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ABSTRACT 5G communication systems are one of the major enabling technologies to meet the needs of
Industry 4.0. This paper focuses on the use case of automated guided vehicles (AGVs) in an outdoor industrial
scenario. To meet the communication requirements in these type of use cases, dual connectivity (DC) with
resource aggregation in the uplink (UL) is generally proposed. However, uncontrolled use of DC schemes
may negatively affect the network causing effects such as reduced network capacity, increased signaling, and
increased interference. To overcome these issues, this paper proposes and evaluates the use of a proactive
DC activation algorithm based on the instantaneous quality of service (QoS) and network conditions. The
proposed algorithm has two phases, a first phase in which the QoS prediction is performed, and a second
phase in which the DC activation decision is made. The performance evaluation of the algorithm has been
carried out in two different scenarios: a single-frequency (SF) network and a dual-frequency (DF) network;
and compared to two baselines. Our results show that our predictive DC algorithm is sufficiently robust and
can offer benefits in terms of reduced signaling and increased UL performance, especially in scenarios with
low to medium traffic load.

INDEX TERMS Automated guided vehicles, dual connectivity, industry 4.0, proactive network manage-
ment, quality of service, uplink.

I. INTRODUCTION
The industrial sector is currently facing its fourth revolution,
known as Industry 4.0 [1]. This new era of industry is marked
by the rise of technologies such as artificial intelligence (AI),
Big Data, cyber-physical systems (CPS), and the Internet
of Things (IoT). Industry 4.0 is characterized by the inter-
connection of machines and systems, sensorization, monitor-
ing and control of processes, and the decentralization and
automation of decision-making. The fifth generation (5G)
of mobile networks is emerging as an enabling technology
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to meet the communication needs of new industrial appli-
cations [2]. In this context, the Third Generation Partner-
ship Project (3GPP) has established the requirements for
cyber-physical control applications for 5G communications
in Industry 4.0 [3].

In industrial environments, automated guided vehi-
cles (AGVs) are used to transport goods and materials around
the manufacturing facilities. The use of AGVs improves
the efficiency of logistics and material handling tasks [4].
In order to perform their functions such as collaborative
tasks and human-to-machine collaboration, it is essential that
the communication between these robots and their central
guidance control system takes place in real time, with strict
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requirements in terms of high data rates. One of the key
functionalities of 5G systems for meeting these requirements
is multi-connectivity (MC). In its broadest sense, MC refers
to the use of multiple wireless links between the user equip-
ment (UE) and the network. These links could be established
with different base stations (BSs), with different component
carriers (CCs) of the same BS, or combinations of both.
The information transmitted over these links may be dif-
ferent, thereby increasing throughput [5], or replicas of the
same data, thereby improving reliability due to the inherent
diversity [6].

To meet the communication requirements of AGVs in
industrial environments, we focus on the combination of two
carriers in a single aggregated channel from an AGV to two
different 5G nodes. This is an uplink (UL) dual connectiv-
ity (DC) scheme a.k.a. inter-site carrier aggregation (CA) or
multi-flow CA [7]. The benefits provided by DC may be
outweighed by its negative effects such as reduced network
capacity, due to the use of resources of multiple nodes to
serve the sameUE, inefficient use of radio resources (transmit
power and frequency resources), increased energy usage at
the UE side, or increased UL interference. To mitigate these
adverse effects, the use of DC should be limited to those
cases in which it is absolutely necessary to meet the quality
of service (QoS) requirements and the network conditions are
optimal for its use (see Section I-A).

The current trend in 5G network management revolves
around the use of proactive methods, capable of taking pre-
ventive actions to avoid network failures or performance
degradation [8]. This is what is known as anticipatory net-
working. In order to anticipate the effects that different
actions or events may have on the network performance, the
use of predictive techniques is essential. These techniques
focus on the analytics of current and past events to determine
future events or behaviors [9].

In this paper, a proactive DC activation algorithm based on
an industrial use case in an outdoor environment is proposed.
The two-stage algorithm - QoS-prediction and DC activa-
tion - is able to proactively decide when and how to activate
DC in UL.

A. RELATED WORK
MC is a key technology for improving communication
aspects such as throughput, reliability and latency. In the
literature, the feasibility ofMC schemes in different scenarios
has been proven. In [10], [11], the benefits of using inter-site
CA in heterogeneous networks are investigated. A perfor-
mance evaluation of UL and downlink (DL) CA in LTE-A Pro
systems is presented in [12]. Authors in [5] demonstrate the
advantages of combining LTE with 5G NR, and using them
simultaneously to enhance the user experience through DC.
In addition to the benefits of MC, the limitations and the tech-
nical challenges to be faced by using these techniques have
also been presented in the literature. In [13] the challenges of
using UL and DL CA in 5G are presented. The limitations of
different MC schemes in industrial environments have been

demonstrated in [14] by conducting measurement campaigns
in factories.

