IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received April 14, 2022, accepted May 13, 2022, date of publication May 20, 2022, date of current version May 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176617

Debugging Debug Information
With Neural Networks

FIORELLA ARTUSO ~, GIUSEPPE ANTONIO DI LUNA, AND LEONARDO QUERZONI

Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, 00185 Rome, Italy

Corresponding author: Fiorella Artuso (artuso@diag.uniromal.it)

This work was supported in part by the Sapienza Projects under Grant RM11916B75A3293D and Grant RG12117A7CE68848, and in part
by the PNRM Project “SAFE.”

ABSTRACT The correctness of debug information included in optimized binaries has been the subject
of recent attention by the research community. Indeed, it represents a practically important problem,
as most of the software running in production is produced by an optimizing compiler. Current solutions
rely on invariants, human-defined rules that embed the desired behavior, whose violation may indicate the
presence of a bug. Although this approach proved to be effective in discovering several bugs, it is unable
to identify bugs that do not trigger invariants. In this paper, we investigate the feasibility of using Deep
Neural Networks (DNNs) to discover incorrect debug information. We trained a set of different models
borrowed from the NLP community in an unsupervised way on a large dataset of debug traces and tested
their performance on two novel datasets that we propose. Our results are positive and show that DNN’s are
capable of discovering bugs in both synthetic and real datasets. More interestingly, we performed a live
analysis of our models by using them as bug detectors in a fuzzing system. We show that they were able
to report 12 unknown bugs in the latest version of the widely used LLVM toolchain, 2 of which have been

confirmed.

INDEX TERMS Bugs, compilers, debug information, neural networks, software engineering.

I. INTRODUCTION
Software running in production is highly optimized to
maximize its performance according to several metrics. For
compiled languages, binaries are the output of a compilation
process where several optimization techniques are applied.
While these optimizations are critical for the performance
of the produced artifacts, they may expose unwanted
behaviors observable only in the optimized case (e.g., race
conditions [1], use-after-free [2], and heisenbugs [3]).
Therefore, debugging the exact version of the binary
running in production is key to triaging specific problems that
are otherwise impossible to reproduce. Hence, it is crucial to
have a complete and reliable debugging process for optimized
binaries [4]. In order to debug, users need a compiler and a
debugger. The compiler, when instructed to do so, produces
a binary that is composed of the binary code and additional
debug information, which for UNIX-like systems is usually
encoded using DWAREF [5]. This information is then used by
the debugger during the debugging phase. It is worth noting

The associate editor coordinating the review of this manuscript and

approving it for publication was Xabier Larrucea

that while debuggers are the main users of debug info, also
tools consume them too, e.g. profilers.

Preserving the correctness of debug information while
optimization passes are applied is an extremely complex
task. To address this challenge, compilers introduced new
optimization levels (e.g., -Og in GCC and clang) specifically
targeted at providing a reasonable tradeoff between the
debugging process and optimizations applied. As a matter of
fact, Og is described as the optimization level for the standard
edit-debug lifecycle in the GCC documentation.

However, it has been recently shown [6], [7] that modern
optimizing toolchains' often provide an unsatisfactory debug
experience even when using optimization levels specifically
designed for debugging. This happens when the compiler
generates wrong debug information or when the debugger
does not handle correctly the debug information produced.
Therefore, it is important to examine debug traces looking
for problems that can be generated by a bug in the toolchain.

Recent works [6], [7] used a differential testing approach
where optimized and unoptimized binaries are compiled from

TAn optimizing toolchain is the union of a compiler capable of optimizing
code and a debugger.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

54136

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-5496-1523
https://orcid.org/0000-0002-6402-922X

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

the same source. The debug traces of the two binaries are
then compared using manually defined invariants. These
invariants look for the inconsistency of some information
to identify suspect cases. This approach can only find bugs
that impact the controlled information as predicted by the
invariants’ designers.

Therefore, it would be of extreme interest to build a tech-
nique for the automatic detection of incorrect debug traces
without the use of manually defined rules. A deterministic
solution to this problem would entail defining a formal model
of the optimization passes of the compiler. This is far from
trivial even limiting the scope to a single optimization pass.

In this paper, we take a data-driven approach, in which
we use a large dataset to learn a statistical model of correct
debug traces. The advantage of this approach lies in its
black-box nature: it does not need knowledge nor makes
any assumption about the internal structure of the compiler
and debugger. We are interested in unsupervised techniques
because a labelled dataset of correct/bugged debug traces is
not available, and it cannot be generated automatically.

Specifically, we use neural networks following an anomaly
detection approach. We train several models in an unsu-
pervised way on a dataset of collected debug traces. Our
hypothesis is that the networks may learn the relationships
contained in correct debug traces. This has been inspired
by works using a similar approach to find bugs in source
code [8], [9].

We test our models on two novel datasets. A synthetic
dataset of bugged debug traces and another one obtained
from real bugs from the LLVM repository. Our experiments
confirm that our models discriminate between bogus and
correct traces. Finally, we test our models in a live analysis to
find new bugs in the widely used LLVM toolchain (composed
by the clang compiler and 11db debugger).

I volatile int a,
2 short c(){
return g_5108;
4}
5 int main () |
6 cQ);
b = 0;
for (;
9 b < 4;
10 b++) a ;
1}

g_5108; int b;

Snippet 1. Clang bug 51511, wrong backtrace information at line 4.

A. MOTIVATING EXAMPLE

Snippet 1 shows a bug of LLVM found with our solution.
The bug is present in the latest LLVM when compiling
with optimization -Og. When stepping over instructions, the
backtrace information of the 1ldb debugger wrongly shows
that line 3 is inside the main function (this is probably the
effect of inlining). This kind of bug could mislead a developer
that sees a return instruction executed right at the beginning
of the main, inferring that the rest of the instructions in that
function will not be executed.

VOLUME 10, 2022

B. CONTRIBUTIONS
We provide the following contributions:

o We are the first to consider the problem of detecting bugs
in debug information using DNNs. We use transformer
architectures, trained with novel unsupervised tasks,
to create (i) a network that is able to identify a wrong
stepping behavior on a debug trace (SLNet) and (ii)
a second one that is able to identify an incorrect
mapping between assembly instructions and source code
(MapNet).

o We release three new datasets’: a large unlabelled
dataset constituted by debug traces, a dataset with debug
traces containing synthetic bugs, and a manually labelled
dataset containing real bugs.

« We conduct an experimental evaluation of the proposed
architecture on the aforementioned dataset.

« We use our best-performing networks in a novel fuzzing
system. We reported 12 bugs found in the LLVM
toolchain: 2 of these bugs have been confirmed and
10 are pending analysis by the LLVM developers.

Il. RELATED WORK

A. COMPILER TOOLCHAINS TESTING

The problem of testing compiler toolchains can be divided
into three main branches: compiler, debugger and debug
information testing. While compiler testing has been widely
investigated, little attention has been paid to identifying bugs
in debugger software and debug information of optimized
binaries.

1) COMPILER TESTING

Compilers are widely used and complex software; this
complexity makes them prone to bugs. Since compilers are
used to build other production software, these bugs could
result in unwanted behaviors, or worse in security-related
problems [10], in different applications. For these reasons,
there is a heap of works focusing on finding compiler
bugs [11]-[15] using compiler testing.

