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ABSTRACT The need for wider coverage and high-performance quality of mobile networks is critical due
to the maturity of Internet penetration in today’s society. One of the primary drivers of this demand is the
dramatic shift toward digitalization due to the Covid-19 pandemic impact. Meanwhile, the emergence of
the 5G wireless standard and the increasingly complex actual operating environment of mobile networks
make the traditional prediction model less reliable. With the recent advancements and promising capabilities
of machine learning (ML), it is seen as an alternative to the traditional approaches for ground to ground
(G2G) mobile communication coverage prediction. In this study, various ML models have been tested and
evaluated to develop an ML-based received signal strength prediction model for mobile networks. However,
the challenge is to identify a practical ML model that can fulfill the computing speed criteria while still
meeting the prediction accuracy. A total of six categories of ML models, namely Linear Regression (LR),
Artificial Neural Network (ANN), Support Vector Machine (SVM), Regression Trees (RT), Ensembles of
Trees (ET), and Gaussian Process Regression (GPR) that consists of more than 20 types of established
algorithms/kernels have been tested and evaluated in this paper to identify the best contender among them,
in terms of speed and accuracy. Findings from the evaluation showed that the GPR model is the most accurate
model for Reference Signal Received Power (RSRP) prediction in terms of RMSE and R?, followed by
ET, RT, SVM, ANN and LR. Nevertheless, prediction speed and model training times are also important
factors in determining the most practical model for RSRP prediction for several real-world mobile network
planning applications. Finally, the ET model with Random Forest (RF) algorithm has been selected and
highly recommended as the most practically employed ML model for developing rigorous RSRP predictions
model in multi-frequency bands and multi-environment. The developed prediction model is capable of being
utilized for the network analysis and optimization.

INDEX TERMS Machine learning, MATLAB, wireless communication, received signal strength indicator.

I. INTRODUCTION

As of June 2021, the fifth generation of wireless commu-
nication standard 5G, also known as New Radio (NR), has
been deployed in 58 countries [1]. The 5G NR systems enable
the world community to access and share information in
various scenarios with extremely low latency and high data
rates [2], [3]. From an industry point of view, the 5G NR
catalyze economic growth further [4], [5]. Among the
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economic sectors that will benefit from the 5G network
are automotive [6], media and entertainment, manufactur-
ing, logistics, agriculture, energy and utilities, education and
healthcare [7]-[9]. According to [10], the adoption of 5G
could be even faster and expected to reach the one billion user
mark within 3.5 years. 5G market in 2021 is estimated at USD
46.61 billion and is forecasted to grow to approximately USD
664.75 billion in 2028 [11].

However, it is undeniable that the deployment of 5G
communication networks is a challenging task [12]. Based
on the standards categorized by 3GPP (3rd Generation
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Partnership Project), 5G is divided into two categories,
namely Sub-6GHz 5G, which operates in the same spectrum
band as 4G LTE (450 MHz to 6 GHz), while mmWave 5G
operates in 24.25 GHz to 52.6 GHz spectrum band [13]. For
5G networks operating at mmWave, the signal itself is more
vulnerable to the effects of the transmission environment,
which consequently shortens the effective communication
distance [3], [5], [6]. The antennas need to be placed nearer
to users, which translates to about ten times more antennas
to be installed compared to the previous 4G requirement
(approximately 100 to 200 meters apart) [2], [5], [6], [14].
Therefore, 5G network development requires extensive and
critical radio network planning and analysis. It will involve
numerous types of data and factors to identify the best posi-
tions for antenna deployment [15]. Because of the complexity
of planning and analysis works which are not feasible to be
executed using traditional methods, a high-level data analyt-
ics adoption using machine learning (ML) is required [5], [9].
This is coherent with the latest technical specifications issued
by 3GPP (Release 18), where ML capabilities are beginning
to be adopted as part of advanced network planning for 5G
future deployments [16].

ML is a branch of artificial intelligence (Al) and computer
science that focuses on the use of data and algorithms and
has recently gained popularity in the field of wireless com-
munication[2], [17], [18]. The ML-based prediction model is
seen as a game-changer in modern mobile network planning
due to its capability to produce more accurate results than the
traditional empirical-based prediction model. It is also more
efficient in terms of data processing capability compared
to the deterministic-based prediction model [12], [19]-[22].
Besides, the ML-based models can improve their accuracy
over time without having to be programmed [9].

