have their
own dihedral angles, but in this work, we mainly focus on
searching for backbone φ and ψ angles of the main chain.
Using backbone φ and ψ angles found, one can first obtain
the main chain and then can later deal with the side chains to
get the full protein structure.

FIGURE 1Middle shows the backbone of an entire protein
when folded into a three dimensional shape. FIGURE 1 Right
shows protein structures exhibit certain local flexible and
rigid regions that are called secondary structures (SS). Rigid
regions such as helices and sheets are comparatively easier to
be modelled since most residues in these regions have been
observed to take φ and ψ values from very narrow ranges
of about 20◦. Finding the φ and ψ values for the flexible

FIGURE 2. Left: distance between two helix residues i and j as predicted
by a machine learning algorithm. Right: changing the dihedral angles of a
loop residue k changes the distance between i and j to obtain the
predicted distance.

loop regions is challenging since they can take any fractional
values in [−180,+180]. About 40% residues in a protein
are in loops [28] and loop sampling methods strive to find
dihedral angles to model them.

The energy function of a protein is not known pre-
cisely. Physical (Van der Walls forces), chemical (bond ener-
gies), and electrostatic (Coulomb forces) components are
used in scoring functions based on molecular dynamics e.g.
CHARMM [13] and ROSETTA [14]. These scoring func-
tions involve all atomic-details and are computationally very
expensive. Note that the scoring function is to be com-
puted for each conformation are generated during search.
As alternatives to scoring functions based on molecular
dynamics, knowledge based scoring functions obtained by
machine learning algorithms have been used in PSP search
e.g. residue-residue distance maps [4], [26], contact maps [3],
[17], [20], and angle orientations [2]. In any of these residue-
residue maps, residues are represented by Cβ atoms except
by Cα for Glycine. Further, in contact maps, contacts denote
whether residue-residue distances are within 8Å.

To evaluate our constraint-guided neighbour generation
approach in PSP, in this work, we perform loop sampling
with an residue-residue distance or contact map based scoring
function. However, our neighbour generation approach could
also be used to refine models for helixes and sheets.

IV. IDEA ILLUSTRATION
Assume i and j be two residues of a protein and dij be the
prediction made by a given machine learning algorithm about
the distance between residues i and j in the native structure
of the protein. Also, assume c be the current conformation of
the given protein during search and dcij be the current distance
between residues i and j in the conformation c. FIGURE 2
Left shows dij = 6.5 acts as a constraint and FIGURE 2 Right
shows dcij = 9.25 violates the constraint. To bring residue i
and j closer to each other and thus to satisfy the constraint,
we change the dihedral angles of a residue k , which is in
between residues i and j.
During search, in each iteration, we heuristically choose

residues i and j with dcij the furthest from dij. Moreover,
we randomly choose k from loop residues only. Note that
we perform loop sampling in this work, leaving helices and
sheets the same after first construction in initialisation.
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FIGURE 3. Our PSP pipeline.

Our key contribution in this paper is selection of k explic-
itly based on its potential to change the distance between
residues i and j, which are in violation of the predicted
distance constraint. Existing algorithms basically randomly
select residue k without having any explicit knowledge of i
and j and hence could waste the search effort.

V. IMPLEMENTATION DETAILS
FIGURE 3 shows our PSP pipeline. We start from the AA
sequence of a protein. From the AA sequence of a protein,
we first use machine learning approaches to predict the main-
chain angles, residue-residue distance or contact maps, and
secondary structures. Using the predictions in various ways,
we then adopt optimisation search approaches to perform
conformation initialisation and evaluation, and then in an
iterative fashion generate and evaluate conformation neigh-
bourhood and accept the best neighbour conformation as the
current conformation for the next iteration. We describe each
stage of our pipeline. However, our main contribution is in
the optimisation search approach, more particularly in the
neighbourhood generation step.

A. USING MACHINE LEARNING ALGORITHMS
There are several main-chain angle prediction methods i.e.
SPIDER2 [29] SPOT-1D [2], SAP [30]. SPIDER2 pre-
dicts with mean-absolute errors (MAE) of about 19.7 and
30.3 degrees for φ and ψ angles respectively. For SAP,
MAE values are 15.66 and 18.59 degrees respectively and for
SPOT-1D, respectively 16 and 23 degrees. After some prelim-
inary experiments, we have found that SPOT-1D predictions
led to better three dimensional structures, mainly because it
captures better overall shape than local structures. SPOT-1D
uses an ensemble of nine Long Short TermMemory (LSTM),
Bidirectional Recurrent Neural Network (BRNN), and Resid-
ual Network (ResNet) models. SPOT-1D has 12,450 and
1250 proteins in its training and testing sets.