Compiler testing techniques [16] are mainly based on
fuzzing: compilers are fed with random programs either
generated from scratch [17], [18] or obtained by mutating
existing ones [19], [20]. The generation from scratch uses
rules defined for the grammar of the specific language,
mutation-based techniques apply mutations to programs
generated with the first approach. A compiler bug can either
generate a crash or create a program with unwanted behavior;
the first case can be easily detected. The second case is
usually detected using differential testing [10], [21], which is
based on comparing the results or the behavior of programs
obtained from different compilers. Another approach is
metamorphic testing [22], which is based on the idea of
transforming the input while detecting unexpected behavioral
changes.

2https ://github.com/FiorellaArtuso/NeuroDebug-2_Dataset

54137

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

Some novel approaches follow the Big Code trend [23] and
are based on NLP techniques. In particular, [24] and [25] use
LSTM architectures for generating and mutating test cases.
We remark that they only produce test cases and do not use
neural networks to detect bugs.

2) DEBUGGER TESTING
Regarding debugger testing, [26] tests the correctness of
javascript debuggers using a differential approach and
assuming that different debugger implementations should
exhibit the same behavior. Operatively, they execute the
same debugging actions in parallel and they compare the
corresponding results: every diverging behavior identifies a
possible bug. Notice that this approach is not able to catch
debug information bugs, if a debug information is wrong it
will result in the same wrong behavior on different debuggers.
[27] proposes a metamorphic approach for testing the
debugger in the Chromium browser. They transform both
the input program and the debugging actions and they detect
whether this transformation causes unexpected changes.

3) DEBUG INFORMATION TESTING

There are only two works that identify debug information
errors in optimized binaries [6], [7] and none of them used
neural approaches. Both works are based on differential
testing and tackle the problem using likely invariants. In this
approach, a source code program is compiled with and
without optimization obtaining an optimized binary and an
unoptimized one. Both binaries are executed using a debugger
and recording the execution traces resulting in an optimized
trace and an unoptimized one. A likely invariant compares
these traces and triggers when a specific inconsistency is
detected. This inconsistency could be caused by a bug in
the debug process. An example is the Line Invariant of [7];
this invariant takes the unoptimized trace and the optimized
one and triggers when there is a line appearing only in the
latter. This could be dead code wrongly shown as executed.
We stress the invariant is likely, thus false positives could be
possible; this is true for the other invariants present in [7] as
well. To the best of our knowledge, no technique exists to
automatically create invariants for debug information.

B. NEURAL BUG FINDING

Several papers [28] used Deep Learning to find bugs in source
code across several languages. We remark that these works
focus on finding a bug inside the code and they do not detect
wrong debug information.

An example is the so-called variable misuse bug that
mainly occurs when the developer copies pieces of code
from one place to another and forgets to adapt the used
variables to the new location. To solve this problem, [8]
represents a program using a semantic enriched Abstract
Syntax Tree (AST) and uses a Graph Neural Network (GNN)
on top of it to predict which variable should be used at
a specific location. Another work is [29], which uses a

54138

two-pointer attention-based LSTM to jointly predict the bug
location and the repairing variable.

Some other works focus on fixing errors arising at compile
time (e.g. missing brackets). The problem with this type of
errors is that compilers do not always show the correct error
message or the correct bug location, thus misleading the
programmer. [28] solves the problem by using an attention-
based sequence-to-sequence network that takes as input the
sequence of tokens representing the program and produces as
output both the bug location and the correct fixed version of
the bugged line.

Recent works [30], [31] use the concept of pretraining
and finetuning of transformer-based architectures to generate
fixes for different kinds of bugs.

Another work is [9], which proposes a Language Modeling
based fuzzer for the javascript engine trained on regression
javascript tests. In particular, the authors splits the AST of
the regression test cases into subtrees and, by performing
a preorder traversal of the tree, obtain sequences of such
subtrees. The goal of their modified language model is to
make the network predict which subtree comes next. They
generate new test cases by mutating existing regression
test cases by using the obtained language model. With this
approach, the authors find lots of bugs and 3 CVE.

1Il. DEBUG TRACE, PROBLEM DEFINITION AND
OVERVIEW

Given a source code ¢, an optimizing compiler generates
an optimized program opt. From this program, a debugger
produces a debug trace T'(opt) : [so, 1, ..., S,] which is
an ordered list of elements, each representing a step over a
machine instruction. T(opt) is built through instruction by
instruction step execution: we set a breakpoint on the program
entry point and repeatedly step over assembly instructions
until opr exits. At each step s € T(opt), we collect the
source line line(s) that the debugger shows in program ¢ when
executing s. This is the high-level source line of code in ¢ that
the debugger believes to be executed with step s. Moreover,
we also collect the assembly instruction asm(s) that the CPU
executes in s. A ¢ program is constituted by several functions

{f1, ..., fm}; wedivide an execution trace T into several traces
Ty, ..., Ty, where Tﬁ. represents the execution of function f;
in trace T.

A. PRELIMINARY DEFINITIONS
Before moving on to the problem definition, let us provide
some necessary elements.

1) SEQUENCE OF SOURCE LINES

Each function trace Ty defines a sequence of executed source
code lines. Formally, L(Ty) : [I1, [2, ..., It] is the sequence
of source code lines present in trace Ty in the order of their
appearance (a line /; appears when a step s; € Ty has [; =
line(sj)); we remove loops by deleting consecutive sequences
of repeated lines.

VOLUME 10, 2022

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

2) MAPPING ASSEMBLY AND SOURCE CODE

For each line [in ¢, we have associated a sequence of steps,
each of which is a step over one of the assembly instructions
used to execute line /. Thus, from Ty we extract a set A(Ty) of
mapping pairs < [ao, ..., an], l > where [ag, . .., a,] is the
sequence of all assembly instructions that the debugger maps
to line / in trace Ty.

3) OPTIMIZATION LEVELS

Modern compilers provide several optimization levels. In this
paper, we focus on Og that is a level created to provide a
good debug experience, i.e. facilitate the debugging process
by embedding accurate and complete debugging information
in the compiled software, while creating optimized binary
code. Og is supported by the two main C compilers available
today: GCC and clang. We consider Og as it was shown to be
the optimization level more prone to bugs [7].

B. PROBLEM DEFINITION

A pair compiler/debugger can be seen as a toolchain function
F that maps each source code ¢ to a debug trace T = F(c).
The set Traces of all possible traces generated by F for all
valid programs® can be partitioned into the set of correct
traces NoBug and the one of bugged traces Bug. We now

define the Correct Debug Detection (CDD) Problem:

Correct Debug Detection Problem: Given a trace T' €
Traces a C DD gives as output 0 if T is a correct debug
trace (I' € NoBug) and 1 if T' is a bugged debug trace
(T € Bug).

It is worth noticing that a perfect toolchain F' should never
generate a bugged trace. We remark that our final goal is
to find bugs in the toolchain, and so to find instances of
programs that generate wrong debug traces under F. We are
not concerned about the correctness of programs use to
test F.