In traditional prediction methods, mobile network plan-
ning is inflexible [22]. The prediction is constrained to cer-
tain specifications and conditions such as frequency, antenna
height and environmental characteristics. However, the real-
ity is that the operating environment of modern radio net-
works is more diverse and complex [23]. Therefore, it is
necessary to explore and build a new prediction method that
can operate more flexibly and universally to adapt to mod-
ern mobile networks’ operation complexities. For ground-to-
ground (G2G) mobile communication scenarios, the authors
in [18], [22], [24]-[28] have tested and evaluated the capabil-
ities of several ML models for the mobile networks’ perfor-
mance prediction. Overall, the results of the studies proved
that the ML-based prediction model had outperformed the
traditional methods in terms of computational efficiency,
applicability, and accuracy.

ML-based prediction models for path loss in an urban envi-
ronment have been implemented in Beijing, China, in which
authors in [27] using Artificial Neural Network (ANN), Sup-
port Vector Regression (SVR) and Random Forest (RF) mod-
els. The root-mean-square error (RMSE) value generated is
in the range of 4 dB to 5 dB. The work was performed on
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the frequency spectrum of 877.26 MHz, 2021.4 MHz, and
2127.6 MHz with the input parameters used are: (i) the sepa-
ration distance between transmitter (Tx) and receiver (Ry);
and (ii) frequency. The work was based on 2,558 datasets
with ratios of 53.6% and 46.4% for model training and test-
ing, respectively. Similarly, in [25], the work was conducted
in an urban environment in Lisbon, Portugal, at 3.7 GHz
and 26 GHz frequency bands, using a real 5G network. The
input parameters and response variables used are almost the
same as [27]. However, the used dataset is two times larger.
Meanwhile, the models studied are only SVR and RF, with
RMSE values of around 6 dB to 7 dB.

Studies for the urban environment using a simulation
dataset were carried out by [18] on the 2140 MHz frequency
band only. A total of 5,150 datasets were generated using
ray-tracing techniques. Like the previous two studies, the
response variable is path loss. However, three new input
parameters were introduced in this work, i.e.: (i) Tx height
and Ry height; (ii) coordinates of Ry; and (iii) the status of
signal propagation path, being either line of sight (LOS) or
non-line of sight (NLOS). The predictive results are based
on SVR and RF models with RMSE value between 2 dB to
4 dB. However, according to authors in [26], the Ry location
ought to be eliminated to get a prediction model with better
generalization and adaptability that could be advantageously
employed in various geological areas.

The use of simulated datasets on urban environments has
also been carried out by [24], but the focus is only on NB-IoT
networks, a branch of mobile communication that uses low
bandwidth. The frequency spectrum tested were at 900 MHz
and 1800 MHz with the input parameters used are: (i) the
separation distance between Tx and Ry; (ii) the height of
the building involved; and (iii) the signal propagation path
status (LOS/NLOS). The used dataset was almost seven times
larger than [18], with sampling ratios of 80% and 20% for
training and testing, respectively. However, only ANN and RF
models were tested and evaluated with RMSE values around
4 dB to 6 dB.

It has been implemented by [28] for suburban environ-
ments on the 450 MHz, 1450 MHz, and 2300 MHz frequency
bands in South Korea. As in previous studies, the input
parameters used are almost the same except for introducing a
new input parameter, which is the ratio of 7 height to the R,
height. However, the authors did not clearly state the actual
size of the dataset. The ML models studied were only ANN
and GPR, with RMSE value between 8 dB to 9dB for both
models.

In [26], the ML-based prediction model was tested in a
rural environment in Greece using ANN, SVR, and RF mod-
els. The RMSE value is between 4 dB to 5 dB. This work was
only implemented on a single frequency band of 3.7 GHz. The
input parameters used are as follows: (i) 3-dimensional (3D)
distance between Tx and Ry; (ii) Tx height and Ry height
at the above sea level (ASL); and (iii) the signal propagation
path status (LOS/NLOS). Meanwhile, the response variable is
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path loss. The dataset was around 2,200, with a sampling ratio
of 70%, 15%, and 15% for training, validating, and testing,
respectively.

Lastly, the research work in [22] is more comprehen-
sive than the other studies mentioned earlier. The ML-based
model has been tested in multi-environments, a combina-
tion of dense cities, open areas, and inland lakes. The input
parameter used is also quite comprehensive, consisting of
(i) 2-dimensional (2D) and 3D separation distance between
Ty and Ry; (ii) frequency; (iii) height difference between Ty
and Ry; (iv) Tk tilt angle; (v) Tx azimuth angle; (vi) trans-
mitting power; (vii) clutter and building heights information;
and (viii) the vertical distance of the Ry from the major lobe
signal line of the Ty antenna. Besides, this is the only one
work that uses Reference Signal Received Power (RSRP) as
the response variable. In addition, the dataset is very large,
consisting of 12,011,833 datasets. Unfortunately, it is only
tested on an RF model with an RMSE value of 6.11 dB. The
works mentioned above are further summarized in Table 1 for
a clear comparison.

