IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received May 9, 2022, accepted May 17, 2022, date of publication May 23, 2022, date of current version May 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176873

Multiview Gait Recognition on Unconstrained
Path Using Graph Convolutional
Neural Network

MD. SHOPON"'!, (Member, IEEE), GEE-SERN JISON HSU"2, (Senior Member, IEEE),
AND MARINA L. GAVRILOVA“, (Senior Member, IEEE)

! Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
2Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Corresponding author: Md. Shopon (md.shopon@ucalgary.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada by the Discovery
Grant (DG) on Machine Intelligence for Biometric Security under Grant 10007544, in part by the Strategic Partnership Grant on
Biometric-Enabled Identity Management and Risk Assessment for Smart Cities under Grant 10022972, and in part by the Innovation for
Defence Excellence and Security (IDEaS) Collaborative Project under Grant 10027075.

ABSTRACT Human gait recognition is a valuable biometric trait with vast applications in security domain.
In most situations, the gait data is collected while the subject walks straight. Thus, the performance of the
gait recognition system degrades when the subject changes walking direction. Previous gait recognition
research was predominantly conducted for constrained paths, which limited the system’s robustness and
applicability. This paper introduces a novel approach for gait recognition which aims to recognize subjects
walking along an unconstrained path. A graph neural network-based method is proposed for gait recognition
along unconstrained path. The input of the architecture is the body joint coordinates and adjacency matrix
representing the skeleton joints. Furthermore, a residual connection is incorporated to produce a smoothened
output of the input feature. This graph neural network model utilizes the kinematic relationships of the
body joints as well as spatial and temporal features. The findings demonstrate that the proposed method
outperformed other state-of-the-art gait recognition methods on unconstrained paths. Multi-view Gait AVA
and CASIA-B dataset are used to evaluate the efficacy of the proposed method.

INDEX TERMS Gait recognition, graph neural networks, residual connection, unconstrained gait

recognition, biometrics.

I. INTRODUCTION

Biometric authentication is the method of identifying
individuals based on their behavioral and physiological char-
acteristics. Several biometric traits can be used for person
authentication. Among them face, iris, voice, fingerprint, and
gait hold most discriminative features [1]. The gait of a person
denotes the walking pattern [2], [3]. It consists of information
about the psychological and physical states, which is suitable
for performing person identification. It has numerous advan-
tages such as being unobtrusive, non-invasive, ubiquitous and
acceptable. Due to its advantages, gait has been broadly used
in different domains, including health [4], affective comput-
ing [5], assisted living [6], emotion recognition [7], and user
identification [8].
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Research on gait recognition has gained a significant inter-
est due to its unique characteristics and applications in dif-
ferent domains. A change in appearance due to change in
viewing angle has a negative impact on performance in gait
recognition methods. When a person walks along an uncon-
strained path, the perception angle between the subject’s
walking direction, and the camera optical axis varies in a
single gait cycle.

Majority of security cameras in public spaces are used
for remote observation or monitoring of human activities.
The collected data would contain observations of persons
walking at varied angles to the camera, wearing bulky cloth-
ing, or changing directions. However, these types of walk-
ing conditions are very rarely studied in literature. The two
most common gait recognition approaches developed when
the subject walks in a straight line are appearance-based
methods [9]-[12] and the model-based methods [13]-[15].
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The majority of appearance-based methods are not suitable
for varied walking conditions. Model-based methods are
slightly less sensitive to rotational effects and minor changes
in viewpoint. Those are, nevertheless, distinguished by com-
plicated mapping and searching operations, which increase
the computation cost [16].

For gait recognition, there has been a noticeable trend
toward deep learning-based systems due to the limitation
of traditional machine learning algorithms [17]. Deep learn-
ing methods, such as Recurrent Neural Networks (RNN),
Convolutional Neural Networks (CNN), and autoencoders,
are distinguished by many layers of neurons that learn inde-
pendent data representations [18]. Deep learning has the
advantage of eliminating the need for independent feature
development because the training method extracts the dis-
criminative features from data. However, the disadvantage
of using deep learning architectures is that they require high
computation power. Moreover, the previous deep learning
techniques did not fully utilize relative directions and motions
of body joints in their architecture. Therefore, it is required
to develop a more robust and lightweight method that utilizes
the relative directions and motions of the skeleton body joints.
The proposed GCNN-based model is perfectly suitable to
remedy this situation. The feature propagation allows the
GCNN to transmit the relative intra-join motions and the
body joint motions to connected nodes, thus taking advan-
tage of graph-based approach to extract highly discriminating
features.

This study describes a novel method for classifying people
who walk along unconstrained paths. This works primary
research question is whether a residual connection-based
graph convolutional neural network can extract more dis-
tinguishable and meaningful features for unconstrained path
gait recognition. It is, to the best of our knowledge, a first
deep-learning architecture proposed to correctly identify
individuals from their walking patterns in the presence of
unconstrained paths. Thus, the main contributions of this
study are:

« A highly efficient deep-learning based architecture has
been proposed for unconstrained gait recognition prob-
lem. The proposed method utilizes the kinematic depen-
dency of the body joints, exploring both spatial and
temporal features, which increases the accuracy of gait
recognition.

« An adjacency matrix has been introduced to represent
human joints as an input for the proposed graph convo-
lution network.

« AResidual Connection has been introduced in the Graph
Convolutional Neural Network allows to exploit the
dynamic body joints relationship. This has resulted in
very high recognition accuracy in the presence of varied
walking directions.

« Global attention sum pooling layer is utilized to make
the proposed model lightweight and reduce the training
time.
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o The proposed system was tested on two datasets, demon-
strating its validity and outperforming all the previous
works on unconstrained path gait recognition.