C. ASSUMPTIONS AND SETTING

We simplify the problem by considering only source code
generated by csmith [17]. Csmith is a code generator used
in many works on compiler correctness [32]—[35]. Csmith
generates a random C program that is valid and free of
undefined behaviors. The absence of undefined behaviors
guarantees a well-defined semantic, and thus avoids the
generation of meaningless debug traces. We will show that
using Csmith generated programs is enough to find novel
bugs in the LLVM toolchain.

D. SOLUTION OVERVIEW

All our approaches are based on training unsupervised
models on a set of debug traces obtained by programs
generated by Csmith. We use two models, one that learns the
relationships between the source lines executed in a trace,

3A program is valid if can be compiled by our toolchain and is free of
undefined behaviors.

VOLUME 10, 2022

and the other that learns the mapping between assembly
instructions and C code.

1) CONSISTENCY ON SOURCE LINES

A trace T is associated with a sequence of executed source
lines L(T). On this sequence we train a variation of a masked
language model using a transformer architecture, we call such
network Source Lines Network (SLNet). Our hypothesis is
that a model trained on this task can identify odd stepping
behaviors in debug traces (as in Snippet 1). As a matter of
fact, [7] has shown that this is a frequent category of bugs,
and it is particularly nefarious since a developer debugging
a software could see an execution trace that is not consistent
with the real execution flow, making it hard to understand
what is really happening.

2) CONSISTENCY OF THE MAPPING ASSEMBLY-LINES

A trace T can be seen as a sequence of pairs, each of
them mapping a sequence of assembly instructions A(/)
to a source line [€ L(T). On these pairs, we train a
transformer architecture on the task of identifying the correct
mapping between assembly instructions and a source line.
We use the term Mapping Network (MapNet) to indicate
this architecture. An example of a bug found by MapNet is
in Snippet 2. When stepping on line 8, lldb shows a shift
assembly instruction associated with this line (shl1l cl,
edx), this shift instruction should be associated with line
6 instead. We remark that no existent approach is able to find
this kind of bugs.

1 int a, b;

2 int xg_3377 = &b;

3 int main() {

4 short c;

5 char 1_3718[71[41;

6 c=3>7>>a?0:3<<a;
1.3718[6][3] = c;

8 (xg_3377) = 1_3718[6][3];

9}

Snippet 2. Clang bug 51507, wrong assembly mapped to line 8.

IV. ARCHITECTURES DETAILS AND UNSUPERVISED
TRAINING TASKS

We solve the CDD problem with two architectures, the
Longformer [36] used for SLNet and BERT [37] used for
MapNet. Both architectures are encoder-only transformers
composed of a stack of N identical layers, where each layer
is composed of a multi-head self-attention mechanism and a
fully connected feed-forward network.

A. SOURCE LINES NETWORK: SLNET

The SLNet is based on the Longformer architecture which has
modified attention that scales linearly with sequence length,
thus making it more suitable for processing long sequences
of source code lines. In particular, this modified attention
consists of a windowed self-attention that reduces time and
space complexity by focusing only on local context.

54139

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

MSML TASK
— e
Longformer

T T & *+ £ £ £ £ £
[e][2][

int MASK 4 MASK ' |MASK NLF if NLF

FIGURE 1. SLNet training on the masked source language
modeling (MSLM) task.

1) TRAINING

SLNet is trained on the Masked Source Language Modeling
Task (MSLM) which is a variation of the traditional Masked
Language Modeling (MLM). The objective of MLM is to
hide a certain percentage of tokens in a sentence and then
teach the network to reconstruct the original tokens based
on the surrounding context. We adapt this traditional NLP
task to debug traces. We do so by hiding a certain percentage
my of tokens inside one single random line /; and teaching
the network to guess them. Training is done by minimizing
the reconstruction error (i.e. cross-entropy loss) of masked
tokens. The training process is shown in Figure 1.

We use this variation of the original task since we are
interested in detecting wrong source line stepping; this
behavior manifests in real bugs as a source line that is out
of context. By training the network to reconstruct a single
source line in a correct trace, we expect that the reconstruction
loss of a misplaced source line will be high; the network
should not correctly predict a line using a wrong context.
For this reason, we use higher values for m; (> 0.6) than the
ones used in the MLM task. Notice that even with values of
masking near or equal to 1.0 is still possible to do meaningful
predictions. Consider the sequence int a=0; int b=0;
int c=a+b; andmyis 1.0, the masked resultis int a=0;
MASK MASK MASK MASK, int c=a+b;. The model
can infer that the line is initializing b, even if it is entirely
masked. Note that during the training we do not use labels that
identify a trace as bugged or not. Our approach is therefore
unsupervised as the analogous task in Bert [37].

2) INFERENCE

We solve CDD using SLNet to compute a score for each
function. For each sample, we iteratively mask m; of the
tokens inside each source line and we compute the average
reconstruction error. Finally, we take the max of these values
to obtain a score for each function. Figure 2 shows an example
of inference with m; equal to 0.6 on a bugged function
trace composed of three lines. In Input 1 three tokens of
the first line are masked, while Input 2 and Input 3 have
one and two tokens masked in the second and third line
respectively. The network is fed with all of these inputs, one
at a time. For each input, we compute the averages of the
losses of masked tokens which are 0.0101, 9.4 and 6.6 and
we take the maximum as the score. The maximum is 9.4 and

54140

averages 0,0101 94v 6,6
*
losses 0,0001 0,0002 0,03 94 5,6 6,1
4+ 4
Longformer

L 4+ 4+ 4 & &+ 4

NLF | return g 3 NLB if . NLF

S S S S S
input3 int | 4 = 1

ez) (] (2)(2) (1) (&)

MASK MASK NLF return g 3 NLB if w. | NLF

=
z
7]
=
@
=
>
7]
=
z
z
@
)
z
o

input

FIGURE 2. SLNet inference.

represents the score assigned to the function in question.
Notice that 9.4 corresponds to the second line, which is
obviously misplaced since a return instruction cannot appear
in the middle of a function trace.

The computed score can be either used to pick the top k
scored function as bug candidates or compared with a certain
threshold value.

B. MAPPING NETWORK: MAPNET

The MapNet is based on the BERT architecture trained
in a cross-lingual fashion [38] by taking as input parallel
sentences in two different languages (assembly and C source
code).

1) TRAINING

MapNet is simultaneously trained on two tasks: Asm/Source
Mapping Prediction (ASMP), and Masked Asm Language
Modeling (MALM). Similar to the traditional Next Sentence
Prediction Task (NSP), the objective of ASMP training
is to have the network predict whether a given sequence
of assembly instructions is correctly mapped to a certain
source line. We create a dataset for this binary classification
task, from the original samples mapping a source line / to
assembly instructions A(/). We partition all samples in half;
a partition is left untouched while the other partition is used
to generate incorrect mapping pairs. The incorrect pairs are
created by randomly shuffling the mapped source lines. The
MALM task consists in hiding a certain percentage of tokens
inside the list of assembly instructions and in teaching the
network to reconstruct them. The training loss is the sum of
the MALM and ASMP cross-entropy losses. The MapNet
training process is shown in Figure 3. As for the MSLM
task, MALM and ASMP do not use labels that identify a
trace as bugged or not. Therefore, we consider our approach
unsupervised as the analogous tasks in Bert [37].