Beyond these feasibility and evaluation studies, the man-
agement of MC to optimize its use while minimizing its
possible adverse effects on the network has been addressed
by authors in recent years. MC management has been
approached from different points of view. Works such
as [15]–[18] focus on secondary cell selection which is
mainly based on channel quality and cell load. Different
scheduling approaches to guarantee quality of service (QoS)
have been proposed in [7], [19], [20]. The joint optimiza-
tion of secondary cell selection with resource allocation is
addressed by authors in [21], [22]. Compared to these other
studies, our work focuses on deciding when and how to
activate DC, i.e., deciding when it is necessary to establish
a secondary link and which should be the secondary cell.
Authors in [23] present an algorithm to decide when to acti-
vate UL inter-site CA based on cell load and an estimation
of the potential interference to other cells. A later study [24]
demonstrate that the drawbacks of DC are minimized when
the reference signal received power (RSRP) from the primary
and the secondary cells are similar, in this sense, users need to
be within a specific DC range for DC activation. However, the
solutions proposed in these works may be resource inefficient
in some circumstances as DC could be activated for users
who have their needs covered using single-connectivity (SC).
To overcome this limitation, in [25], an heuristic method of
MC activation based on the UE latency budget is presented.
Here MC is activated only for those UEs that are in the
DC range and present a latency budget lower than a certain
threshold.While being an improvement, this mechanism does
not consider the UEs’ experienced QoS. Hence there could
still be situations in which MC is activated for users who do
not need it.

In mobile network management, predictive techniques are
used to anticipate the future behavior of different network
metrics, such as user location, radio link quality, traffic or
QoS [26]. Depending on the prediction objective, a distinc-
tion can be made between long-term prediction [27], which
aims to characterize the general trend of a signal metric,
or short-term prediction [28], which focuses on predicting
incremental fluctuations of the signal or metric. In this work,
to anticipate when to activate DC for a given AGV, short-
term QoS prediction is used. This requires a network per-
formance sampling rate on the order of minutes, seconds,
or less. The short-term prediction problem can be considered
a regression problem [9]. In the field of anticipatory network-
ing, different techniques have been proposed to address this
problem. These range from simple techniques based on linear
models such as auto-regressive integrated moving average
(ARIMA) [29], [30], to more sophisticated ones based on
the use of machine learning (ML) algorithms such as fuzzy
logic [31] or artificial neural networks (ANN) [32], [33].
In the specific field of MC management in mobile networks,
prediction has been used to provide seamless connectivity to
users. Examples are given in [34], [35], where the position
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of users is predicted to determine when a handover is needed
and hence when to activate MC.

B. APPROACH AND CONTRIBUTIONS
This paper is focused on the study of a practical site-specific
industrial scenario where AGVs are used for factory automa-
tion [36]. In this scenario, expanding the system bandwidth
would allow increasing the number of AGVs and their mov-
ing speed. In the studied scenario, there are currently 8 AGVs
moving at a speed of 1 m/s and equipped with fourth gener-
ation (4G) technology. In addition, these AGVs are moving
in a limited space within the factory facility. While currently
based on public radio network connectivity, we consider
the case of a private industrial network configuration with
optimized deployment parameters and DC option as natu-
ral upgrade, foreseeing an increased use of AGVs towards
Industry 4.0. Our proposed algorithm automatically and
pro-actively decides when and how to dynamically activate
DC while the AGVs move along pre-determined movement
paths within the industrial facility.

The key contributions of this paper can be summarized as
follows.

• DC in UL for industrial AGVs: unlike most published
works, this paper addresses DC management in UL,
specifically the combination of two carriers in a single
aggregated channel from an AGV to two network nodes;
the main motivation behind this is that AGV network
traffic is mostly due to UL video transmissions (see
Section II-A).

• Proactive DC activation algorithm: DC activation based
on QoS-prediction will limit the number of users with
active DC to only those that meet certain requirements;
this will avoid the excessive activation of DC seen
with non-QoS-based approaches and, hence avoid the
negative network-wide impact on network capacity and
resource usage.

• A categorical QoS-prediction method for real network
implementation: a relatively simple prediction approach
based on clustering and logical regression that facilitates
the integration in real network management tools is
proposed.

The suitability of using predictive techniques for DC
activation versus baseline mechanisms has been analyzed in
different scenarios. The results show that the benefits of the
proposed algorithm in terms of UL performance improve-
ment and signaling reduction are especially relevant in sce-
narios with low to medium traffic load.

C. ORGANIZATION
The remainder of this paper is organized as follows. Section II
presents the characteristics of the scenario and the speci-
fications of the QoS and the DC models used. The pro-
posed proactive DC activation algorithm is described in
Section III. This algorithm consists of two stages: the categor-
ical QoS-prediction and the DC activation. The details of the

evaluation approach are presented in Section IV. It includes
both the configuration of the simulations performed and the
performance evaluation metrics used. The results of the per-
formance evaluation of the proposed system are shown in
Section V. Finally, the conclusions for this work are formu-
lated in Section VI.

II. SYSTEM MODEL
A. SCENARIO
The selected network and AGV deployment scenario is
depicted in Fig. 1. This corresponds to a private industrial
network configuration, with optimized deployment parame-
ters (cell locations, transmit power levels, antenna patterns,
power control, etc.) where there is no impact to/from other
public radio networks deployed in the same geographical
area. In order to apply the DC scheme inter-site CA in our
scenario, we assume that the cells depicted in Fig. 1 are imple-
mented as remote radio heads (RRHs) and are connected to a
next generation NodeB (gNB) through high bandwidth, low
latency fibers. All the cells are coordinated by the same gNB.

FIGURE 1. Radio cell deployment scenario. Cells 3,8,9 are either small
cells or macro cells, while Cells 1,2,4,5,6,7 are small cells. AGVs movement
paths are represented with black lines.

