
Received April 21, 2022, accepted May 17, 2022, date of publication May 20, 2022, date of current version May 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176645

Reference Architecture for Running
Computationally Intensive Physics-Based
Digital Twins of Heavy Equipment in a
Heterogeneous Execution Environment
VICTOR ZHIDCHENKO , EGOR STARTCEV , AND HEIKKI HANDROOS , (Member, IEEE)
Mechanical Engineering Department, LUT University, 53850 Lappeenranta, Finland

Corresponding author: Victor Zhidchenko (victor.zhidchenko@lut.fi)

This work was supported in part by Business Finland through the Project ‘‘Service Business from Physics-Based Digital
Twins—DigiBuzz.’’

ABSTRACT Physics-based digital twins for heavy equipment provide a powerful tool for improving
operation and maintenance activities. In contrast to data-driven models, they present more explainable and
confident results but require more computational power. Besides the problem of physics-based digital twins
creation, there is a task of managing their lifecycle, including their execution, maintenance, storage, and
updating. The features distinguishing this kind of digital twins are the mobility of the real counterpart,
operation in remote locations, long lifecycle, information sensitivity, and gaps in information technology
awareness among the equipment owners and users. This paper presents a methodology and reference
architecture for a set of interconnected systems capable of running digital twins of heavy equipment in such
conditions. A data model for preserving digital twin-related information for decades of machine operation is
described. Operating-system-level virtualization technologies are used to run digital twins in a heterogeneous
execution environment. An example of the reference architecture implementation is presented for the
physics-based digital twins of a mobile log crane. The experimental part of the paper includes a comparison
of computing time for different types of digital twins in different execution environments. It highlights the
peculiarities related to running physics-based digital twins in containers. Experiments were performed using
the Amazon cloud platform, an edge computing system represented by a single-board microcomputer based
on ARM architecture, and a virtual machine on a desktop personal computer. Experimental results show
that physics-based digital twins for the analysis of the multi-body dynamics can be run within the proposed
architecture with real-time performance in all three types of execution environments. The paper demonstrates
the practical implementation of physics-based digital twins for heavy equipment and defines directions for
future research in this field.

INDEX TERMS Cloud computing, data model, digital twin, Internet of Things, simulation, virtualization.

I. INTRODUCTION
Facilitating the operation of complex systems by executing a
simulation model (a twin) concurrently with the system is a
well-known approach. It has been used for decades in model-
based control systems [1].

In the 21st century, the development of computing and
networking capabilities has led to the broader adoption of
the concept. The term ‘‘Digital Twin’’ (DT) has evolved to

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

represent this approach. Starting from the works of Michael
Grieves [2], [3], the term became popular, and many inter-
pretations of it appeared. Different definitions of the term are
listed in [4]. A literature review identifying the core themes
related to the digital twin concept is presented in [5]. Com-
prehensive reviews of different application areas and enabling
technologies for DTs can be found in [6] and [7]. The diver-
sity of use case scenarios and related interpretations of DTs
is reflected in the definitions given in the first standards in
this field. ISO/DIS 23247-1(en) ‘‘Automation systems and
integration—DT framework for manufacturing,’’ which was

54164 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8016-3832
https://orcid.org/0000-0002-0804-5532
https://orcid.org/0000-0002-9479-0968
https://orcid.org/0000-0001-7070-6699


V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

under development at the time of writing, defines a DT as
a fit-for-purpose data element representing a set of proper-
ties of an observable manufacturing element with the means
to enable convergence between the element and its digital
representation at an appropriate rate of synchronization [8].
The Industrial Internet of Things Vocabulary defines a DT as
information representing attributes and behaviors of an asset,
process, or system sufficient to meet the requirements of a set
of use cases [9]. These definitions allow broad interpretation
depending on the use case. Consequently, there is a need to
precisely define what is understood under the DT in each
case.

This paper considers a DT as consisting of two parts: pas-
sive and active. The passive part is represented by data related
to a real object and corresponds to the ‘‘data element’’ and
‘‘information’’ mentioned in the above technical documents.
This part resembles the data maintained within the Product
Lifecycle Management (PLM) context. The core feature of
the DT that distinguishes it from the PLM framework is
its active part. This part is a software program or a set of
programs that uses the data from the real object to derive new
information. The program can process the sensor data from
a single object and extend information related to this object.
It can also process data from several real objects using sta-
tistical or machine learning techniques to create information
related to a system that these objects comprise. An example
would be a manufacturing plant or a fleet of machines.

This paper deals with a specific case of DTs’ active parts—
the programs that use physics-based simulation models to
derive information from sensor data. These models use differ-
ential or differential-algebraic equations to simulate different
processes occurring in the DT’s real counterpart. Tradition-
ally, this type of model has been used in the design phase
of a product’s lifecycle due to its computational complexity.
A common approach is to avoid physics-based simulation in
DTs and to use data-driven statistical models and machine
learning techniques [10]–[13]. The advantage is lower com-
putational complexity and an ability to run calculations in real
time, processing data streams from many sources together.
The approach was developed in IoT systems, where data-
driven models are widely used for deriving information from
many data sources. It is worthmentioning that a separate class
of DTs has been developed for IoT applications—the DTs of
IoT devices. They represent the basic properties of sensors
and other IoT data sources. Such DTs are created to monitor
IoT devices and present an intermediate layer between the
device and the IoT application developer. This layer provides
an abstraction that eliminates the developer’s need to deal
with connectivity issues and error handling separately for
each device. Instead of working with the device directly, the
developer workswith its DT. This approach is implemented in
the open-source project Ditto [14] and the MS Azure Digital
Twins platform [15]. The disadvantage of the data-driven
approach is that its applicability is limited by the range of
training data used to create a model. It can be compared
with experience-based knowledge when data interpretation is

constrained by some previously obtained experience in a sim-
ilar context. In contrast, physics-based models interpret any
data according to the physical laws that govern the data. In a
sense, the experience used for interpretation is much more
comprehensive since it includes all the knowledge within the
corresponding physical domain, which in many cases has
been accumulated over centuries.

Extending the use of physics-based DTs from the design
phase to the products’ operation and maintenance phase is
the primary goal of the work presented in this paper. In par-
ticular, we consider the DTs of heavy equipment represented
by mobile off-road machines used in the construction, min-
ing, and agriculture sectors. The benefits provided by the
physics-basedmodels for such equipment can be summarized
by their ability to calculate values that cannot be measured
directly. For data-driven models, this capability is limited
by relatively simple arithmetic and statistical dependencies.
In contrast, limitations for the physics-based models are
defined by the availability of the corresponding model and
its computational complexity.

Physics-based DTs of heavy equipment used in the oper-
ation and maintenance phase present several challenges dis-
cussed later in this paper. According to our literature review,
the problem of practical implementation of such DTs is
not thoroughly investigated. Several approaches have been
proposed for DT management, but they do not consider the
challenges, and they commonly present a high-level theoreti-
cal overview of the concept. It raises many questions when
trying to implement existing approaches in practice. The
motivation for the presented paper was the lack of research
dedicated to the lifecycle management of physics-based DTs,
including their deployment, execution, maintenance, storage,
and updating over decades. This paper aims to fill the gap by
presenting a way of maintaining DT information, providing
integration of the DTs into existing systems, running the DTs
in different execution environments, and ensuringDT interac-
tion. The presented reference architecture has some common
features with the frameworks described in [7] and [16] but
focuses on heavy equipment DTs and aims at their practical
implementation in the operation and maintenance of real
machines.

The contribution of the paper could be summarized as a
systematic consideration of the problem of physics-based DT
implementation in the domain of heavy equipment. Starting
from an overview of the challenges with the practical imple-
mentation of such DTs, the paper proposes a data model and a
reference architecture designed to overcome these challenges
and concludes with a proof of concept example.

The rest of the paper is organized as follows. The next
section describes the unique features of the physics-based
DTs for heavy equipment and the challenges of creating
and managing such DTs. The following section contains the
goals of the presented work, which is targeted at overcoming
the challenges by creating a reference architecture for run-
ning DTs in a heterogeneous execution environment and a
data model for preserving DT-related data. After reviewing

VOLUME 10, 2022 54165



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

the work related to creating and running physics-based sim-
ulations and DTs in different execution environments, the
reference architecture and the datamodel are described. In the
experimental part of the paper, a proof of concept implement-
ing a DT of a mobile log crane in the proposed architecture
is considered. The computing time of several types of DTs
running in the virtual machine on a desktop PC, in the Ama-
zon cloud, and on the edge computing device is measured and
analyzed. The paper concludes with the main findings from
the experiments and directions for future research.

II. CHALLENGES RELATED TO THE DIGITAL TWINS OF
HEAVY EQUIPMENT
Every instance of heavy equipment is a complex device
consisting of several subsystems. For example, a mobile
hydraulic crane comprises hydraulic and mechanical
subsystems. An excavator includes mechanical, hydraulic,
and electrical control subsystems. The creation of a single
DT replicating the machine as a whole, including every
component, is doubtful. A more feasible approach would
be the creation of possibly interconnected DTs for distinct
components and subsystems. In this case, each DT should
simulate a set of processes occurring in the machine, and
its output should provide valuable data for the operation and
maintenance tasks. Since third-party manufacturers usually
supply machine components, the DTs for different compo-
nents can be produced by different developers. If these DTs
communicate with each other, a compatibility problem arises.
The problem is exacerbated by the fact that components can
be modified or replaced throughout a machine’s life cycle,
typically lasting several decades. DT developers face the
problem of maintaining and modifying their software over
decades while preserving compatibility with third-party DTs.
Standardization is essential in such circumstances, but time
is needed to develop standards for DTs. The reference archi-
tecture proposed in this work attempts to fill the gap between
the need to introduce DTs into the operation and maintenance
activities for heavy equipment on the one hand and the
absence of standards for seamless integration of diverse DTs
on the other.

Two different approaches can be considered to create and
maintain DTs for heavy equipment: DT as a product and
DT as a service. The first approach treats DT as part of a
real machine. Being released together with a new machine
or created once for existing equipment, it leaves its creator
in a similar way that the machine leaves its manufacturer
and operates along the machine lifecycle facilitating some
machine-related tasks. Such a DT resembles onboard pro-
grams running within the control system of the machine. The
difference is that the DT is assumed to be more complex
software that requires modifications following the machine’s
changes. It should also communicate with the outer world
and is potentially vulnerable to security threats causing
the necessity for upgrades. These requirements entail the
need for support activities, which may occur infrequently,
but inevitably over a long time. Considering the trend for

business servitization [17], which assumes that heavy
machine manufacturers will provide various monitoring and
remote tracking services as part of their offering, it is more
natural that a DT is not considered a standalone entity but as
a part of some service. In this sense, the second approach—
DT as a service—is more plausible.