Although there is no specific rule of thumb for determining
the number of datasets suitable for developing an ML-based
mobile network performance prediction model, we found
that a larger dataset may provide more consistent predictive
performance even if the dataset is generated through com-
puter simulation. In this study, the response variable for the
developed prediction model is RSRP because it is the key
parameter directly representing the state of network signal
level at the UE location [29] in 4G LTE and 5G NR networks.
We decided to use RSRP instead of path loss in this study to
manifest the final output in a more meaningful way. In the
meantime, the ML models tested in the previous works for
G2G mobile communications are only ANN, SVR, RF, and
GPR. Besides, the applied algorithms/kernels of the models
are limited to a certain type only.

AS Such, the contributions of this study can be summarized
as follows

« An extensive measurement campaign consists of 21,323

datasets collected in various outdoor environments using
an Android-based drive test solution, which the cleaned
dataset is available for download at [31].

o A guide to generating input parameters using online-

based radio planning tools (CloudRF)

« A comprehensive methodology is presented in preparing

a clean study dataset for ml-based rsrp predictive mod-
eling development

o Assessment and validation of different state-of-the-art

ML models and their performance for the application in
G2G mobile networks signal strength prediction.

o Development of ml-based model for faster mobile net-

work coverage prediction

o The ML-based RSRP prediction model is developed for

various deployment scenarios, such as in urban, sub-
urban, open areas, etc. In the meantime, the model is also
compatible with multiple frequency bands.
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« Evaluation and optimization approach for received sig-
nal strength in existing 4g Ite mobile networks

o Performance analysis of ML-based model against pre-
vious work done by [22], [25], but considering an
extension of scenarios and other improvements in
methodology, as shown in Table 1.

The rest of the paper is organized as follows: Section II
describes the principle of the considered ML model.
Section III presents the experimental setup for the data col-
lection and datasets preparation. The learning, testing, and
validation of ML models are outlined in Section IV. The
performance of all tested ML models is evaluated and dis-
cussed in Section V, followed by model applications and
optimization approaches in Section VI. Finally, Section VI
concludes the article.

Il. MACHINE LEARNING BASED MODELS FOR MOBILE
NETWORKS RSRP PREDICTION

Predicting the RSRP of mobile networks can be categorized
as a regression type problem [26], [32]. Regression problems
are a part of supervised ML techniques, where the models
are trained based on a given labeled data [27]. The state-of-
the-art supervised ML-based models that will be tested and
examined in this study are discussed below.

A. LINEAR REGRESSION (LR)

LR is an ML-based method that finds the linear relation-
ship between the input parameters and response variable
[33], [34]. LR is easy to implement and easy to interpret the
results. However, its disadvantage is the initial assumption of
a linear relationship between input parameters and response
variables, which is not suitable when dealing with non-linear
relationships [35].

B. ARTIFICIAL NEURAL NETWORK (ANN)

ANN is a network of artificial neurons that mimic the way of
human brain functional [36]. The basis of the ANN operation
is to find the best correlation to represent the relationship
between the input parameters and the response variable [26].
ANN is suitable for non-linear regression problems and
shows good predictive performance with a large dataset [27].
ANN is built by a network of three segments: the input
layer, the hidden layer, and the output layer, where data
processing and forecasting activities are carried out on the
hidden layer [36]. Therefore, the ANN prediction perfor-
mance is highly influenced by the settings on the hidden
layer. However, excessive use of hidden layers will cause
the models to become more complex and tend to discourage
generalization capabilities [37], [38].

C. SUPPORT VECTOR MACHINE (SVM)

SVM, also known as SVR, is a supervised ML method using
kernel functions to solve regression problems. The kernel
converts the dataset to different dimensions to obtain the best
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TABLE 1. Related work for ml-based models in predicting mobile communication networks performance.