The proposed method is validated on the AVA Multi-View
Gait Dataset [19] and CASIA-B dataset [20]. A compari-
son with recent state-of-the-art methods was also conducted,
revealing that the proposed method outperformed all com-
parators. One potential application of this work is biometric
authentication in special or restricted areas, including gov-
ernmental facilities, military bases, and refugee camps [21].
This research can also be used for medical anomaly detec-
tion [22], [23], in smart homes for monitoring residents well-
being [24], in robot navigation [25], and in virtual reality
applications [26].

The rest of the paper is organized as follows: Section II will
illustrate the previous research on gait recognition. Section III
will discuss the data preparation and the proposed method.
Experimental results of the proposed method will be pre-
sented in section IV. Finally, the findings of the work and
future research direction will be discussed in section V.

Il. RELATED WORK

Over the past decade, a growing body of literature
has explored the gait recognition problem from various
perspectives.

One of the first works on the appearance-based method
was conducted in [9], where authors proposed a baseline
algorithm that performs gait recognition by obtaining silhou-
ettes and calculating the temporal correlation. Han et al. [10]
proposed Gait Energy Image (GEI), which is another com-
monly used feature for gait recognition. GEI is obtained
by averaging the silhouettes using statistical analysis.
Hoffman and Rigoll [27] further proposed an improvement of
gait energy images by integrating gradient histograms. GEI is
a compact representation of all the silhouettes; it is computa-
tionally inexpensive and widely used. However, GEI is highly
sensitive to different factors; for instance, if the subject car-
ries accessories, the silhouette representation might not cor-
rectly represent the subject. Another drawback of GEI is that
the system’s performance reduces when the viewing angle
changes. By stating this problem, the authors of [11] proposed
anovel view transformation method that reconstructs one sil-
houette to another silhouette view, and all the silhouettes are
transformed into one single view. However, when the viewing
angle difference between the silhouettes is large, it causes
degradation in the performance. Shakhnarovich et al. [12]
proposed a view-normalization technique for multi-view gait
recognition. They used a visual hull to synthesize images
to obtain a 3D gait volume. Although this problem resolves
the multi-view gait recognition problem, it requires plac-
ing multiple cameras at different viewing angles, which
is inconvenient for frame synchronization. Various GEI
modifications were proposed in [28]; however, these, like
all other appearance-based approaches, suffered from view
dependency.
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Alternatively, model-based methods retrieved various fea-
tures like motion and shape by fitting the videos to the
model. These methods did not have a dependency from the
viewing angle or scale. However, the quality of the video or
image played a crucial role in extracting the features properly.
BenAbdelkader et al. [13] were the first to propose a method
for model-based gait recognition. They used two parameters
in their work, namely cadence and stride. Cunado et al. [14]
considered how human legs moved and linked the move-
ment with pendulum. They used Hough transformation to
obtain the feature representing harmonic motion pattern.
Johnson and Bobick [15] first used different distance-based
parameters for gait recognition. They calculated some static
parameters of the subject, for instance, the height of the
distance of head and feet from the pelvis and the maximum
distance between pelvis and feet, and later used these fea-
tures for performing gait recognition. Yoo et al. [16] trans-
formed silhouettes obtained from the video frames into a
two-dimensional stick-like figure. They obtained stick-like
figures by using motion information from anatomical knowl-
edge. Using 3D volumetric data, Seely et al. [29] created a
proprietary dataset designed by mimicking the setting in
airports and other high throughput environments. They pro-
duced silhouettes from a specific viewpoint and then silhou-
ettes were then sent into a common 2D gait analysis method.
The sequences were obtained from a multi-biometric tunnel
in which subjects walked straight. To extract gait features,
Ariyanto and Nixon [30] employed a model-fitting technique
that utilized correlation filters and dynamic programming.
To simulate the human lower legs, they utilized a structural
model that included articulated cylinders with 3D degrees of
freedom (DoF) fitted to a visible hull shape. Tian ez al. [31]
proposed a view adapting method for free view gait recog-
nition. Their proposed method utilized a walking trajectory
fitting method to compute viewing angles of a gait sequence,
and a joint gait manifold was used to find the optimal mani-
fold in the gait sequence.

Although the above-mentioned methods work well in
cross-view settings, they are vulnerable to variations due to
their reliance on human appearance and shape. Furthermore,
it is challenging to acquire input silhouettes when the camera
changes. Therefore, effective feature extraction and modeling
strategies to address the highly nonlinear association between
gait features in complex cross-view have been lacking.
Moreover, these methods cannot handle the curved trajectory
path of subjects.

In addition to the above methods, kinect based gait
recognition gained attention over past couple of years.
Ahmed et al. [32] used a Microsoft Kinect device to extract
skeleton joints of the body. Afterward, distance feature vec-
tors were obtained for each of the joints in relation to
the other joints in the gait cycle. The computed distance-
based features were later passed into the k-Nearest Neigh-
bors (KNN) method for classification. Bari et al. [33] used
a similar method to extract skeleton joint features; how-
ever, in addition to the distance-based features, the authors
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proposed two geometric features, which proved to be effec-
tive for classifying a person. For classification, the authors
employed an artificial neural network. Although these meth-
ods make use of the human body’s joint relationships, the
architectures have a significant number of parameters, which
makes the system very difficult to train.