2) INFERENCE

We solve the CDD using MapNet to compute a score for each
function. For all samples, we use the MapNet to compute
the probability that each sample represents a wrong mapping,

VOLUME 10, 2022

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

ASMP Task MALM Task

Confidence MEM

.

Transformer Encoder

SR S SR S S S S S

cLs | | cmpl 0 MEM | je | |mASK| | SEP if (

L
9 || 3 [])

SEP

FIGURE 3. MapNet training on the Asm/source mapping prediction
(ASMP), and masked Asm language modeling (MALM) tasks.

by taking the confidence value returned by the classification
layer attached to the hidden state of the CLS token. This
is also done in Bert to compute the confidence of having a
pair of consecutive sentences. Then, we group all samples
belonging to a function aggregating all ASMP confidence
values by using the max function. This aggregated value is
the score of the function. As for the SLNet, this score can be
used to extract the top k samples for analysis or all the ones
that are above a certain threshold.

V. DATASETS

In this section, we describe the datasets used for the
experimental evaluation. We consider three distinct sets of
programs: one set is used for training and validation, and
the other two are used for testing. From these programs,
we generate debug function traces. For MapNet, the traces
are used to build datasets of samples, each being a mapping
pair. For SLNet each sample is a sequence of source lines in
a function trace.

A. DATASET PREPROCESSING

In this Section, we explain the preprocessing used in our
datasets for SLNet and MapNet.

1) SLNET PREPROCESSING

Given a function trace Ty, we create a sample for the SLNet
by first converting all hexadecimal numbers into base ten
integers, and then by substituting all numbers greater than
a certain threshold (we used 1,000) with a special token
DEC. The lines are then tokenized using codeprep [39]
removing underscore tokens. Finally, from a sequence of lines
[lo, 11, ..., L,] we obtain a single string lo Xo /1 ... Xim—1ln
by concatenating the lines. The token used for concatenation
Xj, is either: NLF, indicating that /;y is at a higher line
number than line /; in the original program; or, NLB,
indicating that ;| is at lower line number than line /;.
Practically speaking, we use NLB when the trace jumps
backward (e.g., a for loop). An example of a preprocessed
SLNet sample is shown in Figure 1. We removed all
duplicates and all sequences of a single source line.

2) MAPNET PREPROCESSING

For the MapNet samples, we preprocess the assembly by
executing a symbolication step (we substituted addresses
with variable names, strings, and function names). We then

VOLUME 10, 2022

substitute all the memory accesses with a special token MEM,
we convert immediate operands into base ten substituting the
ones above 1,000 with token DEC. We obtain a single string
by concatenating all assembly instructions using whitespaces.
We use the same strategy to preprocess numbers in the source
line. We then preprocess source line strings as shown in the
previous paragraph. Finally, the two strings are concatenated
using a special token SEP. An example of a preprocessed
MapNet sample is shown in Figure 3. We removed all
duplicate samples. Moreover, the csmith generated programs
contain many assignments of the csmith_sink variable and
calls to the transparent_crc function: we performed a
downsampling of samples containing these patterns in the
MapNet dataset by taking 2% of them.

B. TRAINING AND VALIDATION DATASETS

We used Csmith to generate 43,921 programs and 1lldb to
obtain 200,443 debug function traces. We split the dataset into
training and validation (90%-10% split). After preprocessing,
the SLNet datasets result in 81,337 traces for training and
7,195 for validation, while the MapNet datasets end with
349,153 and 25,286 mapping pairs. We analyzed the length of
the samples in our datasets. For the SLNet datasets, we have
that 70% of the samples contain less than 1,024 tokens, while
for the MapNet we have that 99.9% of all samples contain
less than 512 tokens.

C. SYNTHETIC DATASETS
These datasets were used to evaluate the performance of
the model in identifying bugs. Programs inside the synthetic
datasets were created as the training ones. Additionally,
starting from these programs, we created both synthetic
bugged traces, in which we add different types of errors,
and bug-free traces, in which traces remain untouched.
By observing real cases, we identified three main categories
of bugs that were inserted inside the original function traces.
Given a function trace Ty : [so, 51, . . . , S4], synthetic bugs are
defined as follows:
« swap source: we randomly select two steps {sx,s; |
line(sy) # line(s;))} and we assign line(sy) to step sy
and line(s;) to step s.
« swap assembly: we randomly select two steps {sk, s; |
asm(sy) # asm(sy))} and we assign asm(sy) to step s;
and asm(s;) to step s.
« remove step: we randomly select a step s; and we
remove it from 7.
We generated 3,983 programs and then we uniformly inserted
one of these bugs inside one function trace for 27% of the
programs. The insertion of a bug in a trace creates a single
bugged sample for the SLNet dataset, while it impacts one or
more samples in the MapNet dataset. Therefore, in MapNet
we mark as bugged all samples deriving from a bugged trace.
After duplicate removal, for the SLNet dataset, we have
6,009 non-bugged samples and 630 bugged samples (Swap
Source: 338; Swap Assembly: 149; Remove Step: 143). For
the MapNet dataset, we have 90,739 non-bugged samples

54141

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

and 10,653 bugged samples (Swap Source: 5,352; Swap
Assembly: 3,093; Remove Step: 2,208).

D. REAL BUGS DATASETS
These datasets were created by using real bugs from the
LLVM repository. We analyzed 42 bug reports and identified
bugs that could exhibit a wrong step behavior or a wrong
mapping assembly/source. For each bug, we created a
program that generates the reported bugged behavior and
obtained a trace using the LLVM toolchain version containing
that bug. In the program, we normalized variables and
function names using the same naming convention used by
csmith. At the end of this process, we obtained 16 different
programs. When possible, for each program we created a
trace that does not contain the bug by using a patched
toolchain. Note that this generates a challenging dataset since
the only difference between bugged/non-bugged traces is the
presence of the bug itself; both traces are derived from the
same program.

We obtained a dataset for SLNet with 29 traces, 18 bugged
and 11 bug-free. For MapNet we obtained 136 samples,
76 bugged and 60 bug-free.

VI. EXPERIMENTAL EVALUATION
This Section reports the results of our experimental evaluation
on the synthetic and real datasets.

A. TRAINING, MODELS PARAMETERS, AND METRICS
Since our amount of training data is limited, we use
smaller architectures than the ones usually adopted in NLP.
We use [40] as a guide for the selection of parameters
for smaller transformer models. We test medium models
composed of 8 layers, 8 attention heads, embedding size
512 and intermediate size 2048, and small models composed
of 4 layers, 8 attention heads, the same embedding and
intermediate size of the medium ones. For SLNet we
use a sequence length of 1024 tokens, thus truncating
30% of the sequences. We choose this value since it
implements a reasonable trade-off between the number of
truncated sequences and the computational capabilities of our
hardware. The masking rate for the SLNet m; is a value in
{0.6, 0.8, 1.0}. For MapNet the sequence length is 512 tokens
(99.9% of the mapping sequences are above that threshold)
and the masking m, € {0.0, 0.2, 0.4}.

We train SLNet for 60 epochs and MapNet for 30 epochs,
taking the models with the lowest validation loss. The training
uses Adam optimizer with a learning rate of 107 on 8 A100
GPUs using a batch size of 16 for each device.