We simulated a radio network operating in the 3.5 GHz
frequency band, with 100 MHz bandwidth, in time division
duplex (TDD) mode, with an UL:DL split of 7:1 aligned
across all cells. The large-scale radio propagation conditions
are simulated with a ray-tracing tool [37] in terms of total
coupling gain values along the movement paths of the AGVs
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in-between the buildings. We have investigated two main
network deployment scenarios:

SF: Single-frequency network where all nine radio cells
are deployed as small cells and use the full 100 MHz
bandwidth. In this network deployment scenario, DC is
performed following an intra-band CA scheme.

DF: Dual-frequency network where three of the radio cells
are deployed as macro cells (higher transmit power)
and use 60 MHz spectrum, while the other six small
cells use the remaining 40 MHz. In this network
deployment scenario, DC is performed following an
inter-band CA scheme.

These two cases cover the most common deployment options
encountered in real-life network configurations for private,
small area, mobile networks.

For their correct operation, AGVs communicate with a cen-
tral guidance control system to which they send video streams
in real time, and receive from it navigation control com-
mands. Therefore, in this use case, most of the network traffic
is in the UL direction. For this reason, our investigations focus
on the UL traffic and service optimization when using DC.
Nevertheless, for the UL connectivity to work, adequate DL
connectivity has to be provided as well. Thus, the locations of
the radio cells, antenna types and transmit power levels, and
UL open loop power control parameters have been carefully
determined, such that all AGVs experience goodDL coverage
with less than 1% outage (i.e., no UL/DL throughput) in the
SF network and less than 2% outage in the DF network. The
main radio parameters of the scenarios, as well as the main
characteristics of the traffic models used in UL and DL are
summarized in Table 1.

The physical movement of the AGVs is simulated with
the SUMO tool [38], with a variable velocity between
0 and 8.33 m/s, and using the SUMO application jtrrouter to
compute the routes based on traffic volumes and junction
turning ratios. Along the movement paths, the locations of
the AGVs and the corresponding coupling gain values (path
loss and antenna gain), are sampled every 100ms. The 100ms
period is also the simulation time step in our evaluations.

B. QoS MODEL
The QoS in our studies is defined as the effective average
UL transmission goodput, as estimated at medium access
control (MAC) layer. The goodput metric is used instead
of the throughput metric in order to account for the packet
losses and re-transmissions at all lower layers, i.e.Goodput =
Throughput · (1 − BLER), being BLER the block error rate.
In our study, we use a constant BLER of 10%. The lower
layer radio transmission mechanisms and signaling (link
adaptation and hybrid automatic repeat request (HARQ))
are not modeled explicitly during the simulation time step.
The simulated coupling gain values are used to estimate
an average UL signal-to-noise-plus-interference (SINR) for
each AGV in each simulation time step, which is mapped
to throughput values [39]. These achieved throughput values

TABLE 1. Simulation parameters.

are then converted to goodput. The UL SINR values are
determined using the UE (AGV) transmit power, set based
on the 3GPP specified open-loop power control formula for
the physical UL shared channel (PUSCH) and the allocated
UL frequency domain resources [40]. For simplicity, we use
an equal UL frequency resource split between all AGVs
connected to a given cell and we limit the maximum number
of frequency resource blocks that can be allocated to one
AGV (see Table 1).

When DC is activated, the achieved effective UL goodput
is calculated as the sum of the goodput achieved on the
two links, based on the corresponding UL SINR values. The
UL interference due to the activation of the secondary link
(wireless link between the SCell and the AGV) is explicitly
considered in the calculation of the UL SINR values for all
AGVs. In the case of the SF network, the interference from
the secondary link affects all small cells, while in the case of
the DF network, the secondary link does not impact the three
macro cells.

To ensure that the video packets are delivered to the central
guidance control system on time, we use a minimum latency
requirement of 10 ms, leaving the 40% of the time between
video packets transmissions (see Table 1) for video decoding,
rendering, and refreshing [41]. The 10 ms latency require-
ment results in an effective goodput of 17Mbps. This goodput
value is used as the QoS requirement, and QoS outage is
defined as the percentage of simulation time steps that do not
meet this requirement, i.e. average goodput < 17 Mbps.
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C. DUAL CONNECTIVITY MODEL
In DC, an AGV is connected simultaneously to two cells:
the primary cell (PCell), and the secondary cell (SCell).
As shown in Fig. 2, the serving cell or PCell receives periodic
RSRP reports from the connected AGVs that are forwarded to
the gNB. This information together with other performance
indicators computed by the gNB such as SINR or modulation
order, is used as input to the proactive DC activation algo-
rithm. This algorithm consists of two stages. In the first stage,
theQoS category prediction is performed. In the second stage,
it is determined whether any action needs to be taken with
respect DC (activation or deactivation). This decision is based
on both the QoS category predicted in the previous stage and a
givenDCRange value. The sameDCRange parameter value is
configured for all AGVs (see Table 1). Once the DC decision
is made, the PCell is in charge of forwarding the necessary
signaling to the AGV to activate or deactivate DC. When
DC is activated, the AGV sends video packets to the PCell
and the SCell. Then, these two cells forward the packets to
the gNB. The UL DC transmission can be activated at any
simulation step (100 ms), for any AGV for which the UL
goodput performance metrics are estimated not to meet the
set QoS criteria, as long as the DCrange condition is met.

FIGURE 2. High-level diagram of the evaluated DC activation algorithm.