Ref  Frequency Environment Input Parameters Response Training Method Tested RMSE
(MHz) Variable Models (dB)
[27] 877.26 Urban e Distance T, to R, Path Loss 2,558 datasets ANN 4.74
2021.4 (Beijing, China) e Frequency (53.6% Training & 46.4% SVR 4.54
2127.6 Testing) RF 4.19
[25] 3700 Urban e 3D distance T to R, Path Loss 6,306 datasets SVR 6.97
26000 (Lisbon, Portugal) e Frequency (10-fold Cross-Validation) RF 6.25
[18] 2140 Simulation Urban e Distance T, to R, Path Loss 5,150 datasets SVR 22-41
(Frankfurt) e Frequency (10-fold Cross-Validation) RF 2.1-3.6
e Height of T,
e Height of R,
e Coordinate of R,
e LOS/NLOS
[24] 900 Simulation Urban e Distance T, to R, Path Loss 34,501 datasets ANN  439-5.61
1800 e Height of building (80% Training & 20% RF 4.38 -5.60
e LOS/NLOS Testing)
[28] 450 Suburban e Distance Ty to R, Path Loss  5-fold Cross-Validation ANN 8.52
1450 (Korea) e Frequency GPR 8.94
2300 e Height of T,
e Height of R,
e Height ratio T, to R,
[26] 3700 Rural e 3D distance T, to R, Path Loss ~ ~2,200 datasets ANN 4.0
(Greece) e Height of T, (ASL) (70% Training, 15% SVR 4.4
e Height of R, (ASL) Validating & 15% RF 43
¢ LOS/NLOS Testing)
[22] 2500 Dense cities, open e 2D and 3D distance Ty to R, RSRP 12,011,833 datasets RF 6.11
areas & inland lakes e Frequency (10-fold Cross-Validation)
(China) e Height difference T, to R,
o T, tilt angle
e T, azimuth angle
e Transmit power
e Clutter & building heights
e Vertical distance of R, from
the major lobe signal line of
the T, antenna
This 1800 2600  Urban, Suburban, e 3D distance T, to R, RSRP 18,048 datasets ANN 6.82
Study Open Areas e Frequency (10-fold Cross-Validation) SVR 6.62
(Putrajaya, Malaysia) e Height ratio Ty, to R, RF 6.18
o Tilt angle of transmitted GPR 5.64
signal to R, RT 6.46
LR 8.65

LOS/NLOS

hyperplane settings to represent the correlation between input
parameters and response variables [18], [26]. Thus, non-
linear dataset can be map into linear relationships at higher
dimensional spaces [27], [32], [39]. SVM is less prone to
overfitting and has excellent generalization capabilities but
is less efficient when dealing with large datasets, particularly
with a lot of noise [35], [40].
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D. REGRESSION TREES (RT)

RT is a decision tree-based method that uses a tree-like
structure in making predictions based on the rules set at each
node [23], [41]. Thus, RT performance is highly influenced
by the number of nodes from the root to the leaf [42]. Data
processing and analysis in RT are easy to interpret. It is also
capable of handling issues related to missing values in the
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study datasets; However, it is easily affected by noise, leading
to overfitting if the tree setting is too deep [35], [40].

E. ENSEMBLES OF TREES (ET)

ET is an approach of combining multiple RT to produce an
output [24]. In principle, ET is a group of weak learners
combined to form a strong learner [43]. Therefore, it requires
more computational power and a longer training time than
RT. There are two types of ET techniques: Bagging or Boost-
ing [44]. Bagging is a technique to decrease the variance in
the prediction by generating subsets of data chosen randomly
with replacement from the original training dataset [26].
Meanwhiles, Boosting is an iterative technique that adjusts
the weight of an observation based on the prior learner’s
result [15]. ET can overcome the overfitting issues in RT
[35], [45], which is more robust to the noise. RF is one of
the popular ET algorithms that uses bagging techniques in
performing regression predictions [26], [46].

F. GAUSSIAN PROCESS REGRESSION (GPR)

GPR is a Bayesian non-parametric model [15] that uti-
lizes kernel functions in solving regression problems [47].
It derives the relationship between input parameters and
response variables from unknown functions [28]. GPR can
produce good predictions at high dimensions, even with small
datasets [48], and support non-linear and complex prob-
lems [49]. However, the drawback of GPR is that it requires
high computational power [50], [51].

Ill. DATA COLLECTION AND DATASET PREPARATION
Fig.1 describes the overall concept of execution of this study.
The study dataset is constructed from a comprehensive mea-
surement campaign conducted in the Federal Territory of
Putrajaya, a planned city that serves as the administrative
capital of Malaysia. The selection of Putrajaya was based on
the following factors: (i) has a unique town planning architec-
ture that combination of multi-environment characteristics,
i.e., high-rise and mid-rise buildings, single and double story
terrace houses, lakes, densely-vegetated parks and open areas
in one territory [6], [52] as shown in Fig. 2 and (ii) one of
the testbed location for 5G NR network deployment beside
Cyberjaya and others several major cities [53], [54]. However,
at the time of this study, there is still no 5G NR mobile
network officially operating for public consumers. Therefore,
RSRP reading measurement can only be performed on the
existing 4G LTE networks. Even though RSRP in 4G LTE and
5G NR networks have different characteristics, but the pur-
pose of its use is the same, which is UE periodically measures
RSRP for performing cell selection/reselection and handover
process [30]. Since the development of the prediction model
is based on a modular approach, so it can be easily extended
for 5G NR network parameters in the future.