1) METRICS

We evaluate the performances of our model in identifying
bugs by computing the Area Under the Curve (AUC). This
is done by assigning to each function trace one SLNet
score and one MapNet score as defined in the inference
Sections IV-A2, IV-B2. On the synthetic datasets, we com-
pute a single AUC for each class of bug; we do this by

54142

SLNet Medium Model with training m; 0.6: Swap Source

1.0

0.8 4

0.6 1

0.4+

021 " —— AUC with inference m; 0.6= 0.70
e —— AUC with inference m; 0.8= 0.74
—— AUC with inference m; 1.0= 0.68

0.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 4. Results on the synthetic dataset of the SLNet trained with
my; =0.6.

selecting a certain category (e.g., Swap Source) and ignoring
all the bugged samples belonging to other categories. In this
way, we compute the specific performance on a certain
category of bug. On the real dataset, we use a single AUC
score as bugs do not belong to a specific category.

B. RESULTS ON THE SYNTHETIC DATASETS
In this Section, we will show the results we obtained with
both SLNet and MapNet on the synthetic datasets.

1) SLNET

Figure 4 shows the results of SLNet on the Swap Source
bug category, which is the only bug category recognized by
SLNet. In this case, the SLNet model reaches an AUC of
0.74 when using the medium model with m; = 0.6 during
training and m; = 0.8 during inference. This is the model
with the best performance; all the small models, as well as the
medium models with training m; € {0.8, 1.0}, have worse or
comparable performances.

The ROC curve for the Remove Step bug category of
SLNet is in Figure 5. The performance of the network is
similar to a random classifier. For the Swap Assembly bug
category, the ROC is in Figure 6; also in this case the
network behaves as a random classifier. We believe that
SLNet provides random performance on these bugs since the
removal of a step rarely impacts the source line trace; the
swap of assembly instructions, that leaves intact the source
line information, is invisible at the source level.

2) MAPNET

The results for MapNet are reported in Figures 7, 8, and 9.
MapNet exhibits the best performance when trained with
medium model, m, = 0.2, and evaluated with m, =
0.0. The Swap Source bug category (Figure 7) is the one
with the highest results (AUC 0.89); this is expected as
this category of bugs is analogous to the defects inserted
in the training task. MapNet is able to discover also the

VOLUME 10, 2022

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

SLNet Medium Model with training m; 0.6: Remove Step

1.0

0.8 4

0.6 4

0.4+

r’ —— AUC with inference m; 0.6= 0.53
—— AUC with inference m; 0.8= 0.46
—— AUC with inference m; 1.0= 0.45

0.24

0.0 1

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. Results on the synthetic dataset of the SLNet trained with
my = 0.6: Remove Step bug category.

SLNet Medium Model with training m; 0.6: Swap Assembly

1.0

0.8+

0.6 1

0.4

0.21

—— AUC with inference m; 0.6= 0.53
—— AUC with inference m; 0.8= 0.45

004 —— AUC with inference m; 1.0= 0.45

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6. Results on the synthetic dataset of the SLNet trained with
my = 0.6: Swap Assembly bug category.

MapNet Medium Model with training m, 0.2: Swap Source

1.0

0.8 1

0.6

0.4

0.24 e

-~ —— AUC with inference m, 0.0= 0.89

el —— AUC with inference m, 0.2= 0.89

001 ,»/ —— AUC with inference m, 0.4= 0.88
UTO 012 0?4 OTG OTS 1?0

FIGURE 7. Results on the synthetic dataset of the MapNet trained with
mgq = 0.2: Swap source bug category.

Swap Assembly pattern (Figure 9), where a single assembly
instruction is misplaced, with acceptable performance (AUC
0.75). Therefore, we expect that it will be able to identify real
bugs where the sequence of assembly instructions mapped by

VOLUME 10, 2022

MapNet Medium Model with training m, 0.2: Remove Step

1.0

0.8

0.6 1

0.4+

021 .»~ —— AUC with inference m, 0.0= 0.62
S —— AUC with inference m, 0.2= 0.62

004 —— AUC with inference m; 0.4= 0.62

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 8. Results on the synthetic dataset of the MapNet trained with
mg = 0.2: Remove Step bug category.

MapNet Medium Model with training m, 0.2: Swap Assembly

1.04

0.8 1

0.6

0.4

021 ,*© —— AUC with inference m, 0.0= 0.75
—— AUC with inference m, 0.2= 0.75

001 < —— AUC with inference m, 0.4= 0.75
0?0 0?2 0?4 0?6 0?8 1?0

FIGURE 9. Results on the synthetic dataset of the MapNet trained with
mg = 0.2: Swap assembly bug category.

the debug info is partially correct (we will show that this is
confirmed in the following sections). The worst performance
is shown in the Remove Step category (Figure 8) with an
AUC of 0.62. This is expected as it is far easier to recognize
a completely out-of-context assembly instruction, than a
missing assembly instruction. MapNet reaches a higher AUC
than SLNet on the Swap Source, however, it does so by using
a completely different mechanism looking at the mismatch
between assembly and source line.

C. RESULTS ON THE REAL BUGS DATASETS

Given the limited size of the real dataset and the randomness
of the masking procedure, we decided to increase the
robustness of the results by running the inference procedure
multiple times and by reporting the mean AUC value. In order
to compute the results on the real dataset, we used the best
models according to the synthetic dataset, which are the
medium models with training m; = 0.6 and m, = 0.2 for
the SLNet and MapNet respectively.

54143

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

SLNet Medium Model with training m; 0.6: Real Dataset

1.0

0.8 4

0.6 1

0.4+

0.24

ool V7 —— AUC with inference m; 1.0= 0.81

0.0 02 04 06 08 10
FIGURE 10. Results on real dataset of the SLNet trained with m; = 0.6.

MAPNet Medium Model with training m, 0.2: Real Dataset

1.04

0.8 1

0.6

0.4 4

00d b7 —— AUC with inference m, 0.0= 0.80

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 11. Results on real dataset of the MapNet trained with mg = 0.2.

1) SLNET

During inference, we used m; € {0.6,0.8,1.0} and,
differently from the synthetic case, we obtained the best
performances when m; = 1.0, as shown in Figure 10. This
is probably due to longer lines and higher variability for
csmith source code that makes more difficult for the network
to predict them without some suggestions (provided by a
certain percentage of non-masked tokens). On the contrary,
the real dataset contains small test cases with small lines
having a lower degree of randomness, thus the network does
not need suggestions to predict them. On the real dataset,
SLNet reaches an AUC of 0.81.

2) MAPNET

We used m; € {0.0,0.2,0.4} and we obtained the best
performances when m, = 0.0, as in the synthetic dataset
case (Figure 11), the AUC reached is 0.8. This confirms that
MapNet is able to identify real bugs.

D. THRESHOLD ANALYSIS

In Section VI-B, VI-C, we evaluated the performances of
our networks by using the AUC metric. The aim of this
Paragraph is to show the value of metrics at fixed thresholds.

54144

TABLE 1. Precision and recall of SLNet and MapNet with fixed
thresholds. The values of m; and mq are used during inference.