In contrast to the first approach, it assumes that someone
always manages the DT along its lifecycle. Management
assumes a deployment, execution, monitoring, modification,
and upgrades of the DT. Several options can be considered:
• DT as a software product is managed by its developer;
• DT as an integral part of a real machine is managed by
the machine manufacturer;

• A dedicated DT provider manages a DT.
The first option follows a common practice of software

maintenance. The DT developer possesses all information
related to its products, including the model, source code, and
documentation and can manage all maintenance activities.
In contrast to other software types, each instance of the DT
requires unique modifications according to its physical coun-
terpart changes. It makes the maintenance task much more
complicated compared to regular practices. The DT user’s
problems will arise in case of troubles with the developer,
such as bankruptcy. Without information about the DT men-
tioned above, the user will have to recreate it from scratch.

The second option fits in the context of servitization, but it
requires equipment manufacturers to develop non-core busi-
ness areas related to IT or to outsource them. The creation and
use of third-party DTs for solving user-specific tasks become
challenging in this case since it requires access to information
about the models, software components, and data used by the
manufacturer to provide its DTs.

The third option assumes a separate business area ded-
icated to DT creation and management. It is a promising
field for technological startups. A digital twin provider can
develop and manage the DTs. It can also provide services
for executing and monitoring the DTs created by third-party
developers or equipment manufacturers.

Since a DT requires modifications over its lifecycle, all
three DT management options imply preservation of infor-
mation about the simulation model, source code, and data
related to the DT over decades of physical machine operation.
This information must be represented in a standard format
to be readable by different systems and (optionally) humans.
Several technical standards exist that can facilitate this task:
Functional Mock-up Interface (FMI) [18], OPC UA [19],
System Structure and Parameterization (SSP) [20], Asset
Administration Shell (AAS) [21], Next Generation Service
Interfaces-Linked Data (NGSI-LD) [22], and Digital Twin
Definition Language (DTDL) [23]. An overview of some
of these standards applied in the area of DTs can be found
in [24].

Following the arguments of Harper et al. [25] that ‘‘it
is unrealistic that all Industrial IoT applications will agree
on a common information model taxonomy and attributes’’
and ‘‘over time the applications and markets will determine

54166 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

which standards bring business value,’’ this work does not
use some specific standard to describe physics-based DTs of
heavy equipment. Instead, it introduces a new data model
for the domain description that satisfies the requirements
related to the development, execution, and maintenance of
the physics-based DTs of heavy equipment. Using the data
model as a basis, one could describe its entities by a certain
standard. For example, describing the data model in DTDL
allows implementing a DT management system for heavy
equipment as a cloud service in Microsoft Azure.

A separate task is to execute a computer program that
implements a DT repeatedly for decades. The necessity to
store theDT data along the physicalmachine lifecycle forms a
distinguishing feature of physics-based DTs of mobile work-
ing machines—DT longevity [26].

During such an extended period, the hardware and operat-
ing systems can be considerably changed. This fact favors the
DT-as-a-service approach since adopting the new hardware
and software architectures is a part of the maintenance task.
However, the immense diversity of architectures that can be
used for DT executionmakes the task complicated. A solution
could be to unify hardware and software components with
virtualization technologies.

III. VIRTUALIZATION AS A SOLUTION FOR THE
LONGEVITY PROBLEM OF THE DTS RUNNING IN A
HETEROGENEOUS EXECUTION ENVIRONMENT
The concept of virtualization was born in the late 1960s
when IBM tried to develop so-called time-sharing solutions to
distribute expensive mainframe resources among users [27].
At the time of writing, it is a well-known approach in enabling
multiple operating systems to run on a single computer.
An alternative is to run multiple isolated programs on a single
operating system (OS). The former is known as hardware vir-
tualization, and the latter is known as OS-level virtualization
technology, or containerization.

Hardware virtualization is an abstraction of hardware with
the host software, called a hypervisor. The hypervisor creates,
manages, and monitors simulated computer environments
(virtual machines). Each virtual machine runs a guest oper-
ating system and contains all its files. This virtualization
type leads to redundant disk space consumption, memory
resources, and relatively slow boot times with multiple virtual
machines running on the same host computer.

OS-level virtualization is another approach to provide mul-
tiple isolated execution environments for end-user programs
on a single host computer. The most prominent OS-level
virtualization type is Linux container technology, especially
Docker containers [28]. Docker isolates an application by
creating a software package that contains the application
itself with its dependencies and interfaces. Such a pack-
age is called a container image. It can be moved between
computing environments as a lightweight standalone bundle,
and the application inside the container can be seamlessly
executed.

Being highly portable, scalable, and lightweight [29],
container-based applications in almost all cases outperform
hypervisor-based applications [30]–[32].

This performance superiority is not always the case if
containers are provided as a service by cloud comput-
ing providers. When container orchestration capabilities are
provided by virtual machine instances deployed on top
of the base-level operating system, the overhead becomes
excessive [33], [34].

Even with the mentioned performance penalty, the consen-
sus on running a containerized application or using a virtual
machine in the cloud is shifting towards containers. With the
low overhead, easy management, and process isolation, this
approach meets the scalability demand to execute at least one
DT per physical asset for thousands of machines.

The containerization technology’s essential advantages
that address the DT longevity problem are the open-source
model and standardization around container formats and
runtimes through the Open Container Initiative (OCI) speci-
fications. Established in 2015 and backed by a group of com-
panies, including Google, Microsoft, Amazon, Intel, Cisco,
Huawei, and Oracle, the initiative provides open specifi-
cations on packing, storing, transferring, and running con-
tainers [35]. The specifications ‘‘can be shared between
different tools and be evolved for years or decades of
compatibility.’’ [36]

Running DTs of heavy equipment in the OCI-compliant
containers is a way of ensuring their longevity. Containeriza-
tion provides the capability to pack specific software com-
ponents needed to successfully execute the DT program into
a single object of standard form (a container) that can be
run on different hardware. This capability makes the DT
sustainable to hardware evolution over time, assuming that
virtual hardware compatible with the container will be avail-
able for new computer equipment. Due to their standard
format and low overhead, the containers have become a core
element of horizontally scalable systems. Widely adopted
in cloud computing, containers spread to edge and fog
computing [37], [38]. It makes them suitable for implement-
ing DTs capable of running in a heterogeneous execution
environment consisting of cloud, fog, and edge comput-
ing systems. As a result, the DT developers and providers
decrease the amount of work needed to solve deployment and
compatibility issues by creating a single container that can be
run both in the cloud and in the edge.

IV. THE GOALS OF THE PAPER
This paper contributes to the development of physics-based
DTs for heavy equipment by providing a data model to
describe physical and virtual assets intended for joint use with
standards in PLM and IT sectors over a long time. Another
contribution is the proposed reference architecture for DT
management that uses the data model and container-based
virtualization technologies to run DTs in a heterogeneous
execution environment. An example of reference architecture
implementation is provided, and a DT of the real mobile log

VOLUME 10, 2022 54167



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

crane is created and tested. Differences in computing time of
the DT in several execution environments are measured and
analyzed.

V. RELATED WORK
Datta was among the first who proposed the use of intercon-
nected blocks to buildDTs of complex systems [39]. Hiswork
draws some parallels between the DT concept, blockchain,
brain cells, and software agents. The paper, being a purely
theoretical discussion, calls for ‘‘an open-source approach,
to create the ‘blocks’ or modules, necessary to democratize
the ad hoc and en masse configuration of DTs.’’

A DT architecture reference model for the cloud-based
cyber-physical systems was presented by Alam et al. [40].
The authors described such systems’ key properties for data-
driven DTs. They used a telematics-based driving assistance
application as a working prototype.

Borodulin et al. [16] extended the ‘‘building block of a
DT’’ approach and brought it to cloud platforms. The publi-
cation discussed the possibility of creating a cloud platform to
provide a ‘‘DT-as-a-Service’’ (DTaaS) cloud model. The arti-
cle operated with the DT term in the context of a smart factory
and data-driven twins, where any industrial process or equip-
ment can be presented as a set of computational services,
blocks, or microservices representing different models of pro-
cess stages and their interactions. The authors proposed using
containerization technology to simultaneously provide high
flexibility and high computing performance for such compu-
tational services. The DTs cloud platform’s abstraction levels
were added, such as DT user, DT developer, computing ser-
vice developer, and cloud infrastructure provider. As future
work, authors aimed to design a cloud platform architecture
that supports DTs’ execution and provides resource man-
agement using the ‘‘Container-as-a-Service’’ model, but the
results of such work have not been published yet.

Some of the most important architectural aspects of DTs
in IIoT systems were elaborated in [41]. The authors outlined
decisions that software architects have to make regarding the
internal structure, integration, and runtime environments of
DTs. The research is theoretical, but one of the outcomes
is that Docker containers could be used ‘‘to modularize the
content of DTs and to flexibly extend the content of DTswhen
new kinds of information are available.’’

With the Industry 4.0 paradigm evolution, many research
teams focused on the smart manufacturing area, exploring
different DTs’ approaches. Preuveneers et al. proposed using
circuit breakers between interconnected microservice-based
DTs of the manufacturing workflow to trap local errors
and prevent them from propagating or cascading to other
systems [42]. The publication states that each DT offers a
RESTful interface but omits details regarding microservices’
communication.

Negri et al. focused on DT simulations for production
systems using the FMI standard and ontology [43]. The
results of the research are in the scope of the manufacturing
domain.

Another term for DT block – Digital Dice – was proposed
in [44] when authors used Web of Things [45] models to
create multiple microservices, each to handle a particular
aspect of an actual IoT device. The authors also proposed
an architecture to handle multiple Digital Dices and their
replicas. The applicability of proposed methods and models
to DTs of complex systems or physics-based DTs was not
analyzed.

Architectural and integration problems of DT deployments
in the Industrial IoT ecosystem were analyzed in [25]. The
authors expected that ‘‘it is unrealistic that all Industrial
IoT applications will agree on a common information model
taxonomy and attributes.’’

Macedo et al. [46] used Docker containerization technol-
ogy and microservices approach to migrate a part of the
INTO-CPS Application [47] to cloud services with the possi-
bility to deploy both on a private and public cloud. Scalable
cloud architecture allowed to run multiple instances of the
Co-simulation Orchestration Engine – the core component of
the INTO-CPS project.

Detailed instructions on running various MATLAB,
Simulink, and Simscape multiphysics simulation models on
the Amazon cloud were created by Khaled et al. [48].
The authors did not use containers but aimed to promote
physics-based models running on the cloud to improve real
assets’ diagnostics and prognostics. The presented techniques
require many manual operations and adaptation of the mod-
els’ code and thus cannot be used at scale.

The DT instance and DT block concepts were used in the
proposed Feature-Based Framework for Structuring Indus-
trial DTs [49]. An instance represents the virtual counterpart
of a real object, whereas a block is its subsystem. Such blocks
can be connected via API to form a DT instance. The authors
suggested usingmicroservices as DT blocks. The broker node
or Data Link feature was proposed as a central component of
any DT instance to tackle the complex problem of multiple
interconnections between microservices. The work did not
provide any practical realization of the proposed framework.