The AGVs can have different PCell (serving cell) and/or
SCell selected in different time steps. There is no explicit
mobility mechanism simulated, and in each time step, the
AGVs are able to re-select the serving cell based on the
strongest RSRP criteria. All AGVs are assumed to be always
in radio resource control (RRC) Connected Mode. These
assumptions are simple and fit the main purpose of our
investigations. Considering mobility mechanisms and load
balancing would improve both system and user performance,
but it is not relevant for our studies as it would not impact the
DC activation decisions.

III. PROACTIVE DUAL CONNECTIVITY
ACTIVATION ALGORITHM
Our main target is to develop a mechanism that is able to
anticipate for any AGV, in any time step t the need to activate
the DC transmission in the next time step t + 1 based on the
current radio conditions and experienced QoS performance.

The time horizon for our prediction can be reduced to
one simulation time step (100 ms), which is long enough
to assume stable average radio conditions and scheduling
effects.

In our proposed proactive DC activation algorithm, called
PDC, the DC activation decision is based on the estimated
future fulfillment of the QoS requirement. This study pro-
poses an algorithm for predicting whether the QoS in the next
time step is above or below a set threshold value rather than
attempting to predict the exact value of QoS (UL goodput
value) for the next time step (100 ms). We used a catego-
rization of the QoS based on the minimum acceptable value
for the UL goodput. Thus, the QoS will have a categorical
value of y′i = 1 when the minimum requirement for the
service is met (goodput ≥ 17 Mbps), and a categorical value
of y′i = 2 when the minimum requirement for the service is
not met (goodput < 17 Mbps).
In order to study the benefits of any proactive algorithm,

it is important to establish and evaluate appropriate baseline
mechanisms. To this end, two DC activation mechanisms
have been used as baselines in this work:

B1: Naive predictor, where the QoS performance in the
current t simulation step is extrapolated and assumed
to be valid for the next simulation time step, t + 1.
In this sense, the DC activation decision is based on
the categorical current value (t) of the QoS, in addition
to the compliance of the DCrange. In this case DC is
activated if the categorical QoS at t is equal to 2. This
is the simplest method to implement a DC activation
mechanism.

B2: 2-samples naive predictor, where the QoS performance
in the previous t − 1 and current t simulation steps are
used to estimate the performance in the next simulation
time step, t + 1, resulting in a QoS categorical value of
2 when both samples (t−1 and t) are equal to 2. In this
way, the DC activation decision is based on both the
categorical current value (t) of the QoS and the value
in the previous time step (t − 1), in addition to the
compliance of the DCrange. This method corresponds
to a reactive version of the proposed method, in which
a window of size 200 ms is used to check the QoS
requirement.

A. PREDICTIVE QoS ALGORITHM
The QoS category prediction in our PDC algorithm, see
Fig. 3, is executed in two phases: the off-line phase, in which
the predictive model is trained, and the on-line phase,
in which the prediction is performed using the model gen-
erated in the previous phase.

1) OFF-LINE PHASE
The off-line phase of the algorithm takes as input time series
with historical data for a set of key performance indicators
(KPIs), XXX : UL SINR, UL modulation order, and number of
physical resource blocks (PRBs) assigned to the AGV in UL;
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FIGURE 3. Predictive QoS algorithm diagram. XXX is a matrix composed of time series with historical data of the selected
KPIs (UL SINR, UL modulation order, and number of PRBs assigned in UL); yyy is a time series with the historical values of the
QoS; y ′y ′y ′ is a time series with the historical categorical values of the QoS; zzz is a vector with the values of the selected KPIs at
the current instant (t); y ′

t+1 is the predicted categorical QoS value.

FIGURE 4. Input KPIs autocorrelation for each cluster in the SF network
with 50 AGVs.

and a time series with the historical values of the QoS, i.e.,
UL goodput, yyy. The selection of the KPIs used as input to
the predictive model has been made based on the correlation
between the different KPIs and the UL goodput. To this end,
a correlation analysis has been performed for the two network
deployments proposed (SF and DF) and for different number
of AGVs (see Table 1). The KPIs with the highest correlation
values (higher than 0.5) in the different scenarios have been
selected.

As shown in Fig. 3, the first step of the predictive model
is the creation of clusters, where data samples with similar
values are grouped. The use of clustering as a prior step to

the regression model serves to enhance the accuracy of the
prediction [42]. The input data for this first step are the values
of the input KPIs at each time step, XXX . Using the k-means
algorithm [43], that is one of the most widely used clustering
methods, the input data is clustered. To determine the number
of clusters, the silhouette value [44] is used. As an example
of the different behavior of the input metrics in each cluster,
Figs. 4 and 5 show the input KPIs’ autocorrelation values for
each cluster in the SF network with 50 AGVs and in the DF
network with 20 AGVs respectively. These figures show that
the behavior of the input KPIs in the different clusters are

FIGURE 5. Input KPIs autocorrelation for each cluster in the DF network
with 20 AGVs.
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not equal. The centroids of the identified clusters are used to
classify new input data in the on-line phase.

The second step of the off-line phase is the generation of
regression models that estimate the category of the QoS in
t+1. Due to the categorical characteristic of the variable to be
predicted, the logistic regression technique is used [45]. The
input data to this second step are the values of the KPIs in the
n previous time steps to the lag to be predicted. The optimal
number of past samples to use as input of the regressionmodel
in each of the different clusters has been calculated using
the statistical metrics Akaike’s information criteria (AIC)
and bayesian information criteria (BIC). To simplify the
calculation of the regression models, the same number of
past samples has been used for all the regression models.
In this sense, an intermediate value of the optimal number
of past samples previously calculated for each cluster (5 past
samples) has been used. A different logical regression model
(vs. time steps) is trained for each data cluster identified in
the first step.