The hardware and software involved in the measurement
campaign are highlighted in Table 2, while Fig. 3 shows
the data type and relationship between the platforms in the
measurement. To minimize the fast fading effect especially
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FIGURE 1. Workflow of the ML-based model for signal strength
prediction adopted in this study.
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FIGURE 2. Distribution of RSRP measurement points in putrajaya.

due to the Doppler shift, the measurement campaign was
conducted at a vehicle speed below 40 km/h [21].

Before dataset preparation activities are executed, the drive
test data needs to be cleaned. The data collected at static
conditions need to be removed to ensure the data are free
from any errors [57]. After the data cleaning process was
completed, UE location information in decimal degree format
was extracted into the .csv file format. It was used as a ref-
erence input for the generation of the following parameters:
(1) 2D distance between eNodeB (eNB) and UE; (ii) height
of eNB antenna at above sea level (ASL); (iii) height of UE
at ASL; angle of signal from eNB to the position of UE
(tilt); and (iv) signal propagation path status between eNB
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TABLE 2. Parameters of measurement campaign setup.

HARDWARE:

Smartphone Realme XT (Model RMX1921)
Category 12

Rel 11 (also known as LTE-Advanced)

Consumer Equipment (UE)
3GPP Release
SOFTWARE:

G-NetTrack Pro [55]

A non-rooted wireless network monitor
and drive test tool

4G LTE Switcher [56]

&

An android application forced the phone
only to operate on 4G LTE

D
e

1 ? »

Switcher

G N\,lTnu.k Pro

F

Recorded Data:

= Timestamp

* Longitude & Latitude
+ Speed

+ Node

+ CellID

* LAC

* RSRP

+ Frequency

+ Bandwidth

™~ B\

Transmitter

N

User Equipment

FIGURE 3. Description of the platform used in the measurement
campaign.

and UE. These parameters are created utilizing a web-based
radio planning tool called CloudRF [58]. The terrain and
clutter reference data in CloudRF are 10 meters in resolution.
Besides, CloudRF also integrate high-resolution 3D buildings
information from OpenStreetMap [59].

As shown in (1) and (2), two additional parameters were
derived from the above-generated parameters, i.e., the 3D
separation distance between eNB and UE (D3)[22], [25], [26]
and the height ratio between eNB antenna and EU (Hg) [28].
Based on [60], the concept of calculation of these two param-
eters applied in this study is illustrated in Fig. 4 whereas Ty
and T, are representing the height of eNB antenna and height
of UE at ASL respectively, while D, is the 2D separation
distance between eNB and UE. Therefore, D3 is defined by:

=/ (T1 = T»)* + D3 (1

while Hg was calculated using the following formula:
Hg =T/T» (2)

Signal propagation path status between eNB and UE was
labeled as ‘0’ to represent no obstacle present (LOS); mean-
while, ‘1’ represents NLOS condition. This parameter was
labeled as Obstacle (Obs). The input parameters mentioned
above are further summarized in Table 3 for a clear explana-
tion. The selection of these five parameters as input data was
based on the knowledge of electromagnetic wave propaga-
tion, which has been applied in previous works (as summa-
rized earlier in Table 1).
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FIGURE 4. Cross-section of the measurement setup.

TABLE 3. List of input parameters and explanations.

Input Definition Purpose
Parameter
D, 3D distance between eNB  To get an effective signal
antenna and UE travel distance between T,
and R,
Hp Height ratio of eNB To get an effective height
antenna to the height of EU  ratio between T, and R,
at ASL
Tilt The angle of transmitting To determine the tilt angle

the signal at the horizon
axis from the eNB antenna
to the UE

of signal travel from the
eNB antenna to the location
of R,

Fq The use of frequency bands ~ To get a real RSRP reading
1800 MHz and 2600 MHz, in multiband measurement
which are dedicated 4G  in Sub-6GHz frequency
LTE spectrum in Malaysia
allocated by the Malaysian
Communications and
Multimedia Commission
(MCMC)

Obs The status of signal To class the signal status
propagation path between either LOS or NLOS
eNB and UE

The F; and RSRP were extracted directly from the mea-
surement campaign data. Before implementing ML model
training and testing activities, outliers in D3, Hg, Tilt, and
RSRP were identified and removed. This process was done
using interquartile range (IQR) analysis on 21,323 datasets,
as shown in Fig. 6. Finally, a total of 18,048 cleaned datasets
were prepared and ready for the ML model training and
testing process. Overall, the above process is summarized and
illustrated in the flow chart shown in Fig. 5.