The Data Link concept received further development
in [50], where the authors used the theoretical basis of the
Feature-Based Framework for Structuring Industrial DTs to
build a DT of the overhead crane. The data link was created
using HTTP APIs and API gateways to connect separate
systems to form the DT. Connected systems include a PLM
system, a monitoring solution provided by the manufacturer,
a sensor manager, historical data providers, and analytics.
The ways to provide an execution environment to execute
CPU-intensive physics-based simulations and stream large
chunks of sensor data with high frequency from a real
machine (for which an HTTP-based API is not suitable) were
not assessed in the research.

In their recent work, Autiosalo et al. described an Imple-
mentation Framework for DTs, developed as a product of
a university-business collaboration project [51]. The authors
used the DT Core term to describe a modular building block
for DT data processing, a further development from the earlier

54168 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

mentioned Feature-Based Framework for industrial DTs. The
DT core is currently focused on data-driven DTs dedicated to
data analysis.

T.Y.Lin et al. proposed a container virtualization-based
simulation system supporting DT-based simulation on the
cloud, edge, and end-user devices [52]. A high-level descrip-
tion of a methodology called container virtualization-based
simulation as a service (CVSimaaS) is presented. According
to the research, DT models with their solvers and depen-
dent platforms would be packed into the container images.
The infrastructure required for computations and container
images would be listed in registries and managed and oper-
ated as a service. Since the methodology is presented at a gen-
eral level, questions arise about its practical implementation.
The problems of DT longevity, interaction with real objects,
andmanaging a large number of similar DTs are not discussed
in the paper. It is unclear if the research results can be applied
to the case of physics-based DTs for heavy equipment.

Hatledal et al. developed an open-source co-simulation
framework based on the FMI standard, allowing platform
and language-independent simulations using remote proce-
dure calls [53]. The latter imposes a considerable overhead
on distributed co-simulations. Production use at scale with
thousands of real machine simulations was not considered in
the research.

The concept of Reference Framework for DTs within
cyber-physical systems was proposed in [54]. The authors
identified the main building blocks of a DT framework with
their properties and relations. The framework was applied to
build a conceptual DT model of a Machine Tool for Equip-
ment Energy Consumption Management [55] as a use case.
No practical considerations on building and connecting the
blocks of a DT framework were made in the research.

Minerva et al. considered a set of DT use scenarios, capa-
bilities, and functions based on industry trends and recent
academic research findings [7]. The layering principles pro-
posed to address the broad scope of DT platforms and use
cases lead to the formulation of the general framework and
architectural model for DTs. This high-level design leaves
room for research on its implementation in practice.

Conde et al. presented a DT reference architecture to
address a scope of challenges related to DTs, real-time
data consuming and processing, scalability, cloud computing,
security, and data modeling [56]. It is based on the FIWARE
framework of Open Source components [57] and FIWARE
NGSI data modeling. The authors described a Parking data-
driven DT as a use case to demonstrate the ecosystem’s
capabilities to build a DT of any kind. Physics-based DTs are
out of the publication scope.

We classified all the reviewed papers in Table 1 according
to the scope and solutions they describe. The analysis of
related work reveals the lack of published research results
with practical implementations of physics-based DTs on
cloud platforms and containerized solutions aimed at hetero-
geneous execution environments. The review gives credibility
to the research direction of this paper.

TABLE 1. Classification of literature related to DT platforms, frameworks,
and architectures analyzed for this study.

VI. REFERENCE ARCHITECTURE FOR THE DIGITAL TWIN
MANAGEMENT
In this paper, the reference architecture for building, deploy-
ing, executing, and maintaining the DTs of heavy equipment
is proposed, which is based on the following assumptions:
• A digital twin consists of a passive part (data) and an
active part, which is a program (not just a simulation
model) that calculates some values associated with a
process occurring in a real object.

• This program operates as a function that converts a set
of inputs to a set of outputs.

• The set of inputs and the set of outputs is the time series
of vector data.

• DT can consume another DT’s output as its input.
• Since each DT represents some real object, it has several
parameters that correspond to the parameters of the real
object.

• The DTs with identical active parts can represent differ-
ent real objects that are similar but have different values
of the parameters.

• The software that represents the DT is executed during
the lifecycle of the real object, which can last for several
decades.

• DT should run simulations as fast as possible, presum-
ably in real-time, but synchronous operation with a real
counterpart is not always required.

The first assumption can be considered as an alternative
definition of the DT. In contrast to the definitions of the term

VOLUME 10, 2022 54169



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

given in the Industrial Internet of Things Vocabulary and
ISO/DIS 23247-1, which define a DT as ‘‘information’’ or
‘‘data element,’’ it refers to the DT as a set consisting of data
and a program. The contradiction can be resolved by consid-
ering that a DT’s information is more likely presented to the
user electronically than on plain paper. In other words, some
program is always needed first to create this information and
then to present it to the user. It can be a single program, but
more commonly, calculation and visualization functions are
assigned to distinct programs [16]. The focus on the program,
rather than on the results that it produces, is essential for the
task of DT implementation, which is the main topic of this
paper.

The assumption that the DT describes a single process
occurring in a real object instead of being a complete virtual
replica of the object is compensated for by the fact that such
DTs can be interconnected. Simulation of a coupled system
via the simulators’ composition is a well-known approach
developed within the co-simulation theory and techniques.
This approach has been applied in many different engineer-
ing domains. A survey of the current techniques, tools, and
research challenges in co-simulation is presented in [58].

The creation of a single DT capable of representing an
observable object’s complete set of properties is unfeasible.
The reason is that a set of properties that a user is interested
in depends on the use case and can be infinitely extended.
The interconnection of several DTs representing different
processes occurring in the object provides such extendibility.

DT in the proposed reference architecture is a program
with input and output interfaces described in some standard
form. A particular standard for the description is not pre-
scribed, but it must be specified in the DT metadata. Suitable
standards are NGSI-LD and AAS. A DT with a simple exam-
ple of the interfaces’ description is depicted in Fig. 1. This DT
defines input/output interfaces as UDP sockets transmitting
character strings consisting of space-separated real numbers.
The format for parsing the string is defined in the C language
standard ISO/IEC9899:2018. The ability to use different stan-
dards for the DT interface description provides flexibility for
DT creation in the proposed reference architecture.

The technologies used by the DT input/output inter-
faces and the parameters needed for communication through
these technologies are given in the interface description.
An example technology could be the UDP protocol with
the parameters defining the IP address and UDP port used
for communication. The reference architecture does not
prescribe the list of available technologies. The main require-
ment is that the interface description provides the full infor-
mation needed to implement communication through this
technology. At the moment, this information should be
human-understandable. With the development of standards
around the DT concept, machine-readable interface descrip-
tions will allow automatic communication between the DTs.

The pattern ‘‘input interface—program—output interface’’
provides flexibility in building DT communication. It allows
the creation of several interface modules specialized for

communication with different technologies for a single DT.
In the example presented in Fig. 2, the DT’s interface is cre-
ated using the UDP protocol, whereas the additional interface
modules provide interaction of this DT with the outer world
by getting its input data through the MQTT protocol and
saving the results to a database.

A DT implemented as a program that converts an incoming
stream of input data into a stream of output data and operates
through some networking protocol is a key component of
the proposed reference architecture. It allows the creation
of universal DTs capable of running independently of the
technological context. A DT developer can focus on creating
the twin itself. Third parties can take the task of its integration
into a specific application domain, accounting for the tech-
nologies used in that domain. In order to integrate the DT
into the particular scope of network protocols, databases, and
APIs, the appropriate interface modules should be created.

Another advantage of the pattern described above is the
ability to connect several DTs to make a more complex
composite DT.

For example, a machine’s DT can be composed of the DTs
of its subsystems (hydraulic, electric, mechanical). Another
example is a connection of DTs created to simulate different
processes, such as the multi-body model connected to the
structural analysis model.

Information about the DT’s input/output and the intercon-
nections between different DTs is stored in the DT descrip-
tion. This description is created according to the data model
for the DTs presented in the next section, and it is read during
the DT execution process.

To track the interconnections between the interface mod-
ules and DTs and between different DTs, two relationships
are included in the data model: the ‘‘part of’’ relationship
showing that the DT is a part of another DT, and the ‘‘provides
input for’’ relationship showing that the DT’s output provides
input for another DT. Interface modules are similar to DTs
in this context since they are also represented by programs
that convert their input sets to the sets of outputs. This fact
allows storing the information about interface modules and
the information about the DTs in a unified way.

Assigning a dedicated DT to every real object is a key
feature of the DTs for heavy equipment. DTs of more sim-
ple objects (for example, sensors) can utilize the same pro-
gram for many real objects, using the object’s properties
as program parameters to account for distinctions between
the physical objects. Heavy equipment, a complex device
consisting of several components and subsystems, requires
a more complicated approach. A single DT can accompany
different instances of real machines at the beginning of their
lifecycle. The machines that just have left the manufacturing
pipeline include similar components, and their parameters
differ slightly. Along the equipment lifecycle, any component
can be replaced by a compatible but different component.
For example, a hydraulic cylinder or electric motor can be
replaced with a similar device from another manufacturer,
requiring a different DT. Each instance of heavy equipment

54170 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 1. A DT in the proposed reference architecture.

can be repaired several times, leading to its DT’s unique mod-
ifications. As a result, a DT of heavy equipment uses unique
parameters of its real counterpart and, in a general case, uses a
uniquemodel and a program for its implementation.Mapping
between a real machine and the DTs comprising its virtual
counterpart is supported by the proposed data model through
the ‘‘RealMachine’’ object described in the next section. Data
exchange between sensors installed on a real machine and a
DT is set up during the process of running the DT as described
in Section VIII.

A DT of heavy equipment should be available for execu-
tion throughout the lifecycle of the real machine. Nonethe-
less, we distinguish periodic simulations over the life of
a machine from real-time simulations. The latter case is a
common task for real-time control and is well studied within
the automatic control theory. Running real-time applications
in distributed edge computing environments is a separate,
complex problem [59]. Real-time simulation is not obligatory
at the operation and maintenance phase. Similar assumptions
can be found in [7], which state that the connection between
a DT and a physical asset ‘‘is not necessarily real-time,
nor resilient, or permanent.’’ It is unnecessary to monitor
a machine’s activity in real time to operate it efficiently,
ensuring high productivity, low cost, and reduced downtime.
It is more important to know how it behaves over time.
This is especially true for fleet management. For this reason,
the presented reference architecture is not intended for real-
time simulation. Rather, it is intended for periodic execution
of DTs in order to enrich sensor data with the information
obtained through simulation.

The DT execution schedule is determined by the particular
task being solved with the DT’s help and the corresponding
simulation model’s computational complexity. Some simu-
lations, such as structural analysis, need high computational
power to run in real-time. A trade-off must be found between
the model accuracy, the available computing resources, and
the results’ urgency in each case.

VII. THE DATA MODEL FOR THE DIGITAL TWINS
The utilization of DTs requires programs that execute active
parts of DTs, sensor data from real machines, real machines’
parameters, and knowledge about where to get the data and
where to put the results. A system implementing DTs for
heavy equipment must have information about these compo-
nents. The data model that defines this information structure
is created around two primary entities: a real object and
its DTs.