Deep learning-based approaches have proven to be benefi-
cial in gait recognition research in the recent years. Siamese
Neural Networks were utilized by Zhang et al. [34] to
transform a sequence of frames into gait energy images.
The authors used a contrastive loss function for the pro-
vided inputs, which allows the system to minimize loss
for similar-looking inputs while increasing it for distinct
ones. He er al. [35] utilized Multi-task Generative Adver-
sarial Networks (MGAN) for generating view-specific fea-
ture encoding. Later these encodings were used for further
classification. In [36], the authors employed two different
methods for extracting different features. Long Short Term
Memory (LSTM) based architecture was used to extract
spatio-temporal features, and autoencoder was used to model
discriminative features. Chao et al. [37] considered the gait
recognition problem from a different point of view. Instead
of considering gait sequence as a continuous feature, they
considered set of independent silhouettes. Their approach
could extract invariant properties from the set, such as speed
and step distance. Batistone et al. [38] proposed an LSTM
network based on time-graph. This method extracted key
points from a person’s skeleton representation and then
trained joint characteristics using a fully connected neural
network (FCNN) and LSTM. Recently, Lin et al. [39] applied
a GCNN based method for reconstructing 3D human pose and
its mesh from a single image.

Because of the specific structure of the network, deep
learning-based methods have the benefit of being able to cap-
ture spatial and temporal information. However, these deep
learning-based approaches typically have high computational
cost. Furthermore, these approaches ignore the kinematic link
between joints, an essential feature in gait recognition.

Some recent research addressed changing of view point
during walking. Thus, authors of [31] proposed a walk-
ing trajectory fitting method to compute viewing angles
of a gait sequence. In addition, authors of [40] extracted
motion descriptors from densely sampled short-term tra-
jectories and used them for gait recognition. The Fisher
Vector encoding method was used to encode the feature
descriptors for further classification. Their method was tested
on CASIA [20] and TUM GAID [41] datasets. However,
very few works touched on unconstrained gait recognition.
D. Lopez-Fernandez et al. [42] proposed a gait descriptor
method for unconstrained gait recognition named gait
entropy volume. This method focuses on identifying 3D
dynamical information of a subject using the concept of
entropy. The authors validated their method on AVA dataset,
described in [19]. Later, D. Lopez-Fernandez et al. [43]
proposed another method for unconstrained gait recogni-
tion. This work used volumetric gait recognition to capture
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3D morphological information. Three gait morphological
descriptors were developed to extract information from
3D volumes and validated it on the same AVA dataset.
Arshad et al. [44] developed a framework for unconstrained
gait recognition using deep neural network and Fuzzy
Entropy Controlled Skewness (FECS). They use a pretrained
CNN architecture to extract features in the first step. The
second step computed the entropy and skewness vectors from
the extracted features. Later, the best subset of features was
used for classification. They performed experiments on both
constrained and unconstrained paths on CASIA [20] and
AVA [19] datasets. Zhu et al. [45] recently developed a gait
database that consists of subjects walking in an unconstrained
environment. In their work, the authors used GaitSet method
introduced by Chao et al. [37].

A recent paper by Lui et al. [46] presents an interesting
idea on modelling of destinations for data-driven pedestrian
trajectory in public buildings. The proposed method first
identifies most probable destination of the pedestrian’s by
employing Destination Classifier (DC) and later predicts the
future trajectories by utilizing destination-specific trajectory
model (DTM). Another paper tackles robot navigation sys-
tem based on human trajectory prediction in unconstrained
environments [25]. The proposed architecture first predicts
the trajectory of the human movement and later prepares a
path for the robot. Li et al. [47] tackled an interesting problem
of finding the effect of environment during the trajectory
estimation. Authors proposed a counterfactual analysis for
human trajectory estimation and investigation of the effect of
environmental bias. A casual graph model was constructed
for forecasting the current, past and future trajectories.

The above methods achieved good recognition accuracy
on unconstrained paths. However, they did not utilize the
kinematic relationships of the body joints, which can lead
to an increased recognition performance. Moreover, they did
not utilize graph neural network architecture to capture an
intrinsic relationship among body joints.

The advantages that the proposed architecture has over the
above-mentioned methods are:

o The proposed method has a highly resistant view and

appearance variation.

o The proposed method achieved significant accuracy on
unconstrained trajectories.

o The proposed Residual Connection-based Graph Con-
volutional Neural Network (RGCNN) architecture is
lightweight, making the model deployable in practice.

o The proposed method utilizes the kinematic dependency
of the body joints. Both spatial and temporal features are
exploited during the training phase, which increases the
accuracy of gait recognition.

All of the recent methods proposed for unconstrained gait
recognition and discussed in this section were implemented
in this paper. Their performance was compared to the pro-
posed method on the benchmark AVA dataset. In addition,
multi-view methods by Seely et al. [29] and Ariyanto and
Nixon [30] were implemented for comparison.
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FIGURE 1. Overall architecture of the proposed method.
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FIGURE 2. Pose estimation result of an input frame.

ill. PROPOSED METHOD

A. OVERALL METHODOLOGY

This work proposes a residual connection-based graph con-
volutional neural network architecture, which utilizes the
kinematic dependency of body joints to perform multi-view
unconstrained path gait recognition. There are six steps in
our proposed framework. Initially, we transform the image
frames into a video. Later, the video is passed into a pose esti-
mation architecture where we obtain the keypoints of body
joints. In order to make the data sample uniform, we extracted
gait cycles from each video. The gait cycles are later con-
verted into the graph-like form to apply a GCNN. Our
residual connection-based GCNN trained the transformed
body joints. The proposed residual connection architecture is
formed of residual blocks, batch normalization layer, global
attention sum pooling layer, and dense layers. The resid-
ual blocks propagate spatio-temporal features to a deeper
layer for amplifying the feature set. Furthermore, the global
attention sum pooling layer reduces the number of trainable
parameters by removing the unnecessary and noisy features.
In addition, it reduces the model’s total parameters count,
making it a lightweight model. Finally, we apply the learned
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model to the final classification. The overall methodology of
this work is depicted in Fig. 1. Each of the steps will be briefly
explained in the following subsections.