Recent inter-residue distance prediction algorithms include
RaptorX [4], PDNET [31] and DeepDist [32]. PDNET and
DeepDist both have MAE values 4.1Å whereas RaptorX [4]
has MAE less than 4Å. So we chose RaptorX over others
as it has less MAE. RaptorX predicts distances for residue
pairs having at least 12 other residues in between in the
sequence and within predicted distances less than or equal

to 15Å. RaptorX uses an ensemble of three ResNet models
and 2020 Cath S35 data for its training.

For residue-residue contact map prediction, recent meth-
ods include SPOT-Contact [17], RaptorX-Contact [33],
Dncon2 [34]. Dncon2 obtains less than 70% precision.
Raptor-X achieves less than 80% precision. SPOT-Contact
gets more than 80% precision for top L/10 predictions
for short, medium and long-range contacts. So we use
SPOT-Contact for contact prediction. SPOT-Contact uses a
coupling of residual 2D bidirectional LSTM with convo-
lutional neural networks (CNN) and the same data set of
SPOT-1D.

For secondary structure prediction, recent methods include
PSIPred [35], DISTILL [36], and SSpro8 [37]. SSpro8
achieves the highest accuracy levels of about 92% and 79%
respectively with and without using homologous proteins.
So we choose SSpro8 for secondary structure prediction.
SSpro8 uses an ensemble of BRNNs and 5772 training pro-
teins.

B. USING OPTIMISATION SEARCH ALGORITHMS
We describe conformation representation, generation, and
evaluation along with scoring functions used in our search.

We mainly use distance maps in scoring functions, but we
also experiment with contact maps. We describe our scoring
functions below where numeric parameters are fixed after
preliminary experiments, but for the sake of brevity, we do not
show those results. Note scores are not defined for sequen-
tially proximate residues i and j with i−j < 3.

a: DISTANCE MAP BASED SCORING FUNCTION
For a pair of residues i and j, RaptorX [4] provides a pre-
dicted distance dij and a deviation δij in the prediction. Using
these, we define minimum andmaximum allowable distances
mij = dij − δij and Mij = dij + δij, and relative error
rij = δij/d(ij). Consequently, we do not include residue pairs
for which relative errors are 0.5 or more. Next, for a current
conformation c, we define a partial score scij and the total score
sc as below. FIGURE 4 (left) shows our distance map based
scoring function scij with mij = 5 andMij = 7 for any residue
pair i and j. As we see, the lower bound of the score for a
residue pair is −1.

scij =
mij − dcij
mij

whendcij < mij

=
dcij −Mij

Mij
whendcij > Mij

= −1 otherwise

sc =
∑
ij

scij wherei−j ≥ 3 ∧ rij < 0.5

b: CONTACT MAP BASED SCORING FUNCTION
For a pair of residues i and j, SPOT-Contact [17] provides a
predicted probability pij for the residue pair to be in contact.
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FIGURE 4. Scoring functions: distance map based (left), contact map
based (middle), and steric clash based (right).

We consider residue pairs with contact probabilities at least
0.3. We give more emphasis on a greater probability. More-
over, we consider two residues are in contact when their
distance is in between a minimum distance d = 3.8Å and
a maximum distance D = 8.0Å. Next, for a current confor-
mation c, we define a partial score σ cij and the total score
σ c as below. FIGURE 4 (middle) shows our contact map
based scoring function σ cij with d = 3.8, D = 8.0, and
pij = 0.7 for any residue pair i and j. As we see, the lower
bound of the score for a pair of residues with indexes i and j
is −pij. Note our scoring function is somewhat similar to the
bounded potential [14] and the square well [38] functions.

σ cij = −pije
−(d−dcij)

2
+ pij

d − dcij
d

whendcij < d

= −pije
−(dcij−D)

2
+ pij

dcij − D

dCij
whendcij > D

= −pij otherwise

σ c =
∑
ij

σ cij wherei−j ≥ 3 ∧ pij ≥ 0.3

c: STERIC CLASH BASED SCORING FUNCTION
Our distance or contact based scoring functions do not
include all residue pairs. So to avoid steric clashes between
residues, we define another scoring function. For this,
we consider a clash when residue pairs have Cα atoms within
2 = 3.6Å of each other. For a current conformation c,
we define a partial score χcij and the total score χc as below.
FIGURE 4 (right) shows our steric clash based scoring func-
tion χcij with 2 = 3.6 for a given residue pairs with indexes i
and j.