The off-line phase of the predictive QoS algorithm, unlike
the on-line phase, is executed in the original network where
DC is not enabled, i.e., in an SC scenario.

2) ON-LINE PHASE
The on-line phase of the algorithm is where the real-time
prediction of the categorical QoS is performed. This pre-
diction is performed for each AGV independently. To this
end, first, the AGV is assigned a cluster according to the
values of the KPIs at the current instant (t), zzz. In order to
perform this cluster selection, the Euclidean distance between
zzz and each of the clusters’ centroids obtained on the off-line
phase are calculated. The data belongs to the cluster that is
closer (smaller Euclidean distance), represented as Cluster j
in Fig. 3. Finally, using the regression model associated to
Cluster j, and the current and past samples (from t − 4 to t)
of the KPIs of a given AGV, the predicted categorical QoS
value, y′t+1, is obtained.

B. DUAL CONNECTIVITY ACTIVATION ALGORITHM
The DC activation algorithm is in charge of making the
decision about whether or not to activate DC for each AGV.
This algorithm is a rule-based mechanism in which two
requirements are considered. The first condition is the com-
pliance with the configuredDCRange parameter, i.e., that the
RSRP difference between the serving cell and the strongest
neighbor is less than the value set by the DCRange value.
The second condition considered is the predicted QoS cat-
egory. The QoS category check is performed using a time
window that provides robustness to the algorithm, avoiding
DC activation due to isolated failures or outliers. In this way,
both the predicted categorical QoS value for the next time
step and the current categorical QoS value are considered
(i.e., window size 200 ms). DC is only activated if both
samples show a degraded value (QoS category 2). Further-
more, DC activation is always performed using the strongest
neighbor node, i.e., the neighbor node fromwhich the highest

FIGURE 6. DC activation algorithm workflow.

RSRP is measured, as SCell. Fig. 6 shows the workflow of the
algorithm.

IV. EVALUATION APPROACH
The evaluation of the proactive DC activation algorithm
has been performed in the two scenarios described in
Section II-A: SF and DF deployments. For this purpose,
simulations of 15 minutes duration with a granularity of
100 ms have been carried out. For each of these scenarios,
tests have been performed with different numbers of AGVs
and using different values of the DCrange parameter (see
Table 1). The network performance using the proposed algo-
rithm has been comparedwith the network performancewhen
using SC. To identify the optimal situations for the use of
predictive techniques, the proposed predictive algorithm has
been compared with the baselines (B1 and B2) presented in
Subsection III-A.

A. DCrange CONFIGURATION AND TRAFFIC LOAD
The performance evaluation of the proactive DC algorithm
has been carried out using different DCrange values: 3 dB,
5 dB, and 10 dB. The DCrange parameter, which indicates
the maximumRSRP difference allowed to activate DC, limits
the areas in which users may activate DC and, therefore, the
number of AGVs with active DC at each time step. This
parameter has a great impact on network performance. If the
DCrange is set to a minimal value, the area in which DC
can be activated will be reduced and very few users will be
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able to benefit from this functionality. On the contrary, if the
DCrange is set to a large value, there will be many users
with DC activated at the same time, which may result in
negative consequences for the network such as an increase in
UL interference. In the SF network, all radio cells utilize the
full available spectrum of 100 MHz, therefore the increased
UL interference due to activation of DC transmissions is
expected to impact the overall performance. The DF network
is characterized by dividing the 100 MHz spectrum into two
layers: 1) a macro cell layer composed of three macro cells
using 60 MHz of the spectrum and acting as serving cells for
the SC case and as PCells for the DC case; 2) a small cell layer
composed of six small cells using the remaining 40 MHz and
being only used as SCells for AGVs in DC. In this network,
the macro cell layer will not be impacted by a large number
of AGVs using DC.

Since the proposed proactive DC method relies on radio
channel metrics and the derived UL goodput values, the
number of AGVs is expected to impact the proactive DC
algorithm performance. For a very low number of AGVs, the
available radio resources are sufficient to deliver the target
goodput evenwithout usingDC. Therefore, our investigations
have focused on the traffic load cases with medium and high
number of AGVs. In the case of SF network, evaluations have
been performed in scenarios with different AGV densities:
30 AGVs, 40 AGVs, and 50 AGVs. Fig. 7 shows the UL
goodput cumulative distribution function (CDF) results for
these three AGV density configurations in the SF network for
the SC use case. Fig. 8 shows the UL goodput CDFs in an DF
network for the SC use case andwith AGV densities of 10 and
20; due to the division of the spectrum in the DF network,
the overall capacity is lower than in the SF network, and for
this reason, the numbers of AGVs used in the DF network
is lower. In a real network, a guaranteed bit rate scheduler
could redistribute the excess physical resources shown in

FIGURE 7. UL Goodput CDFs in the SF network for the SC use case. QoS
threshold marked by vertical line at 17 Mbps.

FIGURE 8. UL Goodput CDFs in the DF network for the SC use case. QoS
threshold marked by vertical line at 17 Mbps.

Figs. 7 and 8 now used for UL goodput values above the QoS
threshold for best-effort traffic.