IV. MODEL TRAINING AND VALIDATION

MATLAB 2020a Regression Learner and Neural Net Fitting
application were used to train and validate the ML-based
RSRP predictive model. The simulation is performed using
an Intel Core i5 10" gen laptop with an onboard Radeon
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FIGURE 5. Dataset preparation process.
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FIGURE 6. IQR analysis using box and whisker Plots.

530 series graphic processor, 512 GB SSD storage and
20 GB RAM.

The regression learners utilized in this study are sum-
marized in Table 4. All these learners were examined
using 10-fold cross-validation (CV), a resampling method
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that split up the dataset into ten portions and then train
and test procedure executed on different iterations to avert
overfitting, based on a similar work done by authors in
[18], [22], [25]. The parallel training function was disabled
to optimize the machine processing power on each examined
algorithm/kernel.

Meanwhile, the Neural Net Fitting application used a
two-layer feed-forward neural network with 40 hidden neu-
rons, as shown in Fig. 7. 70% of the dataset was used for train-
ing, and the remaining 30% was split up evenly for validation
and testing purposes. Different algorithms were examined,
such as Levenberg-Marquardt, Bayesian Regularization and
Scaled Conjugate Gradient.

TABLE 4. List of tested regression learner.

Model Algorithm/Kernel
LR Linear, Interactions Linear, Robust Linear, and Stepwise
Linear
SVM Linear, Quadratic, Cubic, Fine Gaussian, Medium
Gaussian, and Coarse Gaussian
RT Fine Tree, Medium Tree, and Coarse Tree
ET Boosted Trees and Bagged Trees
GPR Rational Quadratic, Squared Exponential, Matern 5/2, and
Exponential
Hidden Layer Qutput Layer
Input Output
5 1
40 1

FIGURE 7. The architecture of the neural network used in this study.

To examine and validate the performance of each ML
model, it is important to assess the statistical error between
the measured and the predicted RSRP values. RMSE,
as shown in (3), is a commonly used metric to evaluate the
performance of the regression prediction models. It is given,
in decibels [22], by:

Nsample — 1

S il 3)

Nsample i—0

RMSE =

where nggmple 1S the total number of samples, y; is actual
value, and y; is predictive value. The smaller values of
RMSEindicate a better prediction of the ML model. Accord-
ing to [26], predictive models with RMSE values less
than 7 dB is considered acceptable, especially in an urban
environment.

On the other hand, we used the coefficient of determination
(R?), as shown in (4), to reveal the degree of performance of
the prediction models. It is used to describe how well the input

VOLUME 10, 2022



M. F. Ahmad Fauzi et al.: Mobile Network Coverage Prediction Based on Supervised Machine Learning Algorithms

IEEE Access

TABLE 5. Details performance of examined regression learner models.

TABLE 6. Details performance of examined ann algorithms.

Algorithm/ RMSE R? Prediction Training
Kernel (dB) Speed Times
(Observation/  (Second)
Second)
Model: LR
Linear 9.01 0.36 220,000 2.00
Interactions Linear 8.65 0.41 380,000 0.58
Robust Linear 9.02 036 470,000 0.77
Stepwise Linear 8.65 041 310,000 16.49
Model: SVM
Linear 9.03  0.36 50,000 304.85
Quadratic 8.66 041 36,000 1158.60
Cubic 9.00 0.37 31,000 6704.60
Fine Gaussian 6.62  0.66 13,000 126.59
Medium Gaussian 793  0.51 12,000 109.87
Coarse Gaussian 8.64 042 12,000 108.02
Model: RT
Fine Tree 645  0.67 570,000 6.31
Medium Tree 646  0.67 880,000 1.00
Coarse Tree 6.95 0.62 930,000 0.38
Model: ET
Boosted Trees 8.66 041 170,000 4.55
Bagged Trees 6.18 0.70 72,000 6.11
Model: GPR
Rational Quadratic 5.60 0.75 2,500 1263.50
Squared Exponential ~ 6.13  0.71 7,300 408.57
Matern 5/2 595  0.72 4,500 566.82
Exponential 5.64 0.75 5,100 521.40

parameters in the model explain the response variable’s vari-
ability. The larger R? values, the more variability is explained
by the model. It is given by [28]:

A \2 n
22—1 ( n _)’n) _ 1
=~ wherey = — E y 4)
ZZ:] n _yn)2 n n—1 "

Among the other important factors observed while validat-
ing the model are the duration of training times and prediction
speed, which always indicate the level of complexity and
efficiency of the model. Therefore, a predictive model with a
balanced performance between RMSE, R2, training time, and
prediction speed is highly recommended as the most prac-
tically employed ML-based model for developing rigorous
RSRP prognoses model in multiband and multi-environment.