The proposed data model is presented in Fig. 3. The
central entity is ‘‘RealMachine,’’ which describes a real
object. Each real machine comprises several components
(e.g., main boom, lifting cylinder, engine) and subsystems
(e.g., hydraulic subsystem, electric subsystem). The phys-
ical machine has sensors that are similar to components
but can exist independently of the real machine. Physical
machine operation is accompanied by different events rep-
resenting discrete data about the machine’s working envi-
ronment, which can influence the results of DT calculations
(e.g., a failure of a component or a maintenance activity).

Each real machine is associated with one or several DTs.
A DT can be composed of several other DTs or blocks.

VOLUME 10, 2022 54171



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 2. A DT with additional interface modules.

For example, DTs of hydraulic, electric, and mechani-
cal structure subsystems can compose a DT of the whole
machine. The structure of the composite DT is described
by the ‘‘PartOfDigitalTwins,’’ ‘‘IncludedDigitalTwins,’’ and
‘‘ProvidesInputFor’’ attributes. The first two attributes define
the contents of the composite DT. The bi-directional rela-
tionship facilitates the search task. The third attribute defines
interconnections between the elements of the composite DT.

Practical implementation of any DT is an execution of
a computer program that runs simulations provided by
the DT. This program consists of files (executable(s), soft-
ware libraries, configuration files). For a cloud-based DT
solution, the set of files describes a container and its param-
eters. The files are stored in a single archive file read by
the system that executes DTs. The attribute ‘‘Executable’’
describes this file by a string containing the path to the file
or by a file object, depending on the implementation.

Each DT has two sets of parameters: public parameters and
private parameters. Public parameters relate to the properties
of the DT that should be openly accessible. They describe the
main inputs and outputs of the DT needed to understand its
functionality. In other words, they describe what the DT does.
For example, a DT for multibody simulation can use positions
of different parts of mechanical structure and actuator forces
as input and provide forces acting in a set of joints as output.
Every input and output is described by the data format and
the data source. The data format should correspond to some
standard to be correctly interpreted.

A tuple consisting of data source and data format allows
a hierarchical description of various types of interfaces.
For example, consider the input interface of the DT used
in the current work (Fig. 4). The DT receives a vec-
tor of input values as a UDP datagram comprising a
string, in which a whitespace character separates the val-
ues. The ‘‘VectorOfAllInputValues’’ object represents this
input. The type of the data source is described by the

‘‘SpaceSeparatedValuesFromUDPSocket’’ object that has
two parameters: ‘‘IPAddress’’ and ‘‘UDPPort.’’ The string
format is set using the C language’s conversion specifications
defined in the ISO/IEC 9899:2018 standard. The meaning
of specific values in the string is defined by separate inputs
that all have a data source of the ‘‘SingleValueFromSpace-
SeparatedValues’’ type. This data source has two parame-
ters: ‘‘SSVDataSourceName’’ and ‘‘Index.’’ For example,
the lift cylinder’s position is received from the element with
‘‘Index’’ = 2 of the data source ‘‘VectorOfAllInputValues.’’
The meaning of input/output parameters is needed for

people dealing with the DT. The program that implements the
DT only needs the data in a predefined format. The attribute
‘‘IsActive’’ is defined to distinguish the program interface’s
description from the description of data semantics. For the
program inputs, it has the value of ‘‘1’’, whereas its value
is ‘‘0’’ for the semantics descriptions.

An essential part of the public parameters is a model
description. It contains as much information about the
model’s internals as the DT owner wants to share. The model
description is application-specific. For the use case of heavy
equipment, it contains at least a textual description of the
purpose and basic principles underlying the model, a physical
domain for which the model is created, a name and version of
simulation software used for model creation, and the date of
creation. The public parameters are necessary for selecting a
suitable DT for a particular task. They should be used as a DT
description in a DT marketplace. Public visibility assumes
separate storage for the public parameters.

Private parameters are needed for the DT execution and
for the description of the real machine. For example, they
define a set of mechanical properties used by the multi-body
model and the set of coefficients for the friction model used
by the DT. These parameters can reveal how the DT operates
and the actual values of the real machine properties. Since
this information may be business-critical, private parameters

54172 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 3. The data model for the digital twins of heavy equipment.

should be stored separately from public parameters. Another
reason for separate storage is that the real machines’ values
are usually stored in some existing system, such as a PLM
or Fleet Management System (FMS). There should be an
application programming interface (API) between this system
and the system implementing DTs in such a case.

Most of the private parameters of the DT correspond to the
parameters of subsystems or components of a real machine.
Mapping of model parameters used by the DT and parameters
of real objects is maintained through the ‘‘Corresponds to’’
relation. The correspondence is established during the DT
development. A developer should define which parameters
of the real object must be known to run the DT properly.
These parameters should be available in the PLM system
for each real object instance. During the DT operation, the

values of the private parameters must be read from the
PLM system. The way of implementing the link between
the PLM system and the system using the data model is case-
specific and outside the scope of this article. At the time
of writing, a common approach was to use the REST API
for communication between information systems. In such a
case, the ‘‘Corresponds to’’ relation could specify a REST
request that must be used to access the value in the PLM sys-
tem corresponding to the private parameter. The DT can
also have private parameters unrelated to the real machine,
such as parameters of the numerical methods (number of
iterations, tolerance). The data model entities contain the
timestamps of the start and finish of the period during which
the values are valid to track the real machines and the DT’s
changes.

VOLUME 10, 2022 54173



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 4. Input interface description of the DT for stream processing.

The features mentioned above provide data model stability
in the presence of changes, making it suitable for different
types of machines and DTs regardless of the physical domain,
simulation model, communication method, and execution
environment for the DT. The data model links two realms:
real-world machines and DTs. It is designed not to replace
existing data models for real machines (such as those in PLM
systems) but to complement them with the DT description.
The data model assumes that the main part of the information
related to real machines is stored in external systems. Only
that part of the information that is essential for running and
maintaining DTs of the real machines is preserved in the
presented data model. The ‘‘RealMachine’’ object, which
corresponds to the ‘‘PhysicalItem’’ object common in the
PLM domain, is a link between the system using the data
model and an external PLM system. Any changes in the
external system have no effect on the data model, while the
RealMachine object is the same. The part of the data model
related to DTs is general for different types of DTs. Since
changes are intrinsic for heavy equipment DT management,

they are supported by the data model and tracked through the
‘‘StartTime’’ and ‘‘EndTime’’ fields.

Cybersecurity within the domain of DTs is a complex prob-
lem [60]. Although monitoring and maintenance tasks could
use the sensor data in read-only mode, without any feedback
from a DT to a real machine, the sensor data themselves
and the results produced by the DT can reveal business-
sensitive information. For this reason, all the data coming in
and out of a DT should be encrypted. The data model assumes
the presence of input-output encryption parameters, but the
implementation of DT security protection is out of the scope
of this paper. In the experiments performed in the current
work, all the data were transmitted and stored in unencrypted
form, leaving DT security a topic for future research.

VIII. AN EXAMPLE OF THE REFERENCE ARCHITECTURE
IMPLEMENTATION
Consider the task of managing a fleet of heavy equipment
by a construction, equipment rental, or agriculture company.
Such a task is usually implemented using a fleet management

54174 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

system (FMS), which is frequently a cloud-based system
that stores the data about the machines the company owns
or operates. Modern fleet management systems consume the
sensor data from the machines to provide information about
their day-to-day usage. Using the DTs, this information can
be enriched by the data that is too expensive or impossible
to measure but can be calculated. The reference architecture
proposed in this work can help to integrate physics-basedDTs
into the described setup.

Fig. 5 displays the sequence diagram for the process of
obtaining the data calculated by the DT within the proposed
architecture. The process involves a user of the FMS, the FMS
itself, a database, a DT management system (DTMS), an IoT
platform, and an execution environment represented by the
user’s on-premises computing facilities, a cloud system, or an
edge infrastructure.

To get the data calculated by the DT, the user creates a
query for this data in FMS. If the data have been already
calculated earlier, they are presented to the user immediately.
The diagram in Fig. 5 illustrates the case when the data are
missing, and they must be calculated by a DT. FMS should
have full control over the DT execution process since this
system is the only one that is allowed to possess all infor-
mation about the user’s machines. Other systems depicted
in Fig. 5 can be controlled by third-party companies. This
capabilitymakes it possible to runDTs in an ecosystemwhere
each participant specializes in its own business and provides
services to other partners.

After receiving the query for the DT-calculated data, the
FMS starts the process of DT invocation. To execute a DT,
it should first obtain its public parameters, which define how
to run the DT and communicate with it. Public parameters can
be obtained from the database or the DTMS. A DT provider
can maintain the latter system, which creates, supports, and
runs DTs for different machines. The database depicted in the
diagram can be a part of the FMS or an external resource, for
example, a machine manufacturer’s database.

After receiving the public parameters, the FMS requests
the DTMS to reserve resources for the DT execution. The
execution process itself should be separated from the DTMS
because every DT processes its private parameters that can
contain business-sensitive information. If the DTMS executes
the DT, these parameters should either be sent to the DTMS
or queried by the DT from some external database during
the execution. This scheme creates a security risk because
the storage of the private parameters becomes available for
external attacks. In the proposed architecture, the private
parameters can be stored in the internal database and added
to the DT by the FMS.

After resource reservation, the DTMS sends access
credentials required for running the DT in the execution
environment controlled by the DTMS. The FMS uses these
credentials to create and run the container containing the
code that implements an active part of the DT. Private
parameters are encapsulated in the container during con-
tainer creation, making them available only to the program

in the container and reducing the risk of losing confidential
information.

During execution, the DT receives the sensor data, usually
stored in the IoT platform, processes these data, and saves the
results back to the IoT platform. The output of the DT can also
be sent directly to the FMS for real-time visualization.

The sequence described above allows splitting the tasks
required for DT execution between several parties. It creates
opportunities for new business activities related to DTs in
different segments: machine manufacturers, cloud and IoT
platform providers, and software and simulationmodel devel-
opers. A key feature of the proposed implementation is the
capability for active collaboration between the parties while
preserving the security of business-sensitive information.

IX. EXPERIMENTAL SETUP
The experimental part of the paper presents an example of
DT implementation in the proposed reference architecture.
The experiments aimed to test the creation and execution of
containerized programs implementing physics-based DTs in
cloud and edge environments. The containerization overhead,
measured in the experiments, and other possible peculiarities
related to the proposed DT implementation were of particular
interest. Another aim was to compare the performance of two
different DTs for heavy equipment—one created from scratch
using a custom model and programming in C language and
another built in Simulink software.

A hydraulic mobile log crane was used in the experiments
as an example of heavy equipment (Fig. 6(a)). The crane is
installed in the Laboratory of Intelligent Machines of LUT
University (Lappeenranta, Finland). It is instrumented with
a set of sensors for measuring the pressure and position of
hydraulic cylinders. The measurements are converted into
digital form and transmitted over the network by the per-
sonal computer connected to the dSpaceDS1005 system [61],
which performs sensor data acquisition.