χcij = 1−e−(2−d
c
ij)

2
when dcij < 2

= 0 otherwise

χc =
∑
ij

χcij wherei−j ≥ 3

d: CONFORMATION REPRESENTATION
We primarily represent a conformation by the φ andψ values
of the residues. However, to use distance or contact maps,
we also compute coordinates but only for N , Cα , C , and Cβ

atoms of each residue. During search when φ or ψ values are
changed, to generate neighbour conformations, we recom-
pute the coordinates of the atoms that will be affected by the
changes.

e: OPTIMISATION SEARCH FRAMEWORK
Algorithm 1 shows the pseudocode of our simple local search
algorithm for PSP. In this algorithm, geometric constraints
learnt by machine learning algorithms have been turned into
objective functions via the scoring functions. Local search
algorithms usually generate neighbours randomly or in a
generic way unrelated to the specific problem. Constraint
guided sampling embeded within local search provides prob-
lem specific knowledge coded as constraints. Nevertheless,
Algorithm 1 uses distance map based scoring function sc but
sc could be easily replaced by contact map based scoring
function σ c. We further discuss the details of the algorithm.
The complexity of Algorithm 1 isO(MNL2) whereM is the

number of time iterations, N is the number of neighbouring
conformation generated from each given conformation, and
L is the number of AA residues in the given protein.

Algorithm 1 Constraint Guided Neighbours for PSP
1: Initialise conformation c from predicted φ,ψ values
2: Evaluate conformation c by computing scores sc and χc

3: 18← {±3,±6, · · · ,±φMAE} // SPOT-1D φMAE = 16
4: 19 ← {±3,±6, · · · ,±ψMAE} // SPOT-1DψMAE = 23
5: Reset tabu on each pair 〈i, j〉 appearning in sc and χc

6: for iteration τ from 1 to a maximumM do // M = 8000
7: MinClash← (χc > χt)∧probability(0.5) // χt =

2
8: if MinClash then // minimise clash based score
9: 〈i, j〉 ← argmax

〈i′,j′〉:¬tabu(〈i′,j′〉,τ )χ
c
i′j′

10: else // minimise distance based score
11: 〈i, j〉 ← argmax

〈i′,j′〉:¬tabu(〈i′,j′〉,τ )s
c
i′j′

12: end if
13: k ← random({k ′ : i < k ′ < j ∧ isLoop(k ′)}
14: 1φ← N random values from 18 // N = 20
15: 1ψ ← N random values from 19 // N = 20
16: C ← {cn : add 1φ[n] to φk ,1ψ[n] to ψk in c}
17: Evaluate each cn ∈ C by computing scores scn , χcn

18: if MinClash then // minimise clash based score
19: c′← argmincnχ

cn

20: Accept c′ as c, if χc
′

< χc ∧ sc
′

≤ sc

21: else // minimise distance map based score
22: c′← argmincns

cn

23: Accept c′ as c, if (sc
′

ij < scij ∧ χ
c′ < χt)

24: else accept c′ as c, if (sc
′

< sc ∧ χc
′

≤ χc)
25: end if
26: Apply tabu on 〈i, j〉 with tenure T // T = 15
27: end for
28: return the best 5 conformations in terms of sc

f: CONFORMATION INITIALISATION
In Algorithm 1 Line 1, we take predicted φ and ψ values and
MAE values φMAE and ψMAE from SPOT-1D [39]. We then
generate random values from ranges [φ − φMAE, φ + φMAE]
and [ψ −ψMAE, ψ +ψMAE]. We also consider another alter-
native initialisation procedure: we use SSpro8 [37] predicted

VOLUME 10, 2022 54995



R. Zaman et al.: Constraint Guided Neighbor Generation for Protein Structure Prediction

TABLE 1. Typical φ and ψ ranges for secondary structures helixes (G, H, I),
sheets (B, E), and loops (S, T, C) [40].

secondary structures and generate φ and ψ values randomly
from the ranges shown in TABLE 1. Note once initialised,
dihedral angles of only loop residues are changed by search.
This is because SPOT-1D predictions for helix and sheet
residues have smaller errors than those for loops.