To evaluate the performance of the PDC algorithm,
we have performed 10 simulations for each combination of
user density and DCRange. The original dataset is split into
training (off-line phase, using 70% of the data) and evaluating
(on-line phase, using 30% of the data) subsets, randomizing
the sets between simulations. The DC decision algorithm is
applied on the evaluation data.

B. PERFORMANCE EVALUATION METRICS
The overall performance of our proposed proactive DC acti-
vation mechanism needs to be evaluated at two levels. First,
the accuracy of the QoS category predictions needs to be
assessed. For this purpose, the performance of PDC is com-
paredwith the use of the baselines described in Section III, B1
and B2. The DC activation requirements considered for this
evaluation are DCrange compliance and QoS degradation at
t and t + 1. These different approaches are evaluated using
the usual statistical metrics: false positive rate, recall, and
F1 score. The impact of these metrics on the achieved radio
performance is as follows:

FPR: False positive rate, indicates the percentage of
unnecessary DC activations. The radio signaling
overhead due to unnecessary activation of DC is
proportional to this error rate.

Rc: Recall, indicates the proportion of times the algo-
rithm correctly activates DC when it is needed.

F1: F1 score, is a measure of accuracy that is calculated
as the harmonic mean of precision and recall, where
precision measures the proportion of times it is actu-
ally necessary to activate DC out of the total number
of times DC is activated.

The second level is to evaluate the radio performance
in terms of AGV (user) UL goodput gains. These results
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disclose the degree of UL service improvement expected in
the evaluated scenarios. In this work, the UL goodput gain is
represented in terms of QoS outage, being the main objective
to reduce the value of this metric for those users that under
SC conditions fail to achieve the QoS requirements.

V. RESULTS AND DISCUSSION
A. SF NETWORK
1) PREDICTION ACCURACY
First, the accuracy of the QoS predictions is assessed. Table 2
shows the median values of the statistical metrics (F1, FPR,
and Rc) for each of the tested scenarios. The use of the
median prevents possible bias in the results due to outliers.
The table shows a performance comparison between PDC and
the baseline algorithms.

TABLE 2. QoS prediction assessment results in the SF network.

The first observation when analyzing F1 results is the
difference in their values when comparing scenarios with
different number of AGVs. It can be seen that the three
methods achieve higher accuracy when the scenario is more
loaded, i.e., when a higher number of AVGs is used. The

FIGURE 9. UL Goodput autocorrelation in the SF network for different
number of AGVs.

higher the traffic load, the higher the autocorrelation of the
QoS (UL goodput), Fig. 9, and the more predictable the QoS
is, using any of the analyzed techniques.

The second observation is associated with the values of
the DCrange when using the same number of AGVs in the
scenario. For the results obtained using B1 and B2, there is no
impact on F1when using differentDCrange values. However,
for the case of using PDC, it can be observed that F1 drops
when using a DCrange equal to 10 dB. As the value of the
DCrange increases, more users can activate DC. In the SF
network, this means that with DC activated, the behavior of
the input KPIs (e.g., UL SINR) diverges more from their
behavior in an SC scenario. Thus, PDC that is based on
a predictive algorithm trained in an SC scenario, performs
worse with respect to B1 and B2 when the DCrange is set to
10 dB.On the other hand, the fact that the overall performance
of the network is negatively affected by the increase of the
DCrange value, due to the increase of UL interference, makes
the complexity of retraining the predictive model in a DC
scenario undesirable.

The third observation is related to the difference in the
results obtained by the three methods (PDC, B1, and B2)
when using the same number of AGVs and the same
DCrange. In this case, it can be observed that the results
obtained with B1 are better than those obtained with B2 and
PDC. This is due to the Rc results obtained by B1. Note that
the Rc value for B1 is always 1. In B1 the QoS in the next
time step (t + 1) is considered to be equal to the current QoS
(t) so, for the QoS in t + 1 to be degraded, the QoS in t must
also be degraded. The QoS criterion to activate DC is that the
QoS should be degraded in t and t + 1 (window of 200 ms).
This criterion is always true when using B1, and is the reason
why the false negative in B1 is always 0. F1 values of B2 and
PDC are similar when the network is less loaded.
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As described in Subsection IV-B, FPR indicates the per-
centage of unnecessaryDC activations. These erroneous deci-
sions can potentially lead to a DL signaling overload in the
network, and an increase in the UL interference produced
by the increase of users connected to each cell. As seen in
Table 2, changes in the number of users and the value of
the DCrange do not directly impact FPR results. However,
for the different scenario configurations, method B1 presents
higher FPR values, exceeding in all cases 0.1 (10%). As a
consequence, this method is also the one that causes a greater
signaling overhead and higher UL interference, both causing
more users to be in outage due to poor radio channel quality,
Fig 10. For this reason, the method B1 is discarded as a
possible solution for implementing a suitable predictive DC
activation method in the SF network deployment scenarios.

FIGURE 10. Percentage of AGVs in outage (no goodput) due to UL
interference when using 40 AGVs in the SF network.