Sending the sensor data directly to the DT is an uncommon
scenario since the processes of gathering and processing the
sensor data are often separated. In the latter case, the sensor
data are sent to a database, commonly a part of an IoT
platform. The DT then reads the data from the IoT platform,
processes them, and sends the results to a consumer process
or saves them to the same or another database.

In the experiments, sensor data transmitted from the crane
during 120 s of the crane operation were stored in a CSV file.
This file was used as an input for a DT. Such an approach
emulated the interaction with an IoT platform in a batch
mode. A two-minute crane operation was used to minimize
the volume of data and computation time in order to be able
to test different configurations.

The DTs processed the sensor data to calculate the dynam-
ics of the crane with a multi-body model. Two versions of
the model were used in the experiments: the model based
on Iterative Newton-Euler Formulation (INEF) described
in [62] and the model created in Simscape Multibody soft-
ware from the Simulink product family [63], described

VOLUME 10, 2022 54175



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 5. Sequence diagram for the DT execution in the proposed reference architecture.

in [64]. The goal of using two versions of the model was
to demonstrate two approaches: creating a DT from scratch
using a custom software development cycle and creating a
DT with commercially available simulation software. The
MATLAB/Simulink/ TargetLink toolchain has been reported
to be one of the major software engineering frameworks used
in the automotive domain [65]. A separate DT was created
using each model. The DT obtained with the custom model
using INEF is denoted as ‘‘CustomDT’’ in the following text
(Fig.6(b)). The DT built with the Simulink model is further
denoted as ‘‘SimulinkDT’’ (Fig. 6(c)). The DTs were imple-
mented as programs in the C programming language to read
the sensor data, run a multi-body simulation with the sensor
data as an input, and provide a set of values describing the
crane dynamics as an output. The sensor data were smoothed
using a Savitzky–Golay filter [66] before being processed by
the DTs. The smoothing procedure was performed externally,
and its durationwas not taken into account in the experiments.

The DTs read input vectors from the CSV file containing
smoothed sensor data. Each line of the file represented a
sample of the measurement data, which included a times-
tamp, pressure values in the piston side and the rod side of
each cylinder, the length of each cylinder, and pump pressure.
The data processing results, represented as a set of output
vectors, were saved to another CSV file. Measurements were
performed with a sampling rate of 1,000 samples per second.

The experimental setup is presented in Fig. 7. The CSV file
containing the sensor data was used as an input argument of
a Python script that controlled the execution of the DTs. The
script connected over the Internet to physical and virtual hosts
on which the containerized DTs were executed.

Amazon Elastic Compute Cloud, known as Amazon
EC2 [67], was used as a cloud environment. To mini-
mize network delays, we chose the nearest Amazon data

center cluster in Stockholm, officially known as region
eu-north-1 [68]. The choice of the closest data center was
made for convenience to minimize the time needed for the
experiments. The network delay did not affect experimental
results since the DTs obtained the input data from files.
In real-life applications, the network characteristics can influ-
ence the usability of DTs. If the network is so slow that the
total time of data transfer and processing is larger than the
length of period that these data represent, the DT output may
lag behind the real machine operation. If that is important for
the DT application, additional measures must be taken, such
as data compression or moving the calculations closer to the
data source. This problem was not considered in the current
study and could be a topic for future research.

Amazon EC2 runs customer workloads in virtual
machines – instances. For testing purposes, the t3.micro
instance type was used. At the time of writing, any t3.micro
instance had the following specification [69]:
• vCPU – 2 (featuring either the 1st or 2nd generation Intel
Xeon Platinum 8000 series processor with a sustained
all-core Turbo CPU clock speed of up to 3.1 GHz)

• Memory – 1.0 GB
• Baseline performance/vCPU – 10%
Amazon EC2 uses CPU credits to govern CPU utilization

on some types of instances. These instances accumulate CPU
credits when their CPU load is lower than the so-called
baseline performance level and use credits when the CPU
load is higher than that level. A t3.micro instance is throttled
in case of continuous high CPU usage without accrued CPU
credits. The test instances had enough time to accrue the
credits needed to perform test runs without degrading the
computational performance.

The edge environment was represented by an Orange
Pi PC2 microcomputer equipped with a Quad-core 64-bit

54176 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 6. (a) The mobile log crane, for which DT was used in the experiments; (b) Visualization of the crane built with the CustomDT; (c) The crane
model created in Simulink for building the SimulinkDT.

ARM Cortex-A53 CPU. This system on a chip operates at
480MHz – 1.37 GHz frequency, depending on the load and
temperature. The microcomputer had 1 GB of RAM and
a 16 GB SD card for external data storage. The system
operated under Ubuntu Linux 5.4.65-sunxi64.

OS-level virtualization in both environments was imple-
mented using Docker [70], the most popular container-
ization platform to date. Version 20.10.6 was used for
local and edge test runs, and 20.10.4, as the latest avail-
able within Amazon Linux Extras to date, for cloud runs.
However, all of the experimental steps could be repro-
duced without Docker, using OCI-compliant open-source
tools:
• container engine Podman [71],
• container building tool Buildah [72],
• container runtime runc [73].
All the experiments were conducted on Linux-based oper-

ating systems as execution environments. The target oper-
ating system family for the DTs was Linux with a 64-bit
instruction set. Amazon Linux 2.0.20190618 machine image
was used as a cloud environment.

Using the BuildKit toolkit [74] with the Docker Buildx
plugin [75], the container images were created for x86-64
and ARM platforms by compiling the source code of the
programs implementing the DTs. The capability of Docker to
use the corresponding container image that matches the target
host’s architecture at container runtime is a crucial feature
for running DTs in different execution environments. This
capability is based on the manifest list created at the build
time. The list describes all available manifests for images
built for different platforms within a single multi-architecture
image [76].

Two sets of experiments were performed to compare the
regular execution of programs implementing DTs with con-
tainerized execution. In the first set, an archive file, which
comprised the executable compiled for the corresponding
platform and the input CSV file, was sent by a Python script
to a remote host by SCP protocol. The archive was extracted,
and the executable file was started on the host by a BASH
script executed remotely using SSH protocol. The BASH
script used for running several instances of the executable file
is presented in Fig. 8.

In the second set, a Python script on the local PC used a
remote connection via SSH protocol to build and run several
containers with DTs. An example of the BASH script for
running four containers is listed in Fig. 9.

In both sets of experiments, the Python scripts mentioned
above emulated the tasks of FMS depicted in Figure 5. Private
parameters describing the properties of the real crane were
read by each DT from a text file transmitted by the Python
script to a remote host using the SSH protocol. Container
images comprising executables of active parts of the DTs
were stored in a private repository and were pulled from
it during the build process. This approach ensured separate
storage for the executable and the private parameters, which
can contain business-sensitive information.

The executable file for each DT was extracted from the
container image and used for regular execution in the first
set to avoid differences in executable files compiled for reg-
ular and containerized execution. This step ensured that the
executable files were the same in each comparison.

Wall clock time spent for different actions was mea-
sured using the gettimeofday function of Linux. In each run,
measurements were taken for the wall clock time spent for

VOLUME 10, 2022 54177



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 7. Experimental setup.

FIGURE 8. BASH script used for running several instances of a DT.

building containers, starting DT execution in a regular or
containerized version, and for the execution itself. The results
of the measurements were saved to a text file and sent from a
cloud instance or edge device to the local host for analysis.

Several instances of DTs were executed concurrently in
the experiments to test the performance of cloud and edge
computing resources. For each version of the DT, created
with a custom model and with the Simulink model, execution
of one, N, 2N, and 4N instances of the DTs was performed
on a single host, where N was the number of physical or
virtual CPU cores in the host. Each combination of the DT
version and the number of instances was executed three times,
and the results of the time measurements were averaged.
The intervals between executions of the similar combinations
were not less than 15 minutes to minimize the influence of
temporary CPU usage fluctuations (especially in a multi-
tenant AWS cloud environment) on the measurement results.

To test the capability of different versions of DTs to per-
form calculations in real time, each version of the DT was
executed with different parameters: with output to files and
without any output. The results of the experiments are pre-
sented in the next section.

FIGURE 9. BASH script used for running several containers with a DT.

X. RESULTS OF THE EXPERIMENTS
The duration of regular and containerized execution of a sin-
gle instance of each DT in different execution environments
is presented in Fig. 10.

54178 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

Fig. 10(a) presents the execution time of the CustomDT
program. A duration of 120 s was considered a real-time
deadline since this time period of real crane operation was
simulated by the DT. The presented results show that Cus-
tomDT was able to satisfy real-time requirements in any
execution environment if it did not use file output during
the simulation. With an output to files, execution in the edge
environment was out of real time. The reason was the usage
of an SD card as external storage. With a faster storage
device and less output data volume, the execution duration
can be decreased. Nonetheless, the experimental results show
that the way of saving the data produced by the DT signif-
icantly affects the DT performance, especially in the edge
environment.

Fig. 10(b) presents the execution time of the DT created
with commercially available software (SimscapeMultibody).
This version of the DT could not satisfy real-time require-
ments in all execution environments (note the different scales
of the plots in Fig. 10(a) and (b)). Since the volume of data
saved by this version of the DT was smaller than that of
CustomDT, file output had less impact on the execution time.

SimulinkDT was more than three times slower than Cus-
tomDT in all configurations due to the simpler model created
with the INEF formulation for CustomDT. The presented
results emphasize the importance of choosing themodel com-
plexity, model formulation, and solver for the performance
of a DT.

Execution in a container was slower than regular execution
in all configurations. The statistics of DTs execution were
gathered by the pidstat utility [77] from the sysutils Linux
package to get a deeper insight into their behavior in each
configuration. The pidstat utility was run concurrently with
DT execution within a separate SSH terminal session. It was
gathering statistics of the CPU load by a DT process every
second.

Fig. 11(a) shows the percentage of CPU utilization by a
DT task while executing at the user level (application) and
the percentage of CPU used by the task while executing at the
system level (kernel). The DT was executed in a regular way
without using containerization. Fig. 11(b) presents similar
values for the containerized DT. The presented results show
that the percentage of CPU utilization differs at both levels—
user and system—for the regular and containerized execution.

The value of slowdown for the user and system level can
be estimated using the following assumptions. Let s be the
number of simple abstract operations performed by a task at
the system level. Assuming that all abstract system operations
have equal duration, denoted as 1ts, the total amount of time
spent by the task at the system level can be calculated by the
following equation:

s1ts = KsT (1)

where Ks is the CPU load by the task while executing at the
system level, and T is the duration of the task execution.
From equation (1), the number of simple abstract operations
performed by a task at the system level is expressed by the

TABLE 2. Estimation of a slowdown of the system and user-level
operations in the regular and containerized execution.

following equation:

s =
KsT
1ts

(2)

Since the same executable file was used for the regular and
containerized execution, the number of operations performed
by the task at the system level was the same in both types of
execution. This assumption leads to the following equation:

s =
KsrTr
1tsr

=
KscTc
1tsc

(3)

where 1tsr is the time that takes a single abstract system call
in a regular execution, 1tsc is the time taken by the same
system call in a containerized execution, Ksr and Ksc are the
CPU loads by the task while executing at the system level in
a regular and containerized execution, respectively, Tr and Tc
are the durations of the regular and containerized execution
of the task, respectively.