g: CONFORMATION EVALUATION
In Algorithm 1 Lines 2 and 17, we evaluate a conformation c
by computing the distance map based score sc and the steric
clash based score χc. We do not add sc and χc, since their
normalisation is not straightforward. Consequently, we have a
two-objective minimisation problem, where sc is the primary
objective. However, at a time, we mainly work with one
objective function, which is chosen in Line 7 in Algorithm 1.
If χc is more than a threshold χ t

= 2, with 50% probability,
we minimise χc; otherwise, we minimise sc.

h: NEIGHBOUR GENERATION
Using the scoring function selected in Line 7 in Algorithm 1,
we choose a residue pair i and jwith the worst score (the tabu
condition is discussed later) in Lines 9 and 11. In Line 13,
we then choose a random loop residue k , which is in between
i and j. Next, in Lines 14 and 15, we choose N angle dif-
ferences in each of 1φ and 1ψ respectively from sets 18
and 19. Note 18 and 19 as defined in Lines 3 and 4 hold
values in intervals of 3◦ from ranges [−φMAE,+φMAE] and
[−ψMAE,+ψMAE] respectively. Then, in Line 16, we gener-
ate N neighbour conformation using the angle differences in
1φ and 1ψ .

i: USING TABU METAHEURISTIC
Revisitation is a problematic issue in local search. In Algo-
rithm 1 Lines 9 and 11, the same i and j could be repeatedly
selected. To avoid revisitation, we use the tabu metaheuris-
tic [41]. With tabu initialised in Line 5, enforced in Line 26,
and checked via tabu(〈i′, j′〉, τ ) in Lines 9 and 11, recently
selected i and j will not be selected again in Lines 9 and 11
within a number (called tabu tenure T ) of future iterations.
In this work, we do not apply tabu on the selection of residue
k in Line 13.

j: ACCEPTING BEST NEIGHBOUR
When we improve one objective function, we do not want
to worsen the other one. Moreover, improving the partial
score sc

′

ij is the primary reason to select the residues i and j
in Line 11. So when distance map based scoring function sc

is chosen in Line 7, we accept neighbour c′ with best sc
′

in

Line 24, if the partial score sc
′

ij is strictly better than s
c
ij.We also

alternatively accept c′ when sc
′

is strictly better than sc and
χc
′

is not worse than χc. Next, steric clash minimisation is
basically a secondary objective. So when steric clash based
score χc is chosen in Line 7, we accept neighbour c′ with
best χc

′

in Line 20, if χc
′

is strictly better than χc and sc
′

is
not worse than sc.

k: IMPLEMENTATION PLATFORM
We implement our algorithms on top of a recently devel-
oped Python-based PSP search platform named Koala, which
draws concepts from a constraint based local search system
named Kangaroo [42].

VI. EXPERIMENTAL RESULTS
All the algorithms are executed on a Linux 64-bit systemwith
Intelr Xeonr X3470 293 X 8 GHz and 8GB memory.
TABLE 2 shows our experimental results on 35 proteins

having 42 to 138 residues.

A. DATASET
Our dataset includes 14 α type, 11 β type, and 10 α/β
type proteins. These proteins are from existing PSP search
algorithms such as QUARK [5], MODE-K [9], and MOD-
CSA/CA [43] or a machine learning algorithm such as SPOT-
1D [39]. We have used CD-HIT and PSI-BLAST [44] to
ensure the proteins do not have more than 25% sequence sim-
ilarity with the training proteins of the previously-mentioned
machine learning algorithms used in our implementation.

B. COMPARISON OF OUR ALGORITHM VERSIONS
Besides the steric clash based scoring function χc, Algo-
rithm 1 uses (i) distance map based scoring function sc, (ii)
tabu with tenure 15, (iii) initialisation using predictions from
SPOT-1D [39], (iv) selection of residue pairs i and j based
on scoring functions χcij or s

c
ij, and (v) generation of 1φ and

1ψ values from the ranges determined by the MAE values of
SPOT-1D. To test the effectiveness of each of the components
mentioned, we create the following 7 versions of the proposed
algorithm.

dm: is the exact algorithm as is described in Algorithm 1
with the 5 components mentioned above.

cm: uses the contact map based scoring function σ c

instead of the distance map based scoring function
sc in dm.

nt: does not use the tabu metaheuristic used in dm and
so more revisitation of selected residue pairs could
occur.