B. POSE ESTIMATION

Pose estimation is a method for tracking a person’s or object’s
movements. This method is widely utilized in augmented
reality, animation, gaming, and robotics [48]. OpenPose [49]
is the first deep learning based pose estimation architecture
that recognizes the key-points of different body joints on
single pictures. To extract the feature maps from the input,
the image is first processed through a baseline CNN network.
The first ten layers of the VGG-19 network are employed.
Following that, the feature map is processed in a multi-stage
CNN pipeline to yield the Part Confidence Maps (PCM) and
Part Affinity Field (PAF). At the last stage, the PCM and
PAF’s are computed using a bipartite matching algorithm
to acquire the key points for each individual in the image.
We have used the OpenPose network to obtain 25 body
joints from the video. Fig. 2 shows the result of OpenPose
estimating the keypoints from an input frame. To achieve a
higher resistance to poor-quality gait sequences, the proposed
approach utilizes OpenPose in conjunction with the dynamic
modality of the skeletal sequences.

C. GAIT CYCLE EXTRACTION

The gait cycle is a walking pattern that begins with a
single heel strike and progresses to the same heel strike.
There are typically two approaches for estimating the gait
cycle [50]. The first approach is the mid-stance or local
minima, which involves keeping both feet close together.
The second approach is the double support phase, in which
the space between the two feet is at its greatest. The ear-
lier research proved that the double support phase produced
smoother gait cycles [51]. Therefore, we employed the double
support phase method for better consistency and accuracy
in this work. Fig. 3 exhibits a visual representation of one
gait cycle computed from a walking sequence. A gait cycle
is determined by calculating the Euclidean norm between
the left and right ankles. As previously stated, a gait cycle
consists of three maximum lengths between the feet. In Fig. 3,
there is one gait cycle that is characterized by the red marked
portion. The gait cycles of a subject always follow a specific
pattern. To show that, we visualized the Euclidian distance
of the left and right ankles joints for every frame in three
video sequences of a subject. This can be observed in Fig. 4.
We extracted multiple gait cycles from a single video. Several
gait cycles are included as data augmentation for model
training.

D. DATA REPRESENTATION

After extracting the gait cycles from videos, they are pro-
cessed for Graph Neural Networks (GNN). Gait data is repre-
sented as a vector sequence in traditional methods. Therefore,
such models ignore the kinematic relationship between joints
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FIGURE 3. Euclidean distance between left and right ankles joint of a
subject.
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FIGURE 4. Smoothed Euclidean distance between the left and right
ankles joint distance of subjects for three different video sequences.

that we employed in this study. The gait cycles must be
transformed into a graph-like structure for the data to fit
into Graph Convolutional Neural Network (GCNN). The gait
cycles are represented as an undirected graph with vertices
representing body joints and edges representing bones. There
are two distinct subsets of the edges. The first subset denotes
the relationship between intra joints in every frame, expressed
as Es = {(VTi, vTy)|(i, j)eH }. Here H represents the body
joints, and VT, and VTj are the vertices of the current
frame and the following frame, respectively. The skeleton
sequence’s spatial information is stored in the first subset
of edges. The second subset contains the intra-frame edges,
denoted as Ep = {(VTyi, VT11y)lieH }. Here, all the edges
in Er denote its trajectory over the video frame sequence.
The skeleton sequence’s temporal information is stored in the
second subset of edges. The temporal and spatial relation-
ship in the body joints is depicted in Fig. 5. The proposed
graph generation method has the advantage of preserving
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FIGURE 5. Spatial and temporal connection in the skeleton body joints.

the hierarchical structure of the skeleton sequences. Natural
connectivity in human body structures and movements are
represented as graph edges, and body joints will be repre-
sented as graph nodes. As a result, manual assignment of
connections is not required.

E. RESIDUAL CONNECTION-BASED GRAPH
CONVOLUTIONAL NEURAL NETWORK

1) GRAPH CONVOLUTIONAL NEURAL NETWORK

Graphs are some of the most versatile data structures due to
their expressive power. A GCNN is a form of CNN that can
exploit graph structure. GCNN can make more informed pre-
dictions about entities than traditional models that consider
distinct entities in isolation. This is achieved by utilizing and
exploiting underlying features in a graph.

To understand the mathematical foundation behind GCNN,
let’s consider the example of an undirected graph G =
{E, V, A}, where E represents the set of edges, V represents
the set of vertices, and A denotes the adjacency matrix, that
establishes the connection between the edges and vertices.
Later, the Fourier transform is applied to the graph to perform
basic operations such as convolution.

The GCNN is a highly versatile architecture due to its
feature aggregation property. GCNN accumulates informa-
tion from previous layers, and generates effective feature
representations of graph nodes. At the beginning, the feature
vector x; of node n; is averaged with its neighborhood nodes
feature vector. This process can be expressed as:

KP+h — & (h(P) + @(P)) 1)

Here, o denote the sigmoid activation function, AP and
©® denote the activation matrix and the feature matrix of the
p™ layer respectively. After this operation, node n; will have
all the features from its neighboring nodes. However, a node’s
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aggregated representation does not include its own features.
Therefore, a self-loop is added into the adjacency matrix to
normalize the aggregated feature representation and include
node n;’s feature into the feature aggregation process. This
method can be denoted as:

A=d YV*Ad1? )
Here, d is the degree matrix of A and A is calculated as:
A=A+1I 3)

where [ is the identity matrix and A is the adjacency matrix
without self loops.

2) GRAPH CONVOLUTIONAL NEURAL NETWORK

WITH RESIDUAL CONNECTION

One of the difficulties in training neural networks is that
deeper neural networks achieve higher accuracy and perfor-
mance. However, the deeper the network, the harder it is
for the training to converge. The idea of Residual connec-
tion (ResNet) was first designed by He ef al. [52]. Earlier
research demonstrated that residual connections are guaran-
teed to produce better results on an image or vision-based
tasks [53]. In conventional feedforward neural networks,
data flows sequentially through each layer. The output of
one layer is the input for the following layer. Information
is propagated in targeted levels via residual connections.
As a result, the residual connection amplifies the discrim-
inative information. Our architecture uses residual learning
to extract spatio-temporal information from joints and propa-
gate spatio-temporal features to a deeper layer. Identity map-
ping is the key feature for residual connection. The identity
map employed in the GCNN layer differs from the originally
proposed ResNet [52]. The Hadamard product was employed
in the original study to concatenate the output of the activation
layer with the output of a subsequent layer. However, in the
proposed method, the dot product combines the feature maps.
The model’s convergence is amplified as a result of this
additive property.