SLNet m; = 0.8 MapNet m, = 0.0
Threshold 33 0.5
Bug Category Swap Source Swap Source | Swap Assembly
Precision 0.20 0.71 0.55
Recall 0.46 0.57 0.38
F1 0.28 0.64 0.45

TABLE 2. Precision and recall of random SLNet and MapNet with fixed

thresholds.
Random classifier Random classifier
for source lines for mapping assembly-line
Bug Category Swap Source Swap Source Swap Assembly
Precision 0.053 £ 0.003 0.028 £0.002 | 0.024 £ 0.002
Recall 0.50 £ 0.03 0.50 £ 0.027 0.50 £ 0.031
F1 0.096 + 0.005 0.062 + 0.003 0.047 £ 0.003

In particular, we compute the precision, recall, and F1 of the
most prominent categories of bugs by using our best models,
as defined in Section VI-C. We selected the thresholds
to maximize the precision metrics: we want to minimize
the number of false-positive bugs triggered and the waste
of human time analyzing them. The chosen thresholds are
3.3 and 0.5 for SLNet and MapNet respectively. Results
(see Table 1) confirm that MapNet can identify bugs with
acceptable performances. In fact, MapNet reaches a precision
of 0.71 and a recall of 0.57 with the Swap Source bug
category, while SLNet reaches a precision of 0.20 and a
recall of 0.46 on the same bug category. To have a reference,
we also compute these metrics for a random classifier that
uniformly flags a trace as bugged or not (see Table 2). Since
these datasets are highly imbalanced, in some cases the recall
is higher than the one obtained by our networks; on the
contrary, precisions are very low compared to the ones shown
in Table 1, thus confirming the effectiveness of our system.

E. MAPNET AND SLNET CORRELATION

We employ the data described in Section VII-A, to analyze
the possibility of linear correlation between the highest losses
obtained by SLNet and the ones of MapNet using Spearman’s
o [41], the results show that there is none to very-weak
negative correlation (spearman —0.04 with a p-value < 0.01).
This is confirmed by the Kendall Tau coefficient [42] (value
of —0.02 with a p-value < 0.01). Our interpretation is that the
two networks are able to identify different kinds of bugs, and
this is why we keep them apart in the proposed framework.

VII. FINDING NOVEL BUGS: NEURO-DEBUG?2

We integrated our best models, SLNet medium with training
m; = 0.6 and MapNet medium with training m, = 0.2, in the
Debug2 framework [7].

VOLUME 10, 2022

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

Opt T(Opt)
Code ‘el Clompiler Debugger £
Generation |source code ; B
o) Unopt
Tested Toolchain

Neural Trace Ranking

Mapping AT '}_ Mapping &
Extractor Network "
Triaging
and Reporting
P L(T) .
Line Line
- — 1 —
Extractor Network : y

FIGURE 12. Neuro-Debug?: System overview.

The modified framework is depicted in Figure 12 and

contains the following modules:

o Program Generation: generates the programs that will
fuzz the toolchain under test. This module uses csmith
as generator. The output is a test program c.

o Tested Toolchain: this module contains the toolchain
F to be tested. It takes as input a test program
c and generates an optimized debug trace using F.
Practically speaking, the input program is compiled with
optimization level —Og and fed into the debugger to get
a set of function debug traces.

o Neural Trace Scoring: this module analyses each func-
tion trace Ty using the SLNet and MapNet. It outputs a
tuple < Ty, ry, r,y > where r; and r,, are the scores given
by SLNet and MapNet. The Mapping Extractor and Line
Extractor transform the execution trace in a sequence of
source lines L(Ty) and a set of mapping pairs A(Ty), each
object is fed into the respective network.

o Triaging and Reporting: this module collects the traces
and orders them by their rank. The likely bugs are
manually investigated; if confirmed as bugs, they are
reduced to smaller examples (this is done automatically
using creduce [43]). After the reduction, the confirmed
likely bugs are reported to the toolchain developers.

A. TESTS AND NOVEL BUGS

We tested the LLVM version 13.0.0 of 6 April 2021. We used
Neuro-Debug? to generate 3,983 programs, which, after
preprocessing, resulted in 11,431 function traces.

1) ANALYSIS OF THE TOP SCORES
We used the data described above to compute a score
for each function by using both the SLNet and the
MapNet, as described in the corresponding inference
Sections IV-A2, IV-B2. Our research hypothesis is that a high
score for functions correlates with the presence of bugs in
debug information. To validate this hypothesis we ordered all
the functions by their scores (both for MapNet and SLNet)
and we selected the top-scored functions.

Specifically, we analyzed the 40 top-scored functions for
SLNet with inference m; € {0.6,0.8,1.0} and MapNet

VOLUME 10, 2022

with inference m, € {0.0,0.2,0.4}.* This leads to a total
of 240 traces, 120 for each model, and 40 for each fixed
combination of model/parameter. For each batch of 40 traces,
we performed a manual analysis to determine how many
of these traces are actually bugged or not: if a previously
unknown bug was encountered during this analysis we
reported it to compiler’ developers.

The outcome is reported in Table 3. For SLNet, the bug
percentage reaches its maximum 50% with m; = 1.0 and it
decreases monotonically with the masking. This means that
half of the 40 top-scored functions indeed contain a bug.
To rule out that this prevalence of bugs was due to chances,
we took 40 random functions from our dataset and analyzed it
manually noting the number of bugs encountered. From our
analysis only 7% of the functions in the randomly sampled
set contain a bug. This means that the prevalence of bugs in
the 40 top-scored functions for SLNet is 8 times more than
random.

When considering MapNet we have that 77% of the traces
contain one or more bugs when m, = 0.4; different masking
levels give a slight decrease in performance. As for SLNet,
to rule out that this effect was due to chance, we took
40 random samples from the MapNet data and analyzed them
for the presence of bugs. We found that 27% of the samples
contained a bug in the mapping. Note that this number is
different from the 7%, reported for the analogous case in
SLNet, because in this case we manually verify if each
mapping is correct, while in the previous scenario we only
verify that the sequence of shown source lines is correct.
We highlight that also for MapNet we found almost 3 times
more bugs than the ones present in a random sample. This
means that highly-scored samples are likely to be bugs,
thus human experts could save time in analyzing debug
information correctness by using suggestions provided by our
system.

2) REPORTED BUGS
From the bugs found in the previous Section, we sampled a
subset that we reported to LLVM developers. Specifically,

4We discarded the samples that had a length above the thresholds used for
truncation.

54145

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

TABLE 3. Analysis of the top 40 scores for SLNet, MapNet and randomly
sampled functions. The values of m; and mq are used during inference.

Network Bug Percentage
SLNet m; = 1.0 50%

SLNet m; = 0.8 37.5%

SLNet m; = 0.6 27.5%

Random traces from SLNet samples 7%

MapNet m, = 0.4 77%

MapNet mg = 0.2 75%

MapNet mq, = 0.0 72.5%

Random traces from MapNet samples | 27%

we took 6 bugs found by SLNet and 6 by MapNet
and we verified that they were still present in the last
LLVM version 14.0.0 as of August 15th, 2021. Out of the
12 reported bugs, 2 have been confirmed by the developers;
the remaining 10 bug reports are pending analysis. In this
Section, we discuss one bug found by MapNet and one by
SLNet.