The sixth column of Table 2 shows the median of the Rc
results for the tests performed. When comparing Rc results
for PDC and B2 methods, it can be seen that PDC achieves
better results thanB2 for cases of low user density (30AGVs).
In the case of 40 AGVs the difference becomes smaller,
although PDC is not the best solution in the case of using
DCrange 10 dB. Finally, for the case of 50 AGVs, PDC fails
to improve the B2 results. This is due to the high autocor-
relation of the QoS in the case of using 50 AGVs (Fig. 9),
which indicates that the QoS behavior is stable over time.
In this context, decisions based exclusively on past samples of
the QoS (B1 and B2) have a high success rate. The fact that
PDC achieves better Rc results in environments with lower
user density indicates that this method is more robust and
does not fully rely on high spatial autocorrelation of the QoS.
Finally, when comparing F1 and Rc values, there are cases
where although Rc is higher for PDC than for B2, F1 is still
higher for B2 than for PDC. This indicates that the precision
achieved by B2 is higher than the precision obtained by PDC
(as mentioned above, F1 is the harmonic mean between Rc
and precision). However, to achieve better results in terms of

QoS outage, it is more important to have better Rc results than
precision.

2) RADIO PERFORMANCE
The performance evaluation is carried out for PDC and B2,
leaving out B1 due to its high FPR. Fig. 11 shows, for each
of the studied scenarios, the QoS outage achieved with PDC
and B2. To calculate these outage values from the 10 sim-
ulations performed for each scenario, the samples that are
susceptible to activate DC, i.e., those samples for which the
DCrange constraint and the QoS requirements to activate DC
(QoS is degraded in t and t + 1) are met, have been used.
The percentage of samples that meets these requirements in
the original deployment (SC network) is shown in Table 3.
As an example, Fig. 12 shows the locations where DC has
been activated for an AGV during the simulations in the SF
deployment with 40 AGVs and a DCrange value of 5 dB.

FIGURE 11. QoS outage (goodput below 17 Mbps) in the SF network.

TABLE 3. Percentage of samples susceptible to activate DC in the SF
deployment.

The results in Fig. 11 support what could already be
deduced from analyzing the prediction accuracy metrics.
First, it can be observed that in those cases where there
are 30 AGVs in the network, the PDC algorithm performs
better than B2 for all three DCrange configuration values.
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FIGURE 12. Location of the samples with DC activated during a
simulation time-step in the SF network with 40 AGVs and a DCrange of
5 dB. The locations are represented by asterisks (*) of the same color as
the cell used as PCell during the dual transmission.

In the best case (DCrange 5 dB), PDC leads to a 34% outage
while B2 results in a 48%. When the number of AGVs in
the scenario is 40, the difference in QoS outage of the two
methods used becomes smaller. In the cases ofDCrange 3 dB
and 5 dB, PDC results in a 31% QoS outage while B2 leads
to a 34%. In the case of DCrange 10 dB, the QoS outage
resulting from PDC and B2 are 47% and 35% respectively.
When using 50 AGVs, the PDC algorithm is not able to
improve the results obtainedwith B2. However, the difference
in QoS outage results when using DCrange values of 3 dB
and 5 dB is small, being the 28% when using PDC and the
27%when using B2. The PDC algorithm performs better than
the B2 algorithm when the QoS autocorrelation is lower. For
scenarios with 40 and 50 AGVs, the PDC algorithm shows
higher QoS outage when using a DCrange of 10 dB. This is
because the number of AGVs that will potentially use DC
increases in scenarios with high load and high DCrange,
causing a worse performance of the prediction algorithm.

Based on the results shown in Fig. 10 and Fig. 11, the use
DCrange of 10 dB is not recommended in the SF network
deployment scenarios.

B. DF NETWORK
1) PREDICTION ACCURACY
Table 4 shows the medians of F1, FPR, and Rc metrics for
each of the studied scenarios in the DF network. As can
be seen, in general terms, the results of this table follow a

similar trend to the results of Table 2. Regarding F1 (fourth
column of Table 4), when comparing the results in relation
to the density of AGVs, better results are achieved when the
scenario is more crowded. This is due, as in the SF network
case, to the higher autocorrelation of the UL goodput in this
scenario, Fig. 13. In relation to the DCrange configurations,
it can be observed that these do not directly impact the F1
results for any of the tested algorithms, including PDC. This
is one of the main differences with the results obtained for
the SF network. In the DF network the AGVs are initially
connected to one of the three available macro cells having a
single connection. When an AGV needs to activate DC at a

TABLE 4. QoS prediction assessment results in the DF network.

FIGURE 13. UL Goodput autocorrelation in the DF network for different
number of AGVs.
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given time, it will do so using one of the six available small
cells deployed in the scenario. The small cells use a different
part of the spectrum than the macro cells. The increase in the
number of AGVs using DC simultaneously does not impact
the performance of the macro cells and, therefore, neither the
performance of PDC based on a predictive algorithm trained
in an SC scenario.

The fifth column of Table 4 shows the FPR results obtained
for the different setups in the DF network. For the three
methods (PDC, B1, and B2), the FPR results are reduced with
respect to those obtained in the SF network. Although in this
case the results of FPR obtained with B1 do not exceed 0.1 for
all scenarios, they are almost three times those obtained by
B2 and double in most cases the results obtained with PDC.
Having a higher FPR leads to a higher signaling overhead
in the network, due to the signaling produced by activat-
ing/deactivating DC when it is not necessary. However, in the
DF network the increase in UL interference only occurs in the
small cell layer. No degradation of network performance is
observed, since the small cells are not heavily loaded. Fig. 14
shows the percentage of AGVs in outage due to poor UL
radio channel conditions. The use of DC allows reducing the
number of AGVs that cannot transmit in the SC network.

FIGURE 14. Percentage of AGVs in outage (no goodput) due to UL
interference when using a 10 AGVs in the DF network.