F. PROPOSED ARCHITECTURE

The proposed model uses two distinct inputs. The first one is
the feature vector, which contains the location of each body
joint, and the second is the adjacency matrix. The input is
passed through an RGCNN layer, and the output is passed
onto a batch normalization layer. The batch normalization
layer normalizes each layer’s input values so that the mean
output and the standard deviation become zero and one,
respectively. The momentum rate of the batch normaliza-
tion layer is 0.99. Rectified Linear Unit (ReLU) is used as
the activation function of the RGCNN layers. ReLU has
the advantage of making the gradient less likely to vanish.
ReLU’s continuous gradient results in rapid learning. These
RGCNN layers learn a hierarchical approximation of the gait
pattern’s spatio-temporal dynamics. The normalized features
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FIGURE 6. Proposed architecture of the RGCNN.

and adjacency matrix are passed to the next RGCNN layer
followed by a batch normalization regularizer. This feature
map becomes the pooling layer’s input. The Global Attention
Sum Pooling (GASP) is utilized to eradicate the impact of
unnecessary nodes as well as minimize computation costs by
pruning the graph. The GASP layer can be represented as
follows:

X =3 (o i+ ) Gwr +52).

i=1

“

The sigmoid activation function is used in the GASP layer,
which is denoted as o in Equation 4. N represents the data
samples, x is the feature map, and w and b represent the
weights and biases. The global attention sum pooling layer
transforms the data into one dimension, which is later passed
into the Multi-Layer Perceptron (MLP) network. The MLP
sub-network is structured with three stacked MLP layers,
and the number of fully connected nodes in there are 512,
256, and 128, respectively. In order to reduce the overfit-
ting, a dropout regularizer is used between the MLP layers.
In traditional methods, the output of a convolutional layer
is converted into one large one-dimensional feature vector.
Using this traditional method for converting the output of
a CNN layer to a one-dimensional vector produces a large
number of trainable parameters, which increases the training
and inference time. Using the global attention sum pooling
layer reduces the number of trainable parameters by remov-
ing the unnecessary and noisy features. The trainable and
non-trainable parameters are presented in Table 1. The pro-
posed architecture prevents overfitting by extracting general-
ized walking pattern characteristics for person identification
because it contains a few model parameters. The overall
architecture is depicted in Fig. 6.

To compute the loss between the original label and the
predicted label, categorical crossentropy loss function is used.
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TABLE 1. Number of parameters in the proposed RGCNN.

Parameter Type | Number of Parameters
Trainable 202,955

Non-trainable 1,536

Total 204,491

The categorical cross-entropy loss function is described in
Equation 5.

N C
CCELoss = Z Zr Ui, ©) x logPC|Sit, .....S7)  (5)
i=1 c=1
1, ify=c
t(y;, C) = 6
0. ©) :O, if otherwise ©

Here, N denotes the number of training samples and
Si1, Si2, Si3,....,.5 represent the factorized input graphs of
i training sample and their respective label y;, C denotes the
number class and ¢ denotes the original label of the samples.
logp(x) is a probability distribution of the factorized input
graphs.

IV. EXPERIMENTAL RESULTS

A. DATASETS

The proposed method is validated on AVA Multi-View Gait
Dataset [19] and CASIA-B dataset [20]. The AVA dataset
comprises 20 subjects performing nine walking sequences
in an indoor setting. Six color cameras (c1, ¢3, ¢3, ¢4, C5, C6)
recorded each sequence inside the room at different viewing
angles. Since the subjects enter the room from various points,
the dataset is best adapted for testing view-independent gait
recognition. The first three walking sequence (T, 7>, T3)
are straight and the rest (74,75, Te, T7, T3, To) are curved
trajectories. Authors of [19] successfully established that
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FIGURE 7. Samples of the walking trajectory, where {c1, ..., c6}
represents the set of cameras point of views and {t1, ..., t9) represents
the different trajectories followed by the subjects of the dataset [19].

curved trajectories closely approximate walking patterns
along varied unconstrained paths. The map of the trajectories
is shown in Fig. 7. The videos were sampled at a resolution
of 640 x 480 pixels and the frame rate per second was 25.
Some examples from the dataset are shown in Fig. 8. The
CASIA-B gait dataset, a widely used standard dataset for gait
recognition, is used for cross-validating the efficacy of the
proposed method. This dataset comprises gait sequences from
124 participants under three distinct walking circumstances
(normal, bag carrying, bulky cloth wearning), each captured
from 11 different viewing angles (0°, 18°, 36°, 54°, 72°, 90°,
108°, 126°, 144°, 162°, 180°). Fig. 9 depicts some sample
data from CASIA-B dataset.

B. EXPERIMENTS FOR SELECTING HYPERPARAMETERS
We performed several experiments to choose the key
hyperparameters such as activation function, batch size,
dropout rate, and optimizer. For selecting other hyperpa-
rameters, we adopted commonly used automated techniques.
We employed an early stopping method [54] for the number
of epochs, which resulted in the number of optimal iterations
set to 150. For learning rate, we have used the adaptive
learning rate method [55], For the network weight initial-
ization, the Xavier initialization method was employed [56].
For choosing optimizer, batch size, activation function, and
dropout rate we have performed several experiments. As there
are nine trajectories in the dataset, we kept 73, 76, T9 in the
testing set and the rest of the trajectories in the training set.