A bug found by SLNet is in Snippet 3. In this case, 11db
shows that the execution steps on line 6 (int i, 3j;);
however, this is a variable declaration that should not be
shown during the execution. This bug is likely due to an error
in the line table (the structure that maps assembly instructions
to source lines) produced by clang. We speculate that SLNet
flags the stepping on a declaration as unlikely since it has not
been observed as a normal behavior during training.

int a, c, e, f;
static int xb = &a;
3 short d = 6;

void func_15() {

=

5 for (; ¢ >= 0; c—) |
6 int i, Jj;
*b = f;
8 }
9)
10 int main () {
11 func_15();
12 for (; d <= 0;) {
13 int g[4];
14 gle]l = &b;

15 }
16 }

Snippet 3. Clang bug 51512, wrong assembly mapped to line 6.

MapNet discovered the bug in Snippet 4; in this case
the call of func_1 at line 6 is wrongly associated to
an assembly instruction that set variable a to 0 (movw
$0 x 0, 0 x 200b89 (rip)); this assembly instruction
should instead be,mapped to the body of func_1. As in the
case of Snippet 1, this bug is probably the result of the inlining
optimization.

VIIl. COMPARISON WITH DEBUG2 AND LIMITATIONS
In this Section, we compare our approach with Debug?, and
then we discuss the limitation of our approach.

54146

1 short a;
2 int b;
3 void func_1() { a = 0; }
+ int main() {
b = 0;
6 func_1();

}

Snippet 4. Clang bug 51751, wrong assembly mapped to line 6.

TABLE 4. Results of the comparison between Neuro-Debug? and Debug?.

The values of m; and mq are used during inference.

Network Neuro-Debug? Bugs | Debug? Bugs
SLNetm; = 1.0 | 20 1
MapNet mqg = 0.4 | 31 2

A. COMPARISON WITH DEBUG?
We evaluate the effectiveness of our proposed solution with
the respect to the invariants-based approach of Debug? [7].

In particular, we take the 31 programs containing bugs
detected by the MapNet with training m, = 0.2 and inference
m, = 0.4 and the 20 programs containing bugs detected by
the SLNet with training m; = 0.6 and inference m; = 0.1
(see Table 3). We measure how many times these bugged
functions are identified by an invariant violation of Debug?.
We find out that, among the 31 bugs detected by MapNet,
only 2 are discovered by Debug?, while 11 out of 20 bugs
discovered by SLNet were identified by Debug? as well (see
Table 4). In our test, Debug? is more capable of finding bugs
identified by the SLNet rather than MapNet ones. This is
expected, SLNet has been designed to detect source lines that
are out-of-context, some of these cases are covered by the
Linelnvariant of Debug?.

We want to stress that our system is not alternative to an
invariant-based approach; a user may analyze bugs found
with our solution and identify a general pernicious behavior
that could lead to the definition of a new invariant.

B. LIMITATIONS

1) MANUAL ANALYSIS

Confirming the presence of a bug in an anomalous trace must
be done by a human expert. Table 3 quantifies how much
effective the job of the expert is when working on anomalous
traces identified by our system vs. random traces. The manual
effort to decide if an anomalous trace is a bug or not requires
around 10-20 minutes of time by a human expert. We remark
that this manual analysis step is also needed by the other
works that find bugs in debug information [7].

2) VARIABLE VALUES

In addition to the manual analysis requirement, another
limitation of our system is represented by the absence
of an explicit analysis of variable values. [7] uses two
invariants which are based on variables: Scope Invariant and
Parameters Invariant. The former checks whether there exists
a step where a variable is visible only in the optimized

VOLUME 10, 2022

F. Artuso et al.: Debugging Debug Information With Neural Networks

IEEE Access

trace, while the latter checks whether the optimized trace
contains function parameters values that are not present in the
optimized one. Currently, our system is not able to identify
mistakes in the values of variables. As future work, we plan
to extend our system to directly integrate them.

3) CORRECTNESS OF TRAINING DATA

As in many previous works on neural bug finding [8], [29],
we assume that our training data is correct. However, we have
no guarantees on such correctness. We argue that this is not
a problem. Even if some bugs are so frequent in training that
they are not detected as anomalous anymore, this does not
jeopardize our approach. As long as there are rare bugs (that
could appear in the training data but sparingly) they will be
detected as anomalous. The fact that some bugs are rare is
reasonable; the contrary would imply that debug information
is almost meaningless. Moreover, frequent bugs are likely to
be found by humans.

IX. CONCLUSION

In this paper, we introduced two DNN-based architectures
trained for the detection of bugs in debug information
attached to optimized binary code. Our results show that the
proposed models, namely SLNet and MapNet, are capable
of discovering bugs both in synthetic and real datasets. As a
result of this study, 12 new bugs in the LLVM toolchain were
discovered.

REFERENCES

[1] C. Jia and W. K. Chan, “Which compiler optimization options should I
use for detecting data races in multithreaded programs?”’ in Proc. 8th Int.
Workshop Autom. Softw. Test (AST), May 2013, pp. 53-56.

[2] V. D’Silva, M. Payer, and D. Song, “The correctness-security gap
in compiler optimization,” in Proc. IEEE Secur. Privacy Workshops,
May 2015, pp. 73-87.

[3] J. Yin, G. Tan, H. Li, X. Bai, Y.-P. Wang, and S.-M. Hu, “Debugopt:
Debugging fully optimized natively compiled programs using multistage
instrumentation,” Sci. Comput. Program., vol. 169, pp. 18-32, Jan. 2019.

[4] J. Hennessy, ‘“Symbolic debugging of optimized code,” ACM Trans.
Program. Lang. Syst., vol. 4, no. 3, pp. 323-344, Jul. 1982.

[5] DWARF Standards Committee. (2020). The Dwarf Debugging Standard.
Accessed: Aug. 2021. [Online]. Available: http://dwarfstd.org/

[6] Y.Li, S. Ding, Q. Zhang, and D. Italiano, “Debug information validation
for optimized code,” in Proc. 41st ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), Jun. 2020, pp. 1052-1065.

[71 G. A. Di Luna, D. Italiano, L. Massarelli, S. Osterlund, C. Giuffrida,
and L. Querzoni, “Who’s debugging the debuggers? Exposing debug
information bugs in optimized binaries,” in Proc. 26th ACM Int.
Conf. Architectural Support Program. Lang. Operating Syst., Apr. 2021,
pp. 1034-1045.

[8] M. Allamanis, M. Brockschmidt, and M. Khademi, ‘“‘Learning to represent
programs with graphs,” in Proc. 6th Int. Conf. Learn. Represent. (ICLR),
2018, pp. 1-17.

[9] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network
language model-guided JavaScript engine fuzzer,” in Proc. 29th USENIX
Secur. Symp., 2020, pp. 2613-2630.

[10] J. Xu, K. Lu, and B. Mao, “Cross-architecture testing for compiler-
introduced security bugs,” in Proc. 5th Workshop Princ. Secure Compi-
lation (PriSC), 2021.

[11] H. Lim and S. Debray, “Automated bug localization in JIT compilers,”
in Proc. 17th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution
Environments, Apr. 2021, pp. 153-164.