rp: selects residue pairs i and j randomly but still satis-
fying the condition i−j ≥ 3∧ rij < 0.5 as is needed
in the definition of the distance map based scoring
function.

rl: randomly selects a loop region first and then a ran-
dom residue k from that loop. Note dm first selects
residue pairs i and j using chosen scoring functions
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TABLE 2. Top: mean RMSD values obtained for proteins (left) by proposed algorithm variants (center) and state-of-the-art algorithms (right). Bottom: the
number of proteins with mean RMSD values the best (emboldened) and the 2nd best (underlined), and also the number of proteins with mean RMSD
values ≤ various threshold levels when our algorithm variants are compared with each other and when our best version is compared with the
state-of-the-art algorithms. Note that CGNP is actually dm.

and then selects a loop residue in between residues
i and j.

ri: unlike dm, initialises the φ and ψ angles randomly
but using the SS specific angle ranges shown in
TABLE 1.

fr: like ri, initialises the φ and ψ angles randomly
from the SS specific angle ranges and unlike dm,
generates1φ and1ψ values from the full range of
[−180◦,+180◦].

We run each of the 7 versions of our algorithm on
each protein 5 times. Each run has the maximum iteration
M = 8000 and the number of neighbours generated in
each iteration N = 20. So each run essentially explores
160, 000 conformations; this is the same number of confor-
mations explored by CGLFOLD [3]. Nevertheless, from each
run, we take 5 best conformations in terms of the respective
distance or contact map based scoring function used. Then,
we compute mean Root Mean Square Deviation (RMSD)

value over the 25 conformations for each protein for the same
algorithm version and show in TABLE 2 (top left).
Among our 7 versions, as we see in TABLE 2 (bottom

left), dm obtains the best mean RMSD values in 18 out of
35 proteins and 2nd best mean RMSD values in 9 proteins.
We perform Wilcoxon signed rank test with 95% confidence
interval on dm against the other 6 versions and p-values
are at most 0.0008. This indicates dm’s performance is
statistically significantly different from the other versions.
Moreover, TABLE 2 (bottom) also shows the numbers of
proteins in which various versions obtain mean RMSD val-
ues ≤ various threshold values such as 6Å, 9Å, and 12Å.
Clearly, dm obtains the best performance among the ver-
sions particularly with thresholds 6Å and 9Å. From these
results, it is clear that each component of dm is important
for its performance. We will perform further analysis later in
the paper.

Henceforth, we name our best algorithm version dm as
Constraint Guided Neighbours for PSP (CGNP).
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C. COMPARISON WITH STATE-OF-THE-ART METHODS
We compare our proposed CGNP with two most related
recent PSP search methods CGLFOLD [3] and trRoset-
taX [12]. CGLFOLD performs perturbation based loop
sampling along with predicted contact map based scoring
function. On the other hand, trRosettaX performs gradient
minimisation along with a scoring function that has com-
ponents based on predicted distance maps and inter-residue
angle orientations. Of course both CGLFOLD and trRosettaX
randomly generate neighbour conformations.

For running CGLFOLD on the proteins and computing
mean RMSD values, we use the same setting that we have
used in the experiments with our algorithm versions. For
trRosettaX, we use only the distance based component in
the scoring function, since CGNP uses distance based scores.
Note that our main objective in this paper is not to explore
scoring functions but is rather to see the effectiveness of
our constraint-guided neighbour generation approach over
existing random-based approaches. However, to investigate
that, we do need a scoring function and we use distant based
ones. Nevertheless, trRosettaX returns just one conformation
per run. So we run trRosettaX on each protein 25 times and
compute mean RMSD values over the 25 conformations.

TABLE 2 (top right) shows the mean RMSD values
obtained by CGNP, CGLFOLD, and trRosettaX in each pro-
tein. As we see, CGNP obtains best mean RMSD values
in more proteins in all three types α, β, and α/β proteins
than CGLFOLD and trRosettaX do. Overall, TABLE 2 (bot-
tom right) shows CGNP obtains best mean RMSD values
in 20 out of 35 proteins and 2nd best RMSD values in
11 proteins. We perform Friedman test with 95% confidence
level on CGNP, CGLFOLD, and trRosettaX performances
and get p-value 0.0027. Then, for posthoc analysis, we per-
form Nemenyi test with 95% confidence level to compute
pairwise differences among the three algorithms. From the
test results, we see that CGLFOLD and trRosettaX have no
statistically significantly difference with p-value 0.6046 but
CGNP is statistically significantly different from CGLFOLD
and trRosettaXwith p-values 0.0026 and 0.0444 respectively.