Using equation (3), the following relationship can be
derived for the system calls slowdown estimation:

1tsr
1tsc

=
KsrTr
KscTc

(4)

A similar relationship can be obtained for the user-level
operations slowdown, applying the same assumptions to the
user-level operations.

Table 2 presents the average values of the percentage of
CPU utilization by different DTs while executing at the user
and system levels in a regular and containerized execution,
and the estimation of a slowdown in each case obtained with
equation (4).

The data in Table 2 show that the slowdown of system calls
in a containerized execution was more significant than the
slowdown of user-level operations. This suggests that the con-
tainerized DTs’ performance can be improved by minimizing
the number of system calls within the DT program.

Modern CPUs have several cores. Although the programs
implementing DTs in the current work were single-threaded,
the capability of usingmulti-core CPUswas tested by running
several instances of the DTs on the same computer host.

VOLUME 10, 2022 54179



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 10. Execution time of DTs created with a multi-body simulation model based on INEF (a) and with Simscape Multibody software (b) in different
execution environments.

FIGURE 11. CPU utilization by the CustomDT digital twin executed in a regular way without using containerization (a) and executed in a container (b).

Such a capability is essential for two reasons. First, data
processing can be accelerated by running several instances
of the same DT concurrently if each instance processes the
sensor data for a separate time period. Second, a single
computer host can simultaneously execute several DTs, each
corresponding to a separate real object. The latter case is vital
for the fleet management systems, which must run DTs for
many machines.

Fig. 12 presents the time needed to execute several
instances of the sameDT in different execution environments.
The left part of the figure depicts the results of CustomDT
execution, and the right part corresponds to the SimulinkDT.

The number of DT instances varied proportionally to the
number of virtual CPUs of the target hosts (Nproc in Fig. 12)
from one to 4Nproc.

The edge device and the virtual machine on the local
PC had 4 CPUs, while the host in the AWS cloud had
two virtual CPUs. In the experiments, CustomDT with-
out file output could satisfy real-time requirements in all
execution environments while being executed in up to
16 instances simultaneously. This result demonstrates the
ability of DTs implementing multi-body simulation mod-
els to run in real time in the cloud and edge execution
environments.

54180 VOLUME 10, 2022



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

FIGURE 12. The time needed to execute several instances of the same DT in different execution environments. (a) CustomDT; (b) SimulinkDT.

The rate of slowdown with an increase in the number of
instances was higher for the containerized DTs than for the
regular ones. One reason for this result was the consecutive
start of containers according to the listing in Fig. 9, in contrast
to the consecutive start of processes in the background for
regular execution (see Fig. 8). Since the start of a container
is a more complicated operation than the start of a process,
by the time each consecutive container starts, the processes
in the previously started containers are already running. This
behavior makes each consecutive start slower and slows down
the overall process of running several containers. This fact
should be considered when the number of containers with the
DTs is larger than the number of CPUs on the host.

Executing several instances of DTs with an approach sim-
ilar to the scripts presented in Fig. 8 and Fig. 9 is useful for
estimating the performance of the hosts available in an execu-
tion environment. This approach allows finding themaximum
number of instances that is sufficient for real-time execution.
An example can be seen in the right plot of Fig. 12 (a), where
the number of DT instances exceeding the number of virtual
processes was acceptable only for the case of execution in the
virtual machine on a local PC.

XI. CONCLUSION
The paper systematically considers the problem of using
physics-based DTs for heavy equipment at the operation and
maintenance phases of a machine lifecycle. Starting from
the description of the challenges associated with such kinds
of DTs, the paper proposes a data model and reference archi-
tecture for building the software systems addressing these
challenges. A proof-of-concept implementation of the DTs
for mobile log cranes in the proposed architecture is pre-
sented. The DTs use multi-body simulation to obtain infor-
mation about the forces acting on the machine.

The reference architecture proposed in this paper assumes
a DT consisting of two parts: a passive part represented by
data describing a real counterpart of the DT and an active
part represented by a software program processing the data
to obtain new information. A pattern for a specific type
of DTs that use physics-based simulations is defined. The
pattern consists of the program implementing the DT and
a description of its input and output interfaces. A typical
implementation for the interface is communication by some
networking protocol. Other interface implementations are
also possible, such as connections to databases and external
information systems through API or input/output to files. The
proposed pattern provides flexibility for building the struc-
tures consisting of interconnected DTs in the co-simulation
framework. It also encourages specialization, allowing DT
developers to focus on the core functionality of the DT and
making interface implementation a task for external system
developers interested in communication with the DT.

An important part of the DT interface description is the
specification of a standard that should be used to interpret
data transmitted through the interface. Standardized data
exchange is necessary for ensuring the longevity of the
DT operation. The reference architecture does not prescribe
particular standards, assuming that they vary with industry
segment and time. Reference to the specific standard is a part
of each DT interface definition.

The focus on data exchange in the proposed reference
architecture allows considering each DT as a grey box
described by its input and output with basic information
about its functionality. This point of view shifts DT devel-
opment from the currently common project-based approach
to data-driven development. Instead of being a component
of a purpose-built project, a DT becomes a consumer and
supplier of data with clearly defined interfaces. It makes the

VOLUME 10, 2022 54181



V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

DT a member of the growing data economy. Other bene-
fits include automatic analysis of DT intercompatibility and
search for DTs suitable for a task, facilitating reuse of DTs,
and increasing return on investment in their development. The
integration of physics-based DTs into the data economy and
their automatic reuse are possible topics for future research.

Heavy equipment is considered an example of real objects
with a set of properties that make DT management more
difficult: mobility of the real counterpart, operation in remote
locations, long lifecycle, periodic modifications of the real
object, and information sensitivity. A data model is described
that preserves information about real objects with the men-
tioned properties, their DTs, and related metadata. It is
designed to be used within the proposed architecture for sup-
porting the DT lifecycle with decades of real object operation.
The data model is not intended to supersede existing and
developing standards for data description in the DT domain.
Instead, it is designed to cover all information required for the
DTs of heavy equipment and to serve as a basis for conversion
between various standard data representations.

OS-level virtualization is considered a solution for the
longevity problem of heavy equipment DTs. The creation
of containers for different computer platforms combined
with hardware virtualization allows running DTs in a hetero-
geneous execution environment, including local computing
resources, cloud, and edge. An example of a reference archi-
tecture implementation is proposed that uses containerization
to separate the tasks and the data between different partici-
pants in the heavy equipment DT ecosystem.

The experimental part of the paper studied the performance
of the containerized physics-based DTs for heavy equipment.
The results demonstrate possible performance degradation
for the programs executed in Docker containers. To minimize
the impact of containerization, DTs should be developed
with a possibly smaller number of system calls since in the
experiments, performance degradation at the system level
was more extensive than that on the user level. Special care
should also be taken for the contents included in the container.
Although not described in this paper, the process of building
a container had a substantial impact on the duration of the DT
execution. In the case of fast calculations without file output
in a virtual machine on a desktop computer, the duration of
building and starting a container was longer than the duration
of calculations performed by the DT. Optimization of the
process of building containers with physics-based DTs in the
proposed reference architecture is a possible topic for future
research.

The presented experiments emphasized the importance of
the formulation used to build the model and the choice of
numerical methods for the ability of the DT to run in real
time. The DT created with a custom multi-body model based
on INEF outperformed the DTwith amodel built in Simulink.

The experiments showed an opportunity to improve DT
performance by running several containers simultaneously
on a multi-core vCPU. When the number of containers was
greater than the number of vCPUs, minimum performance

degradation was observed for the virtual machine on the
desktop PC, followed by the cloud-based virtual machine.
The most significant performance degradation was on the
edge computing device.

Comparison of DT computing time in different execu-
tion environments showed that it is possible to achieve real-
time multi-body simulation of the mobile log crane in any
tested environment. The necessary condition is to use a fast
multi-body formulation for building the model. Performance
of the cloud-based environment was comparable with the exe-
cution on a desktop PC, even for the least powerful resources
available for free at the time of writing. The difference in
performance can be explained by the inequality of the CPU
computing power of the desktop and cloud virtual machines.

As a direction for future research, a study of the influence
of the proposed architecture concepts on the performance of
DTs built in a co-simulation framework is needed, especially
with the use of interface modules. Having potential for high
performance by using appropriate networking protocols, such
DTs are vulnerable to performance issues if the commu-
nication is organized inefficiently. Therefore, requirements
for interface module design and for network characteristics
should be defined and possibly added to the DT description.
If data compression is used, then depending on its type, its
parameters can be added to the DT interface description.

Another important direction is mapping the proposed data
model with the emerging standards for metadata description
in the DT domain, such as AAS, and data exchange frame-
works, such as FIWARE. When different segments use dis-
tinct standards, the task of DT creation and support becomes
complicated. Therefore, the methods and tools for data con-
version between the standards and for the data validation
should be developed and integrated into the DT domain.

REFERENCES
[1] W. S. Levine, The Control Handbook: Control System Fundamentals,

2nd ed. Boca Raton, FL, USA: CRC Press, 2011.
[2] M. Grieves, Virtually Perfect: Driving Innovative and Lean Products

Through Product Lifecycle Management. Cocoa Beach, FL, USA: Space
Coast Press, 2011.

[3] M. Grieves. (2014). Digital Twin: Manufacturing Excellence
Through Virtual Factory Replication. White Paper. [Online].
Available: http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_
Digital_Twin_White_Paper_Dr_Grieves.pdf

[4] K. Y. H. Lim, P. Zheng, and C.-H. Chen, ‘‘A state-of-the-art survey of digi-
tal twin: Techniques, engineering product lifecycle management and busi-
ness innovation perspectives,’’ J. Intell. Manuf., vol. 31, pp. 1313–1337,
Aug. 2020, doi: 10.1007/s10845-019-01512-w.

[5] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks, ‘‘Characterising the
digital twin: A systematic literature review,’’ CIRP J. Manuf. Sci. Technol.,
vol. 29, pp. 36–52, May 2020, doi: 10.1016/j.cirpj.2020.02.002.

[6] A. Rasheed, O. San, and T. Kvamsdal, ‘‘Digital twin: Values, chal-
lenges and enablers from a modeling perspective,’’ IEEE Access, vol. 8,
pp. 21980–22012, 2020, doi: 10.1109/ACCESS.2020.2970143.

[7] R. Minerva, G. M. Lee, and N. Crespi, ‘‘Digital twin in the IoT con-
text: A survey on technical features, scenarios, and architectural mod-
els,’’ Proc. IEEE, vol. 108, no. 10, pp. 1785–1824, Oct. 2020, doi:
10.1109/JPROC.2020.2998530.

[8] Automation Systems and Integration. Digital Twin Framework for
Manufacturing—Part 1: Overview and General Principles, International
Organization for Standardization, Geneva, Switzerland, Standard ISO/DIS
23247-1, 2020.