RP=1-

V. RESULTS AND DISCUSSIONS
Details performance of examined ML models is shown in
Table 5 and Table 6. Subsequently, the best contender of each
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Algorithm RMSE R? Epoch Training
(dB) (At Max Times
1000) (Second)
Levenberg- 7.06 0.60 122 10.20
Marquardt
Bayesian 6.82 0.64 910 77.20
Regularization
Scaled Conjugate 8.16 0.48 148 1.40
Gradient
10.00 0.75 0.80
9.00 0.70
0.67 0.70
0.64 e
8.00
0.60
7.00
a 6.00 0.50
2
o 5.00 0.40
5 400 0.30
3.00
0.20
2.00
1.00 0.10
0.00 0.00
LR ANN SVM RT ET GPR
mRMSE —R?

FIGURE 8. RMSE versus R according to the best contender of each
model category.

model category was selected and plotted into a Pareto chart,
as shown in Fig. 8.

Based on the results, we can conclude that the GPR model
outperforms others in terms of RMSE and R?. This is because
GPR, a non-parametric kernel-based probabilistic model,
can handle small and large size datasets with fewer errors,
even in high-dimensional space. GPR able to learn from the
overall distribution of datasets and properly tune the hyper-
parameters setting to produce smoothing results. However,
the GPR comes with drawbacks such as high computational
power requirements and longer processing time, especially
when dealing with large and imbalanced datasets. Imbalanced
datasets happen when a significant disproportion within the
datasets can cause unequal class distribution.

The next best performance of RMSE and R? values are
achieved by the ET model with the Bagged Trees algorithm
(also known as RF). RF is faster than GPR in terms of
processing time. Compared to the Exponential-GPR, which
is the most balanced performance model in the GPR category,
RF is 85 times faster in training duration. Besides, it can also
achieve around 72,000 observations per second compared to
Exponential-GPR, with just around 5,100 observations per
second. This is because RF, which is based on the decision
tree method, is simpler to implement than GPR models.
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The model category that ranked third in this study was
RT with the Medium Tree algorithm has shown the most
balanced performance compared to other RT algorithms. The
RMSE and R? values achieved were 6.46 dB and 0.67, respec-
tively. Although both RT and RF are based on the decision
tree technique, the bagging working mechanism in RF has
shown its superiority in producing better prediction accuracy
than RT, which only relies on the prediction results from one
decision tree only.

The fourth-placed was held by SVM. Although SVMs
are kernel-based models like GPR, that can manipulate the
datasets at different dimensional spaces, but the best predic-
tive performance observed in this study is only 6.62 dB for
RMSE and 0.66 for R>. This is possible due to the limitations
of the SVM model’s capability, which is less efficient when
dealing with large datasets.

The fifth place was occupied by ANN models with the best
RMSE and R? results were 6.82 dB and 0.64, respectively.
Although ANN accuracy is just 0.64 dB less than RF, but it is
required 12.6 times longer in terms of model training times.
This is due to the complex data processing analysis running
in the hidden layers. Typically, to improve the accuracy, the
number of hidden layers must be increased, but this will
make training time and prediction speed becomes worse.
In some cases, increasing the number of a hidden layer will
not improve the prediction accuracy, but it could be the worst,
which deters the model generalization capability. As a result,
the model could not perform accurate predictions when a
new input dataset was introduced. Therefore, increasing the
number of hidden layers in the ANN needs to be done with
caution.

Lastly, the LR models with the best result are 8.65 dB for
RMSE and 0.41 for R%. These results directly indicate that
the LR model is unsuitable for developing the ML-based
RSRP predictive model. This is possible due to the limitation
of the LR-based model, which is not suitable to apply to non-
linear relationships problems.