We run all the algorithms on three proteins of three differ-
ent types and check their running time in table TABLE3.Note
that these algorithms have been implemented on different
platforms and programming languages. For example, our
method and CGLFOLD are implemented on Python, which
as a programming language and platform is by default slow.
On the other hand trRosettaX is implemented on C/C++
programming language and is so inherently fast.

FIGURE 5 shows the best conformations obtained by
CGNP, CGLFOLD, and trRosettaX for a sample protein 1IS7.

D. FURTHER PERFORMANCE ANALYSIS
FIGURE 6 shows the correlation between the distance map
based scores and the RMSD values of the conformations gen-
erated during search in the sample runs of CGNP on a sample
protein 1IS7 of type α/β. The Pearson correlation coefficient

TABLE 3. Running time analysis.

FIGURE 5. Best conformations by CGNP, CGLFOLD, and trRosettaX (all
cyan) w.r.t. native conformations (green) for protein 1IS7 of Type α/β and
length 84.

FIGURE 6. Scatter plots of distance map based scores (x-axis) vs RMSD
values (y-axis) for α/β type protein 1IS7.

between the scores and the RMSD values is 0.665. These
results show that improving the distance map based scores
could highly likely lead to improving better conformations in
terms of RMSD values.

FIGURE 7 shows the differences in mean RMSD values of
the initial and the final conformations for CGNP. We see that
CGNP statistically significantly (Wilcoxon signed rank test
95% confidence level p-value 0.0000) improves the quality
of the conformations in terms of the RMSD values.

FIGURE 8 shows the best distance map based scores
obtained so far in each iteration of sample runs of rp, rl,
and dm versions of our algorithm for a sample protein 1IS7.
Clearly, dm keeps improving the distance map based scores
while rp and rl get somewhat stuck in plateaus in terms of
achieving better scores. These results show the effectiveness
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FIGURE 7. Differences in mean RMSD values of the initial and the final
conformations returned by CGNP.

FIGURE 8. Best distance map based scores obtained so far (y axis) in
each iteration of sample runs of rp, rl, and dm versions of our algorithm
for α/β type protein 1IS7.

of our constraint-guided neighbour generation approach of
dm over the random selection based approaches of rp and
rl in terms of improving the distance map based scores.

FIGURE 9 shows sample RMSD distributions of the con-
formations generated by the sample runs of the rp, rl, and
dm versions of our algorithm for one sample protein 1IS7.
These three versions are for the various ways we select the
residue pairs or the loop regions to eventually select another
residue of which the φ andψ angles will be changed. Clearly,
selecting a random loop region by rl is the worst among the
three versions as rl explores inferior conformations. Between
selecting a random pair by rp and a greedy pair by dm, the
greedy pair selection explore more promising conformations
in most cases. These results show the effectiveness of our
constraint-based conformation generation approach in dm
over the random selection based approaches in rp and rl in
terms of exploring higher quality conformations.

VII. CASP13 AND CAMEO144 PROTEINS
We have also run our method with the same experimental set-
ting as describe before on 20 proteins from CASP13 protein
and CAMEO144 hard target test set and compared it with a
very recent method trRosettaX [12] and reported RMSD and
GDT-TS score. GDT-TS score has been used in ranking PSP

FIGURE 9. Sample distribution of RMSD values (x axis) versus percentage
of conformations generated (y-axis) by rp, rl, and dm versions of our
algorithm for α/β type protein 1IS7.

TABLE 4. Mean RMSD and GDT-TS score values obtained for proteins by
proposed algorithm and state-of-the-art algorithm.

methods that took part in CASP14. In most of the proteins
as shown in TABLE 4, our method achieve better result than
trRosettaX.

VIII. CONCLUSION
Protein structure prediction (PSP) has achieved significant
progress lately via development of geometric constraint
based scoring functions. However, sample generation for
PSP remains challenging as existing search algorithms take
random based approaches. We propose a constraint-guided
novel approach to identify problematic parts of a current
conformation and then to make changes to those parts to
generate neighbour conformations. Our approach thus makes
informed decisions in neighbour generation and explains its
performance. On a set of benchmark proteins of varying types
and sizes, our approach significantly outperforms state-of-
the-art PSP search algorithms that use random sampling with
similar scoring functions.
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