1) OPTIMIZER SELECTION EXPERIMENT

The node variables of neural networks are automatically
adjusted throughout the training process to minimize the
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TABLE 2. Performance of the proposed RGCNN model with different
optimization methods.

Optimizer | Training Accuracy | Testing Accuracy
Adam 99.59% 99.14%
Adadelta 97.78% 95.88%
RMSProp 95.89% 95.34%
SGD 98.18% 96.89%

loss function. Depending on the optimizer, the direction and
magnitude of the parameters are adjusted. Learning rate is the
most crucial weight used to evaluate the optimizer’s perfor-
mance. A learning rate that is very high or very low results
in non-convergence of the loss function or the range of the
local minima, but not the absolute minima. As a result, the
classifier’s generalization capability improves when exposed
to new data [57]. We experimented with four different opti-
mization techniques to determine the best-performing opti-
mizer in this work. The optimizers we experimented with
are 1) Adam Optimizer, 2) Adadelta Optimizer, 3) Stochastic
Gradient Descent (SGD) Optimizer, 4) Root Mean Squared
Propagation (RMSProp) Optimizer. Table 2 demonstrates the
performance of the optimizers. Furthermore, Fig. 10 shows
the accuracy and loss curves for Adam, RMSProp, SGD, and
Adadelta optimizers. Adam optimizer outperformed others.
The accuracy and loss curves depict how the learning curve
moved smoothly. Although RMSProp optimizer resulted in a
smooth learning curve, it failed to produce optimal results.

Learning rate is another vital factor for the optimizer.
We have used an adaptive learning rate in this work. Adap-
tive learning rate adapts the best learning rate with respect
to loss during the training process. The magnitudes of
Adam optimizer parameter updates are invariant to gradient
rescaling, and their stepsizes are constrained by the step-
size hyperparameter, which explains why Adam optimizer
performed well.

TABLE 3. Performance of the proposed RGCNN model with different mini
batch sizes.

Batch Size | Training Accuracy | Testing Accuracy
8 97.35% 96.53%
16 98.69% 98.04%
32 99.48% 99.16%
64 99.10% 98.89%

TABLE 4. Performance of the proposed RGCNN model with different

dropout rates.

Dropout Rate | Training Accuracy | Testing Accuracy
No Dropout 98.46% 95.24%
0.2 98.21% 97.98%
0.3 99.38% 99.12%
0.4 98.07% 95.79%

2) BATCH SIZE SELECTION EXPERIMENT

One essential hyperparameter to tune in modern deep learn-
ing systems is batch size. Practitioners frequently prefer to
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FIGURE 8. Samples of AVA Multi-view gait dataset [19].

FIGURE 9. Samples of Casia-B gait dataset [20].

TABLE 5. Performance of the proposed RGCNN model with different
activation functions.

Activation Function
Hyperbolic Tangent
Rectified Linear Unit

Training Accuracy
98.25%
99.48%

Testing Accuracy
97.83%
99.16%

train their model with a larger batch size because it allows
for computational speedups due to GPU parallelism [58].
However, it is well acknowledged that a large batch size
leads to poor generalization [59]. Therefore, we experimented
with different batch sizes to determine the optimal mini-
batches. Table 3 shows that batch size 32 produced the highest
accuracy among all batch sizes. Fig. 11 demonstrates the loss
and accuracy graph for different batch size experiments.

3) ACTIVATION FUNCTION SELECTION EXPERIMENT

Activation functions are an essential component of neural
network architecture [60]. The choice of activation function
significantly influences the performance and effectiveness of
neural networks. Different activation functions may be used
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in different parts of the model. Usually, either hyperbolic
tangent or rectified linear unit activation function in the hid-
den layers provides better accuracy. In this work, we have
experimented with two commonly used activation functions.
The results are provided in Table 5. Rectified linear unit
activation function attained 1.23% higher training and 2.31%
higher testing accuracy over Hyperbolic Tangent activation
function. The benefit of using ReLU is that the gradient is less
likely to disappear. The constant gradient of ReLU leads to
quick learning [61]. The accuracy and loss graph is depicted
in Fig. 12.

4) Dropout Rate Selection Experiment

Regularization is a technique used in machine learning to
prevent over-fitting [62]. The model is trained to avoid learn-
ing an interdependent set of feature weights by including
this penalty. Dropout is one of the most effective regular-
ization methods for deep learning. Some layer outputs are
disregarded during training or ‘““dropped out” at random.
This causes the layer to appear as if it had a different

VOLUME 10, 2022



M. Shopon et al.: Multiview Gait Recognition on Unconstrained Path Using Graph Convolutional Neural Network IEEEACCGSS

Model Accuracy (Adam Optimizer) Model Loss (Adam Optimizer)

5
o
S

Train
Test

—— Train 0.7

-T— Test

0.95
0.6
0.90
0.5
0.85
§ o 0.4
5 ]
3 0.80 =
< 0.3
0.75
0.2
0.70
0.1
0.65
0.0
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) Training vs validation accuracy graph for adam optimizer (b) Training vs validation loss graph for adam optimizer
Model Accuracy (SGD Optimizer) Model Loss (SGD Optimizer)

L e Train Train

-— Test 0.5 Test

0.4

0.2

Accuracy
o o o o o
o] o © © ©
@ S N & @
Loss
o
w

0.86 0.1
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(c) Training vs validation accuracy graph for SGD optimizer (d) Training vs validation loss graph for SGD optimizer
Model Accuracy (RMSProp Optimizer) Model Loss (RMSProp Optimizer)
0.7