54182 VOLUME 10, 2022

http://dx.doi.org/10.1007/s10845-019-01512-w
http://dx.doi.org/10.1016/j.cirpj.2020.02.002
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1109/JPROC.2020.2998530


V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

[9] C. Baudoin, E. Bournival, M. Buchheit, and R. Guerrero. (2020). The
Industrial Internet of Things Vocabulary. An Industrial Internet Consor-
tium Framework Publication. Accessed: Apr. 23, 2021. [Online]. Avail-
able: https://www.iiconsortium.org/pdf/Vocabulary-Report-2.3.pdf

[10] A. Rouvinen and H. Handroos, ‘‘Robot positioning of a flexible hydraulic
manipulator utilizing genetic algorithm and neural networks,’’ in Proc.
4th Annu. Conf. Mechatronics Mach. Vis. Pract., 1997, pp. 182–187, doi:
10.1109/MMVIP.1997.625321.

[11] J. Malysheva, M. Li, and H. Handroos, ‘‘Hydraulic system modeling with
recurrent neural network for the faster than real-time simulation,’’ Int. Rev.
Model. Simulations, vol. 13, no. 1, pp. 16–25, 2020, doi: 10.15866/ire-
mos.v13i1.17635.

[12] S. Erikstad, ‘‘Merging physics, big data analytics and simulation for
the next-generation digital twins,’’ in High-Performance Marine Vehicles,
V. Bertram, Ed. Hamburg, Germany: Technische Univ. Hamburg-Harburg,
2017, pp. 140–150.

[13] M. M. Rathore, S. A. Shah, D. Shukla, E. Bentafat, and S. Bakiras, ‘‘The
role of AI, machine learning, and big data in digital twinning: A systematic
literature review, challenges, and opportunities,’’ IEEE Access, vol. 9,
pp. 32030–32052, 2021, doi: 10.1109/ACCESS.2021.3060863.

[14] Eclipse Foundation. Eclipse Ditto—Open Source Framework for Dig-
ital Twins in the IoT. Accessed: Jun. 10, 2021. [Online]. Available:
https://www.eclipse.org/ditto/

[15] Microsoft. Digital Twins—Modeling and Simulations. Accessed:
Jun. 10, 2021. [Online]. Available: https://azure.microsoft.com/
en-us/services/digital-twins/

[16] K. Borodulin, G. Radchenko, A. Shestakov, L. Sokolinsky,
A. Tchernykh, and R. Prodan, ‘‘Towards digital twins cloud platform:
Microservices and computational workflows to rule a smart factory,’’ in
Proc. the10th Int. Conf. Utility Cloud Comput., Dec. 2017, pp. 209–210,
doi: 10.1145/3147213.3149234.

[17] S. Vandermerwe and J. Rada, ‘‘Servitization of business: Adding value by
adding services,’’ Eur. Manage. J., vol. 6, no. 4, pp. 314–324, 1989, doi:
10.1016/0263-2373(88)90033-3.

[18] T. Blochwitz, M. Otter, M. Arnold, and C. Bausch, ‘‘The functional
mockup interface for tool independent exchange of simulation models,’’ in
Proc. 8th Int. Modelica Conf., Dresden, Germany: Linköping University
Electronic Press, Jun. 2011, pp. 105–114, doi: 10.3384/ecp11063105.

[19] OPC Foundation. (Jun. 2020). OPC Unified Architecture—
Interoperability for Industrie 4.0 and the Internet of Things. Version
11. Accessed: Oct. 26, 2021. [Online]. Available: https://opcfoundation.
org/resources/brochures/

[20] J. Köhler, H.-M. Heinkel, P. Mai, J. Krasser, M. Deppe, and M. Nagasawa,
‘‘Modelica-association-project ‘system structure and parameterization’–
early insights,’’ in Proc. 1st Jpn. Modelica Conf., 2016, pp. 35–42, doi:
10.3384/ecp1612435.

[21] Platform Industrie 4.0. Details of the Asset Administration Shell—Part
1. Accessed: Oct. 26, 2021. [Online]. Available: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_
Asset_Administration_Shell_Part1_V3.html

[22] European Telecommunications Standards Institute. Context Informa-
tion Management. Accessed: Oct. 26, 2021. [Online]. Available:
https://www.etsi.org/committee/cim

[23] Github. Digital Twins Definition Language (DTDL). Accessed:
Oct. 26, 2021. [Online]. Available: https://github.com/Azure/
opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md

[24] M. Jacoby and T. Usländer, ‘‘Digital twin and Internet of Things-current
standards landscape,’’ Appl. Sci., vol. 10, no. 18, p. 6519, Jan. 2020, doi:
10.3390/app10186519.

[25] E. Harper, C. Ganz, and S. Malakuti. (2019). Digital Twin Architecture
and Standards. Industrial Internet Consortium. Accessed: Jun. 10, 2021.
[Online]. Available: https://www.researchgate.net/profile/Somayeh-
Malakuti/publication/337673936_Digital_Twin_
Architecture_and_Standards/links/5de4e2f0a6fdcc2837fd3bc1/Digital-
Twin-Architecture-and-Standards.pdf

[26] E. Y. Nakagawa, R. Capilla, E. Woods, and P. Kruchten, ‘‘Sustainability
and longevity of systems and architectures,’’ J. Syst. Softw., vol. 140,
pp. 1–2, Jun. 2018, doi: 10.1016/j.jss.2018.02.044.

[27] R. J. Creasy, ‘‘The origin of the VM/370 time-sharing system,’’ IBM J. Res.
Develop., vol. 25, no. 5, pp. 483–490, Sep. 1981, doi: 10.1147/rd.255.0483.

[28] S. Newman, Building Microservices. Sebastopol, CA, USA: O’Reilly
Media, 2015.

[29] D. Jaramillo, D. V. Nguyen, and R. Smart, ‘‘Leveraging microser-
vices architecture by using Docker technology,’’ in Proc. SoutheastCon,
Mar. 2016, pp. 1–5.

[30] J. Zhang, X. Lu, and D. K. Panda, ‘‘Performance characterization of
hypervisor-and container-based virtualization for HPC on SR-IOV enabled
InfiniBand clusters,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), May 2016, pp. 1777–1784.

[31] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated per-
formance comparison of virtual machines and Linux containers,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[32] R. Morabito, J. Kjällman, and M. Komu, ‘‘Hypervisors vs. lightweight
virtualization: A performance comparison,’’ inProc. IEEE Int. Conf. Cloud
Eng., Mar. 2015, pp. 386–393.

[33] I. Mavridis and H. Karatza, ‘‘Performance and overhead study of contain-
ers running on top of virtual machines,’’ in Proc. IEEE 19th Conf. Bus.
Inform. (CBI), Jul. 2017, pp. 32–38.

[34] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and
Y. Al-Hammadi, ‘‘Performance comparison between container-based
and VM-based services,’’ in Proc. 20th Conf. Innov. Clouds, Internet
Netw. (ICIN), Mar. 2017, pp. 185–190, doi: 10.1109/icin.2017.7899408.

[35] Github.OpenContainer Initiative. Accessed: Apr. 4, 2021. [Online]. Avail-
able: https://github.com/opencontainers

[36] Open Container Initiative. Accessed: Apr. 4, 2021. [Online]. Available:
https://github.com/opencontainers/image-spec

[37] B. I. Ismail, E. Mostajeran Goortani, M. B. Ab Karim, W. Ming Tat,
S. Setapa, J. Y. Luke, and O. Hong Hoe, ‘‘Evaluation of Docker as edge
computing platform,’’ in Proc. IEEE Conf. Open Syst. (ICOS), Aug. 2015,
pp. 130–135, doi: 10.1109/icos.2015.7377291.

[38] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consol-
idate IoT edge computing with lightweight virtualization,’’ IEEE Netw.,
vol. 32, no. 1, pp. 102–111, Jan./Feb. 2018, doi: 10.1109/MNET.2018.
1700175.

[39] S. P. A. Datta, ‘‘Emergence of digital twins–Is this the March of reason?’’
J. Innov. Manage., vol. 5, no. 3, pp. 14–33, Nov. 2017, doi: 10.24840/2183-
0606_005.003_0003.

[40] K.M. Alam andA. El Saddik, ‘‘C2PS: A digital twin architecture reference
model for the cloud-based cyber-physical systems,’’ IEEE Access, vol. 5,
pp. 2050–2062, 2017, doi: 10.1109/ACCESS.2017.2657006.

[41] S. Malakuti and S. Grüner, ‘‘Architectural aspects of digital twins in
IIoT systems,’’ in Proc. 12th Eur. Conf. Softw. Archit., Companion, 2018,
pp. 1–12, doi: 10.1145/3241403.3241417.

[42] D. Preuveneers, W. Joosen, and E. Ilie-Zudor, ‘‘Robust digital twin compo-
sitions for industry 4.0 smart manufacturing systems,’’ in Proc. IEEE 22nd
Int. Enterprise Distrib. Object Comput. Workshop (EDOCW), Oct. 2018,
pp. 69–78, doi: 10.1109/edocw.2018.00021.

[43] E. Negri, L. Fumagalli, C. Cimino, and M. Macchi, ‘‘FMU-supported
simulation for CPS digital twin,’’ Proc. Manuf., vol. 28, pp. 201–206,
Jan. 2019, doi: 10.1016/j.promfg.2018.12.033.

[44] M. Mena, J. Criado, L. Iribarne, and A. Corral, ‘‘Digital dices: Towards
the integration of cyber-physical systems merging the web of things
and microservices,’’ in Proc. 9th Int. Conf. Model Data Eng. (MEDI)
(Lecture Notes in Computer Science). Toulouse, France: Springer, 2019,
pp. 195–205, doi: 10.1007/978-3-030-32065-2_14.

[45] W3C Web of Things. Accessed: Jun. 10, 2021. [Online]. Available:
https://www.w3.org/WoT/

[46] H. D. Macedo, M. B. Rasmussen, C. Thule, and P. G. Larsen, ‘‘Migrating
the INTO-CPS application to the cloud,’’ in Proc. Formal Methods. FM
Int. Workshops (Lecture Notes in Computer Science). Porto, Portugal:
Springer, 2020, pp. 254–271, doi: 10.1007/978-3-030-54997-8_17.

[47] C. Thule, K. Lausdahl, C. Gomes, G. Meisl, and P. G. Larsen,
‘‘Maestro: The INTO-CPS co-simulation framework,’’ Simul. Model.
Pract. Theory, vol. 92, pp. 45–61, Apr. 2019, doi: 10.1016/j.simpat.
2018.12.005.

[48] N. Khaled, B. Pattel, and A. Siddiqui, Digital Twin Development
and Deployment on the Cloud. Academic, 2020, pp. 339–512, doi:
10.1016/b978-0-12-821631-6.00009-8.

[49] J. Autiosalo, J. Vepsalainen, R. Viitala, and K. Tammi, ‘‘A feature-based
framework for structuring industrial digital twins,’’ IEEE Access, vol. 8,
pp. 1193–1208, 2020, doi: 10.1109/ACCESS.2019.2950507.