Concerning the study’s objective of generating a more
flexible, and fast-paced prediction model, RF is proven to
be the most practical option for developing an optimal ML-
based RSRP predictive model. To further enhance the RF
model prediction capabilities, the optimum hyperparameter
setting must be identified. To achieve this, the Optimiz-
able Ensemble function has been executed and the result is
shown in Fig. 8. The newly generated values of RMSE and
R? are equal to 5.74 dB and 0.74, respectively. Therefore,
RF prediction accuracy was increased by 0.44 dB and model
variability has increased by 0.04. As a result, the optimum
hyperparameter settings for the RF model are 495 number
of learners, two minimum leaf sizes, and three number of
predictors to sample.

In Fig. 9, we compare the RF model prediction perfor-
mance with the previous work done by [22], [25]. The newly
generated values of RMSE and R? of the RF model in this
study is comparable to the values in the previous works.
Although [22] uses more diverse input parameters with
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FIGURE 9. The optimum hyperparameter settings for the RF model.
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FIGURE 10. Comparison of RF model performance with the previous
works.

massive dataset sizes, but it does not show a significant dif-
ference in prediction accuracy and model variability. In some
cases, employing too many input parameters will make the
ML learning algorithm more complex and deter the model’s
generalization capabilities. Besides, outliers’ detection and
removal activities must be executed properly before pro-
ceeding to the ML training process, especially when dealing
with a massive number of datasets. Meanwhile, insufficient
influential input parameters executed in[25] will limit the
actual capabilities of the RF algorithm in producing optimal
predictive performance. This is because, some other influ-
ential input parameters, such as signal propagation status
LOS/NLOS are very significant in generating an accurate pre-
dictive result. Therefore, based on these comparison results,
we can conclude that the five input parameters utilized in this
study are adequate to produce an optimal RSRP prediction
model.

Vi. OPTIMIZATION

In this section, optimization approaches to existing 4G LTE
networks using a developed prediction model are presented.
Certain parameters such as height and tilt angle of the eNB
antenna will be adjusted to forecast an improvement that can
be achieved on poor RSRP readings. Poor RSRP readings
from Cell ID 11, eNB 131163 will be utilized as a study
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FIGURE 11. Original RSRP distribution for Cell ID 11, eNB 131163.

TABLE 7. Comparison of original and new setting.

Parameter Original Setting New Setting
Antenna Height 15 meter 30 meter
Antenna Tilt Angle 0° 3°

TABLE 8. RSRP performance before and after optimization.

RSRP Category Before Optimization After Optimization
Excellent 363 330
Good 633 671
Fair 219 253
Poor 45 6

131163
>

i, &)

FIGURE 12. RSRP distribution after optimization.

sample, as shown in Fig. 11. A total of 45 out of 1,260 point
locations identified received poor RSRP readings.

Table 7 shows the original and new setting of Cell ID 11,
eNB 131163. Over 100 prediction iterations were performed

VOLUME 10, 2022

per configuration parameter using the proposed model to
obtain these new settings. Accordingly, different antenna
height and tilt configuration values were utilized in each
prediction iteration. The configuration values that resulted
in the best coverage were then selected as optimal new set-
tings. Model parameter inputs such as D3, Hgr and Tilt must
be adjusted accordingly, while F, and Obs are considered
unchanged.

AS aresult, an improvement in RSRP reading is shown in
Table 8 and Fig. 12

It can be concluded that adjustment on both height and tilt
angle of the antenna is able to improve the level of received
signal strength at 39-point locations (86.7experienced poor
receiving RSRP levels.

VIl. CONCLUSION

This paper presented and examined several ML model’ cat-
egories with various algorithms/kernels that aimed to predict
mobile network performances through RSRP in multiband
and multi-environment. For this purpose, ML models, includ-
ing LR, ANN, SVM, RT, ET, and GPR, were applied and
evaluated. The models were trained using measurement cam-
paigns, carried out at 4G LTE frequency band in Malaysia,
i.e., 1800 MHz and 2600 MHz, in diverse multi-environment
around Putrajaya. The results showed that the GPR model
is the most accurate model for RSRP prediction in terms of
RMSE and R?. However, due to its huge drawback on training
times and prediction speed, the second-best model, which is
the RF model, is highly recommended as the most practi-
cally employed ML-based model for developing a rigorous
RSRP prognoses model in multiband and multi-environment.
At the end of the article, optimization approaches on exist-
ing 4G LTE networks have been demonstrated by utilizing
the capability of the developed ML-based RSRP prediction
model. Finally, the future work is to train and test the RF
algorithm with the real 5G NR measured data using the same
approaches. Furthermore, the influence of spectrum band-
width and UE position with respect to the front, side, and back
lobe of antenna radiation patterns will be exploited. Besides,
correlation with others network key performance parameters
such as RSRQ will study and tested in future work.
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