Train
Test

—— Train

0.95 0.6

0.75

Accuracy
o o o
<] <2 ©
S @ S
W
Loss
o o o o o
- N w S w

070 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(e) Training vs validation accuracy graph for RMSProp optimizer (f) Training vs validation loss graph for RMSProp optimizer
Model Accuracy (Adadelta Optimizer) Model Loss (Adadelta Optimizer)

0.98 )
—— Train 0.6 Train

0.96 = Test Test

0.94 0.5
0.4

0.3

0.2

Accuracy
o o o o o
[ 2] © ©o ©
1SS @ @ S N
Loss

0.1

o

10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

(g) Training vs validation accuracy graph for adadelta optimizer (h) Training vs validation loss graph for adadelta optimizer

FIGURE 10. Accuracy and loss curve for Adam, RMSProp, Adadelta, and SGD optimizer.
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number of nodes and connectedness to the preceding layer.
We experimented with different dropout rates in this work.
The experiments showed that the dropout rate of 0.3 produced
the smooth loss and accuracy graph. The results attained from
the experiment are demonstrated in Table 4. The accuracy and
loss graph are shown in Fig. 13.

C. ABLATION STUDY

To verify that a residual connection in the GCNN and global
attention sum pooling layer play a major role in the efficacy,
we have performed an ablation study. AVA Multi-view Gait
dataset was utilized to perform the ablation study.

1) EFFECTIVENESS OF THE RESIDUAL CONNECTION

The first experiment we performed was removing the residual
connection from the proposed architecture, while keeping the
global attention sum pooling layer. Table 6, Row 2 demon-
strates the result of the proposed model with this configu-
ration. This ablation study showed that the performance of
this architecture reduced drastically as a result of removing
the residual connection. This architecture resulted in drop of
11.7% accuracy for trajectory 1, 8.24% accuracy for trajec-
tory 2, 11.84% accuracy for trajectory 4, 10.09% accuracy for
trajectory 5, 11.86% accuracy for trajectory 7, and in drop of
10.46% accuracy for trajectory 8.

VOLUME 10, 2022

2) EFFECTIVENESS OF THE GLOBAL ATTENTION

SUM POOLING LAYER

The second experiment we performed was removing the
global attention sum pooling layer from the proposed archi-
tecture, with residual connection being retained. This ablation
study showed that the performance of the revised architec-
ture was reduced. As seen in Table 6, Row 3,this architec-
ture attained 2.32% less accuracy for trajectory 1, 0.97%
less accuracy for trajectory 2, 1.42% less accuracy for tra-
jectory 4, 1.91% lesser accuracy for trajectory 5, 2.76%
less accuracy for trajectory 7, and 2.01% less accuracy for
trajectory 8.

3) EFFECTIVENESS OF THE RESIDUAL CONNECTION AND
GLOBAL ATTENTION SUM POOLING LAYER

The third experiment we conducted for the ablation study
was removing both the residual connection and global atten-
tion sum pooling layer. The results demonstrated that the
performance of the revised architecture reduced drastically.
Table 6, Row 1 demonstrates the results. The architec-
ture resulted in loss of accuracy of 12.53% trajectory 1,
13.24% for trajectory 2, 12.71% for trajectory 4, 13.77%
for trajectory 5, 15.45% for trajectory 7, and 14.82% for
trajectory 8.
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TABLE 6. Ablation study for the different components of the proposed RGCNN architecture.

Experiment No. Architecture

T-1 T-2 T-4 T-5 T-7 T-8

1 GCNN
Residual connection
Global attention sum pooling

87.37%

82.76% | 86.89% | 86.23% | 83.55% | 81.98%

2 GCNN
Residual connection
Global attention sum pooling

88.20%

89.02% | 87.76% | 89.91% | 87.14% | 86.34%

3 GCNN
Residual connection
Global attention sum pooling

97.58%

95.03% | 98.18% | 98.09% | 96.24% | 94.79%

4 GCNN
Residual connection
Global attention sum pooling

ANENENPS ENENENPIENEIFIRAN

99.90%

96.00% | 99.60% 100% 99.00% | 96.8%

TABLE 7. Comparison of rank-1 accuracies with the proposed method on AVA Multi-view gait dataset for different unconstrained trajectories.

Method T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 Mean

Ariyanto and Nixon [30] 55.00% | 45.00% | 52.60% | 45.00% | 26.30% | 35.00% | 35.00% | 31.50% | 40.00% | 40.60%
Seely et al. [29] 90.00% | 80.00% | 94.70% | 90.00% | 60.00% 100% 80.00% | 84.20% | 90.00% | 85.40 %
D.Lépez-Ferndndez et al. [43] 100% 88.00% 100% 99.30% | 99.20% | 97.70% | 96.20% | 84.80% 100% 96.10%
Chao et al. [37] 100% 97% 97.26% 99.2% 98.5% 96.2% 98.0% 93.6% 99.4% 96.69%

Zhang et al. [36] 98.66% | 91.30% | 97.86% 100% 98.58% | 98.20% | 95.24% | 94.2% 98.36% | 96.93%

Arshad et al. [44] 98.36% | 96.58% | 98.12% | 98.90% | 97.80% | 97.56% | 98.16% | 94.54% | 98.88% | 97.65%

Basic GCNN 94.30% | 94.16% | 97.54% | 95.42% | 97.28% | 97.46% | 93.70% | 88.38% | 96.40% | 94.96%

RGCNN+ SGD + ReLU + 32 Batch 98.70% | 95.15% | 97.26% | 97.22% | 97.56% | 98.46% | 97.58% | 95.23% | 97.70% | 97.42%
RGCNN+ Adam + ReLU + 64 Batch 99.16% | 95.50% | 98.80% | 98.10% | 98.85% | 99.10% | 98.16% | 96.7% 97.95% | 98.03%
RGCNN+ Adam + ReLU + 32 Batch | 99.9% 96 % 99.9% | 99.60% 100% 99.9 % 99.0% 96.8% | 98.86% | 98.85%

This ablation study clearly demonstrates that the residual
connection plays an important role in the performance of the
proposed method.