[50] R. Ala-Laurinaho, J. Autiosalo, A. Nikander, J. Mattila, and K. Tammi,
‘‘Data link for the creation of digital twins,’’ IEEE Access, vol. 8,
pp. 228675–228684, 2020, doi: 10.1109/ACCESS.2020.3045856.

VOLUME 10, 2022 54183

http://dx.doi.org/10.1109/MMVIP.1997.625321
http://dx.doi.org/10.15866/iremos.v13i1.17635
http://dx.doi.org/10.15866/iremos.v13i1.17635
http://dx.doi.org/10.1109/ACCESS.2021.3060863
http://dx.doi.org/10.1145/3147213.3149234
http://dx.doi.org/10.1016/0263-2373(88)90033-3
http://dx.doi.org/10.3384/ecp11063105
http://dx.doi.org/10.3384/ecp1612435
http://dx.doi.org/10.3390/app10186519
http://dx.doi.org/10.1016/j.jss.2018.02.044
http://dx.doi.org/10.1147/rd.255.0483
http://dx.doi.org/10.1109/icin.2017.7899408
http://dx.doi.org/10.1109/icos.2015.7377291
http://dx.doi.org/10.1109/MNET.2018.1700175
http://dx.doi.org/10.1109/MNET.2018.1700175
http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.1109/ACCESS.2017.2657006
http://dx.doi.org/10.1145/3241403.3241417
http://dx.doi.org/10.1109/edocw.2018.00021
http://dx.doi.org/10.1016/j.promfg.2018.12.033
http://dx.doi.org/10.1007/978-3-030-32065-2_14
http://dx.doi.org/10.1007/978-3-030-54997-8_17
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.1016/b978-0-12-821631-6.00009-8
http://dx.doi.org/10.1109/ACCESS.2019.2950507
http://dx.doi.org/10.1109/ACCESS.2020.3045856


V. Zhidchenko et al.: Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins

[51] J. Autiosalo, R. Ala-Laurinaho, J. Mattila, M. Valtonen, V. Peltoranta, and
K. Tammi, ‘‘Towards integrated digital twins for industrial products: Case
study on an overhead crane,’’ Appl. Sci., vol. 11, no. 2, p. 683, Jan. 2021,
doi: 10.3390/app11020683.

[52] T. Y. Lin, G. Shi, C. Yang, Y. Zhang, J. Wang, Z. Jia, L. Guo, Y. Xiao,
Z. Wei, and S. Lan, ‘‘Efficient container virtualization-based digital twin
simulation of smart industrial systems,’’ J. Cleaner Prod., vol. 281,
Jan. 2021, Art. no. 124443, doi: 10.1016/j.jclepro.2020.124443.

[53] L. I. Hatledal, A. Styve, G. Hovland, and H. Zhang, ‘‘A language and
platform independent co-simulation framework based on the functional
mock-up interface,’’ IEEE Access, vol. 7, pp. 109328–109339, 2019, doi:
10.1109/ACCESS.2019.2933275.

[54] K. Josifovska, E. Yigitbas, and G. Engels, ‘‘Reference framework for
digital twins within cyber-physical systems,’’ in Proc. IEEE/ACM 5th
Int. Workshop Softw. Eng. Smart Cyber-Phys. Syst. (SEsCPS), May 2019,
pp. 25–31, doi: 10.1109/SESCPS.2019.00012.

[55] M. Zhang, Y. Zuo, and F. Tao, ‘‘Equipment energy consumption manage-
ment in digital twin shop-floor: A framework and potential applications,’’
in Proc. IEEE 15th Int. Conf. Netw., Sens. Control (ICNSC), Mar. 2018,
pp. 1–5, doi: 10.1109/ICNSC.2018.8361272.

[56] J. Conde, A. Munoz-Arcentales, A. Alonso, S. Lopez-Pernas, and
J. Salvachua, ‘‘Modeling digital twin data and architecture: A building
guide with FIWARE as enabling technology,’’ IEEE Internet Comput.,
early access, Feb. 3, 2021, doi: 10.1109/MIC.2021.3056923.

[57] FIWARE Foundation. Accessed: Oct. 26, 2021. [Online]. Available:
https://www.fiware.org/

[58] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, ‘‘Co-
simulation: A survey,’’ ACMComput. Surv., vol. 51, no. 3, p. 49, 2018, doi:
10.1145/3179993.

[59] M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah, R. Khan, O. Rana,
and R. Buyya, ‘‘EpcAware: A game-based, energy, performance and cost
efficient resource management technique for multi-access edge comput-
ing,’’ IEEE Trans. Services Comput., early access, Jun. 26, 2020, doi:
10.1109/TSC.2020.3005347.

[60] M. Hearn and S. Rix, ‘‘Cybersecurity considerations for digital
twin implementations,’’ IIC J. Innov., pp. 107–113, 2019.
Accessed: Jun. 10, 2021. [Online]. Available: https://scholar.google.
com/scholar_lookup?title=Cybersecurity+Considerations+for+Digital+
Twin+Implementations&author=Hearn,+M.&author=Rix,+S.&
publication_year=2019&journal=IIC+J.+Innov

[61] dSPACE. Accessed: May 13, 2021. [Online]. Available:
https://www.dspace.com/

[62] V. Zhidchenko, H. Handroos, and A. Kovartsev, ‘‘Application of digital
twin and IoT concepts for solving the tasks of hydraulically actuated heavy
equipment lifecycle management,’’ Int. J. Eng. Syst. Model. Simul., vol. 11,
no. 4, pp. 194–206, 2020, doi: 10.1504/ijesms.2020.111277.

[63] MathWorks. Simscape—MATLAB & Simulink. Accessed: Jun. 10, 2021.
[Online]. Available: https://www.mathworks.com/products/simscape.html

[64] I. Malysheva, H. Handroos, V. Zhidchenko, and A. Kovartsev, ‘‘Faster
than real-time simulation of a hydraulically actuated log crane,’’ in Proc.
Global Fluid Power Soc. PhD Symp. (GFPS), Jul. 2018, pp. 1–6, doi:
10.1109/GFPS.2018.8472405.

[65] F. Bock, D. Homm, S. Siegl, and R. German, ‘‘A taxonomy for tools,
processes and languages in automotive software engineering,’’ Com-
put. Sci. Inf. Technol, vol. 6, no. 25, pp. 241–256, Jan. 2016, doi:
10.5121/csit.2016.60121.

[66] A. Savitzky and M. J. E. Golay, ‘‘Smoothing and differentiation of data
by simplified least squares procedures,’’ Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, Jul. 1964, doi: 10.1021/ac60214a047.

[67] Amazon Web Services. Amazon Elastic Compute Cloud. Accessed:
Jun. 10, 2021. [Online]. Available: https://aws.amazon.com/ec2/

[68] Amazon Web Services. Regions and Availability Zones. Accessed:
Jun. 10, 2021. [Online]. Available: https://aws.amazon.com/about-
aws/global-infrastructure/regions_az/

[69] AmazonWeb Services.Amazon EC2 T3 Instances. Accessed: Apr. 9, 2021.
[Online]. Available: https://aws.amazon.com/ec2/instance-types/t3/

[70] Docker. Empowering App Development for Developers. Accessed:
Jun. 10, 2021. [Online]. Available: https://www.docker.com

[71] Podman. Accessed: Jun. 10, 2021. [Online]. Available: https://podman.io/
[72] Buildah. Accessed: Jun. 10, 2021. [Online]. Available: https://buildah.io/
[73] Github. GitHub—Opencontainers/Runc: CLI Tool for Spawning and

Running Containers According to the OCI Specification. Accessed:
Jun. 10, 2021. [Online]. Available: https://github.com/opencontainers/runc

[74] Github. GitHub—Moby/Buildkit: Concurrent, Cache-Efficient, and
Dockerfile-Agnostic Builder Toolkit. Accessed: Jun. 10, 2021. [Online].
Available: https://github.com/moby/buildkit

[75] Github. GitHub—Docker/Buildx: Docker CLI Plugin for Extended Build
Capabilities With Buildkit. Accessed: Jun. 10, 2021. [Online]. Available:
https://github.com/docker/buildx

[76] Docker. Multi-Arch Build and Images, the Simple Way. Accessed:
Jun. 10, 2021. [Online]. Available: https://www.docker.com/blog/multi-
arch-build-and-images-the-simple-way/

[77] Linux Manual Page. Pidstat. Accessed: Jun. 10, 2021. [Online]. Available:
https://man7.org/linux/man-pages/man1/pidstat.1.html

VICTOR ZHIDCHENKO received the D.Sc.
(Tech.) degree from LUT University,
Lappeenranta, Finland, in 2019, and the Candi-
date of Sciences degree from Samara National
Research University, Russia. He is currently work-
ing as a Postdoctoral Researcher at LUT Uni-
versity. His research interests include computer
simulation, cyber-physical systems, digital twins
for heavy equipment, big data, cloud computing,
and the Internet of Things.

EGOR STARTCEV received the Engineering
degree in computing machines, complexes,
systems, and networks from Samara State Tech-
nical University, Russia, in 2003. He is a former
Microsoft Most Valuable Professional (MVP) for
Data Protection Manager, in 2011, and Cloud
and Datacenter Management, from 2012 to 2013.
He has 15 years of experience in managing the IT
department of a large construction holding. He is
currently working as a Junior Researcher at LUT

University. His research interests include cloud computing, digital twins,
virtualization technologies, and the Internet of Things.

HEIKKI HANDROOS (Member, IEEE) received
the M.Sc. (Eng.) and D.Sc. (Tech.) degrees
from the Tampere University of Technology, in
1985 and 1991, respectively. He has been a Pro-
fessor of machine automation at LUT University,
since 1992. He has also been a Visiting Profes-
sor at the University of Minnesota, Minneapolis,
MN, USA; Peter the Great St. Petersburg Poly-
technic University, Saint Petersburg, Russia; and
the National Defense Academy, Japan. He has

published about 250 international scientific papers and supervised
around 20 D.Sc. (Tech.) theses. He has led several important domestic
and international research projects. His research interests include modeling,
design, and control of mechatronic transmissions to robotics and virtual
engineering. He has been an Associate Editor of the Journal of Dynamic
Systems, Measurement, and Control, since 2014.

54184 VOLUME 10, 2022

http://dx.doi.org/10.3390/app11020683
http://dx.doi.org/10.1016/j.jclepro.2020.124443
http://dx.doi.org/10.1109/ACCESS.2019.2933275
http://dx.doi.org/10.1109/SESCPS.2019.00012
http://dx.doi.org/10.1109/ICNSC.2018.8361272
http://dx.doi.org/10.1109/MIC.2021.3056923
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.1109/TSC.2020.3005347
http://dx.doi.org/10.1504/ijesms.2020.111277
http://dx.doi.org/10.1109/GFPS.2018.8472405
http://dx.doi.org/10.5121/csit.2016.60121
http://dx.doi.org/10.1021/ac60214a047