VOLUME 10, 2022

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner, “SLEMI:
Equivalence modulo input (EMI) based mutation of CPS models for
finding compiler bugs in Simulink,” in Proc. ACM/IEEE 42nd Int. Conf.
Softw. Eng., Jun. 2020, pp. 335-346.

Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and J. Regehr,
“Taming compiler fuzzers,” in Proc. 34th ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), 2013, pp. 197-208.

Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen,
“A comprehensive study of deep learning compiler bugs,” in Proc. 29th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
Aug. 2021, pp. 968-980.

J. Chen, “Learning to accelerate compiler testing,” in Proc. 40th Int. Conf.
Softw. Eng., Companion, May 2018, pp. 472-475.

J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1,
pp. 1-36, Jan. 2021.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proc. 32nd ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), 2011, pp. 283-294.

D. Babokin, J. Regehr, and V. Livinskiy. (2020). YARPGen: Yet Another
Random Program Generator. Accessed: Jul. 27, 2020. [Online]. Available:
https://github.com/intel/yarpgen

V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program., Syst., Lang., Appl. (OOPSLA), Oct. 2015,
pp. 386-399.

V.Le, M. Afshari, and Z. Su, “Compiler validation via equivalence modulo
inputs,” in Proc. 35th ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), Jun. 2014, pp. 216-226.

G. Barany, “Finding missed compiler optimizations by differential
testing,” in Proc. 27th Int. Conf. Compiler Construct., Feb. 2018,
pp. 82-92.

T. Y. Chen, S. C. Cheung, and S. M. Yiu, ‘“Metamorphic testing:
A new approach for generating next test cases,” 2020, arXiv:2002.
12543.

M. Allamanis, T. Barr, P. Devanbu, and C. Sutton, “A survey of machine
learning for big code and naturalness,” ACM Comput. Surv., vol. 51, no. 81,
pp. 1-37, 2018.

C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proc. 27th ACM SIGSOFT Int. Symp.
Softw. Test. Anal., Jul. 2018, pp. 95-105.

X. Liu, X. Li, R. Prajapati, and D. Wu, “DeepFuzz: Automatic generation
of syntax valid C programs for fuzz testing,” in Proc. 33th AAAI Conf.
Artif. Intell., 2019, pp. 1-8.

D. Lehmann and M. Pradel, “Feedback-directed differential testing of
interactive debuggers,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., Oct. 2018, pp. 610-620.

S. Tolksdorf, D. Lehmann, and M. Pradel, ‘“Interactive metamorphic
testing of debuggers,” in Proc. 28th ACM SIGSOFT Int. Symp. Softw. Test.
Anal., Jul. 2019, pp. 273-283.

R. Gupta, S. Pal, A. Kanad, and S. Shevade, ‘“DeepFix: Fixing common C
language errors by deep learning,” in Proc. 31th AAAI Conf. Artif. Intell.,
2017, pp. 1345-1351.

M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh, “Neural
program repair by jointly learning to localize and repair,” 2019,
arXiv:1904.01720.

D. Drain, C. Wu, A. Svyatkovskiy, and N. Sundaresan, ‘“Generating bug-
fixes using pretrained transformers,” in Proc. 5th ACM SIGPLAN Int.
Symp. Mach. Program., Jun. 2021, pp. 1-8.

B. Berabi, J. He, V. Raychev, and M. Vechev, “TFix: Learning to fix coding
errors with a text-to-text transformer,” in Proc. 38th Int. Conf. Mach.
Learn., vol. 139, 2021, pp. 780-791.

C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proc. ACM SIGPLAN Int. Conf. Object-Oriented Program., Syst., Lang.,
Appl. (OOPSLA), Oct. 2016, pp. 849-863.

A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,” in
Proc. Int. Symp. Softw. Test. Anal. (ISSTA), 2012, pp. 78-88.

M. A. Alipour, A. Groce, R. Gopinath, and A. Christi, “Generating focused
random tests using directed swarm testing,” in Proc. 25th Int. Symp. Softw.
Test. Anal. (ISSTA), Jul. 2016, pp. 70-81.

C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, ‘“Many-core
compiler fuzzing,” in Proc. 36th ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), Jun. 2015, pp. 65-76.

54147

IEEE Access

F. Artuso et al.: Debugging Debug Information With Neural Networks

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document
transformer,” 2020, arXiv:2004.05150.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

G. Lample and A. Conneau, ““Cross-lingual language model pretraining,”
in Proc. 33th Conf. Neural Inf. Process. Syst., 2019, pp. 1-10.

R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code != big vocabulary: Open-vocabulary models for source code,”
in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng. (ICSE), Jun. 2020,
pp. 1073-1085.

I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, ‘“Well-read students
learn better: On the importance of pre-training compact models,” 2019,
arXiv:1908.08962.

G. U. Yule, An Introduction to the Theory of Statistics. London, U.K.:
Charles Griffin and Company, 1911.

M. G. Kendall, ““A new measure of rank correlation,” Biometrika, vol. 30,
no. 1, pp. 81-93, Jun. 1938.

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for ¢ compiler bugs,” in Proc. 33rd ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI). New York, NY, USA: ACM,
Jun. 2012, pp. 335-346.

FIORELLA ARTUSO received the master’s degree
in engineering in computer science, in 2019.
She is currently pursuing the Ph.D. degree in
engineering in computer science with the Sapienza
University of Rome. During 2020, she worked as
a Researcher with the Consorzio Interuniversitario
Nazionale per I’Informatica (CINI). Her research
interests include the application of deep learning
and natural language processing techniques to
source or binary code to solve problems in the
software engineering and cyber security fields.

54148

GIUSEPPE ANTONIO DI LUNA received the
Ph.D. degree from the Sapienza University of
Rome, in 2015, with a thesis on counting in
anonymous dynamic networks. After his Ph.D.
degree, he did a postdoctoral research at the
University of Ottawa, working on fault-tolerant
distributed algorithms, distributed robotics, and
algorithm design for programmable particles.
In 2018, he started a postdoctoral research at Aix-
Marseille University, where he worked on dynamic
graphs. Currently, he is working with the Sapienza University of Rome,
performing research on applying natural language processing techniques to
the binary analysis domain.

LEONARDO QUERZONI received the Ph.D.
degree, in 2007, with a thesis on efficient data
routing algorithms for publish/subscribe middle-
ware systems. He is an Associate Professor with
the Sapienza University of Rome. He has authored
more than 80 papers published in international
scientific journals and conferences. In 2016,
he has coauthored the [talian National Framework
for Cyber Security as a member of the Cyber
Intelligence and Information Security Research
Center, Sapienza University of Rome. His research interests include a range
from cyber security to distributed systems and focus, in particular, on topics
that include binary analysis, distributed stream processing, dependability,
and security in distributed systems. In 2017, he received the Test of Time
Award from the ACM International Conference on Distributed Event-Based
Systems for the paper TERA: Topic-Based Event Routing for Peer-to-Peer
Architectures (2007). In 2014, he was the General Chair of the International
Conference on Principles of Distributed Systems and was the Program
Co-Chair of the ACM International Conference on Distributed Event-Based
Systems, in 2019.

VOLUME 10, 2022