D. PERFORMANCE COMPARISON WITH

STATE-OF-THE ART RESULTS

The majority of existing unconstrained path gait recogni-
tion methods use silhouettes gait energy images as fea-
tures. Although these characteristics restrain necessary
details for identifying individuals, they do not consider
the kinematics dependency between various body parts.
We employed a leave-one-out cross-validation to com-
pare our method with existing state-of-the-art methods.
In the experiments, each fold consists of a tuple formed
from 20 sequences for testing and the eight sequences of
each subject for training. The proposed method was com-
pared with D.Lépez-Fernandez et al. [43], Seely et al. [29],
Ariyanto and Nixon [30], and Arshad et al. [44]. In addition,
two recent deep learning-based gait recognition methods,
Chao et al. [37] and Zhang et al. [36] were chosen as com-
parators. Both of these methods are deep learning-based and
showed excellent performance on gait recognition. Further-
more, to show the superiority of the proposed architecture,
we trained a basic GCNN network without the residual
connection. From the results reported in Table 7 it is observed
that the proposed method outperformed all of the existing
state-of-the-art methods. The proposed method outperformed
all the previous works for all the trajectories except for
trajectory 9. The proposed method outperformed Ariyanto
and Nixon [30] by 58.25%, Seely et al. [29] by 13.45%,
D. Lépez-Fernandez et al. [43] by 2.75%, Chao et al. [37]
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by 2.16%, and Zhang et al. [36] by 1.92% in terms of mean
accuracy.

From the results presented in Table 7 it is evident that
the proposed RGCNN architecture achieves higher accu-
racy than the existing methods. One of the reasons for such
performance is the proposed temporal features. Integrating
GCNN and residual learning results in a reduced number of
model parameters and facilitates resolving the vanishing gra-
dient problem. Overfitting is more likely to occur in networks
with less number of parameters. It is avoided in this network
using dropouts and Batch Norm Layers. The running time is
decreased significantly as well. The most contributing fea-
ture map is passed through the successive layers using iden-
tity mapping during optimization. It enhances the efficacy
on curved trajectories and in difficult walking conditions.
Furthermore, the residual connection in the GCNN architec-
ture helps in overcoming the vanishing gradient problem.

E. EXPERIMENTS ON CASIA-B GAIT DATASE

To show the robustness of the proposed method, we fur-
ther validated the performance of CASIA-B multi-view gait
dataset. This dataset comprises of video gait data collected
from 124 participants under three distinct walking circum-
stances (normal, bag carrying, bulky cloth wearing), each
captured from 11 different viewing angles (0°, 18°, 36°, 54°,
72°,90°, 108°, 126°, 144°, 162°, 180°) [63], [64]. Training
dataset was divided into three groups, Normal, Bag carrying
and Bulky cloth wearing. The goal is to validate the hypothe-
sis that training the developed architecture on normal walking
conditions will yield a high accuracy of recognition even in
the presence of bag carrying or bulky cloth wearing condi-
tions. Moreover, the training set was formed from specific
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TABLE 8. Different groups formed from CASIA-B Dataset.

Group name Data
Group A Normal: 0°, 18, 36°, 54°, 72°, 90°, 108°
Group B Normal, Bag carrying, Bulky cloth wearing: 0°, 18°, 36°, 54°, 72°, 90°, 108°
Group X Normal: 126°, 144°, 162°, 180°
Group Y Bag carrying: 126°, 144°, 162°, 180°
Group Z Bulky Cloth wearing: 126°, 144°, 162°, 180°

TABLE 9. Experimental results on CASIA-B gait dataset.

Ex. No. | Training Set | Testing Set | Accuracy
1 Group A Group X 98.86 %
2 Group A Group Y 92.13%
3 Group A Group Z 90.79 %
4 Group B Group X 99.19%
5 Group B Group Y 97.25%
6 Group B Group Z 96.63 %

angles, whereas the test set comprised different from the
training set viewing angles. The dataset was divided into five
different groups for training and testing. The groups formed
from CASIA-B dataset are shown in Table 8.

Table 9 shows the experimental results on CASIA-B gait
dataset. First, the proposed RGCNN model was trained only
on normal walking condition (Group A) and tested on bag
carrying and bulky cloth wearing conditions. The proposed
method attained 98.86% testing accuracy on the normal
walking testing set (Group X), 92.13% on the bag carry-
ing testing set (Group Y), 90.79% on bulky cloth wearing
testing set (Group Z). These are very high results consider-
ing that the architecture has been trained both on different
conditions than it was tested on and on different viewing
angels. Notably, when the training set included challenging
conditions, the accuracies increased to 99.19% for normal
walking (Group X), 97.25% for bag carrying (Group Y), and
to 96.63% for bulky cloth wearing (Group Z). This study
convincingly established that the proposed method is not
dataset biased and performs very well on a different dataset
with challenging walking conditions.

V. CONCLUSION

This paper proposed a residual connection-based graph con-
volutional neural network for unconstrained path gait recog-
nition. The proposed method successfully identifies subjects
regardless of viewpoint or direction change. Unlike existing
view-independent systems, which limit view change to a few
degrees and cannot handle curved trajectories, the proposed
method allows users to walk freely in the scene without com-
promising recognition. The proposed method outperformed
the existing unconstrained path gait recognition works and
was validated on the AVA Multi-View and CASIA-B gait
recognition dataset. The number of model parameters is
small, making it suitable for deploying in real-life scenarios.
In the future, different architectures can be investigated to
extract more discriminating feature maps. In addition, the
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integration of recurrent units into GCNN architecture can be
evaluated. Combining video sequences along with skeletal
sequences can be another interesting directions for future
research.
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