To conclude with the assessment of the QoS prediction
in the DF network, the Rc metric is analyzed (sixth column
of Table 4). These results follow the same trend as those
obtained for the SF network. It can be observed that, due to
the behavior of the B1 method and the QoS criteria defined
for DC activation in the proposed algorithm, the Rc for B1 is
always equal to 1. When comparing the results of the PDC
and B2 methods, it can be observed that PDC obtains better
results for scenarios with less user load, indicating that this
method is more robust than B2 in situations where the QoS
autocorrelation is low.

2) RADIO PERFORMANCE
Fig. 15 shows the QoS outage results for the PDC and B2
methods. As in the SF network, to calculate these values,

only the samples that are susceptible to activate DC, i.e.,
those samples for which the DCrange constraint and the
QoS requirements to activate DC (QoS is degraded in t and
t + 1) are met, have been used. The percentage of samples
that meets these requirements in the original deployment (SC
network) is shown in Table 5. As an example, Fig. 16 shows
the locations where DC has been activated for an AGV during
the simulations in the DF deployment with 10 AGVs and a
DCrange value of 5 dB.
Fig. 15 shows that, for the scenarios with lower user density

(10 AGVs), the QoS outage resulting from the PDC algorithm
is between 18% (forDCrange of 3 dB) and 11% (forDCrange
of 5 dB and 10 dB) while the QoS outage araising from B2 is
between 31% (for DCrange of 3 dB) and 16% (for DCrange
of 5 dB and 10 dB). In the network with 20 AGVs, where the
QoS is more autocorrelated, the QoS outage resulting from
PDC, although presenting very low values being less than
10% for the three DCrange values tested and leads to a 7%
in the case of use a DCrange of 3 dB, does not improve the
results of B2.

A key difference compared to the results obtained for
SF networks, based on the results shown in Fig. 14 and
Fig. 15, the use DCrange of 10 dB is suitable for DF net-
work deployment scenarios. In addition, due to the lower UL
interference produced in this scenario when using DC, the UL
goodput gain in it is higher (lower QoS outage) than in the SF
deployment.

FIGURE 15. QoS outage (goodput below 17 Mbps) in the DF network.

TABLE 5. Percentage of samples susceptible to activate DC in the DF
deployment.
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FIGURE 16. Location of the samples with DC activated during a
simulation time-step in the DF network with 10 AGVs and a DCrange of
5 dB. The locations are represented by asterisks (*) of the same color as
the cell used as PCell during the dual transmission.

VI. CONCLUSION
This paper presents a proactive uplink dual-connectivity
(PDC) activation management algorithm for the use case
of AGVs in an outdoor industrial scenario. The proposed
algorithm can automatically make decisions about DC activa-
tion/deactivation based on the predicted QoS and the RSRP
difference between the PCell and the SCell (DCrange value).
For this purpose, the algorithm is composed of two stages: in
the first step, a prediction of the QoS category is performed,
with respect to a set threshold level; in the second step, the
DC activation decision is made by using a rule-based mech-
anism. The performance evaluation of the proposed solution
has been carried out in a simulated realistic outdoor indus-
trial environment using two different network deployments:
single-frequency (SF) network and dual-frequency (DF) net-
work, as well as different configurations in terms of the
number of AGVs in the network (load) and of the DCrange
values. The performance of the proposed algorithm has been
compared with the performance of two baseline reactive
algorithms: 1-step naive predictor (B1) and 2-samples naive
predictor (B2). B1 corresponds to simple method reactive DC
activation mechanism and is used in most of the DC studies
found in the literature; while B2 corresponds to a reactive ver-
sion of our proposed method. The results in low-medium load
conditions show that, when the DCrange constraint and the
QoS requirements to activate DC are met, the proposed PDC
algorithm reduces the QoS outage (UL throughput below

target) compared to B1 and B2 to 31% in the SF deployment
and to 11% in the DF deployment. In high load conditions, the
performance of the PDC algorithm is generally on pair with
the B2 performance, with slight dependency on the DCrange
value. In addition, the proposed PDC algorithm shows a
lower false positive rate in DC activation compared to B1
and slightly higher rates compared to B2, depending on the
load. Therefore, the PDC algorithm reduces unnecessary DL
signaling associatedwithDC activation/deactivation and low-
ers the number of failed transmissions due to poor UL radio
channel conditions. Finally, the proposed PDC algorithm
was shown to have good performance in scenarios with low
QoS autocorrelation (time domain), thus being more robust
to changing radio environment and interference conditions
compared to the baseline algorithms. Our setup and evalu-
ations presented in this paper addressed DC in the context
of transmission with carrier aggregation for the purpose of
improving the uplink throughput. Nevertheless, we consider
that a similar predictive algorithm can be beneficially applied
also for packet duplication transmission schemes, and in this
case the QoS metric improved is the reliability of the uplink
transmissions.

ABBREVIATIONS
The following abbreviations are used in this manuscript:

3GPP Third Generation Partnership Project
4G Fourth generation
5G Fifth generation
AGV Automated guided vehicle
AI Artificial intelligence
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
B1 Baseline Naive predictor
B2 Baseline 2-samples naive predictor
BLER Block error rate
BS Base station
CA Carrier aggregation
CC Component carrier
CPS Cyber-physical systems
DC Dual connectivity
DF Dual-frequency
DL Downlink
F1 F1 score
FPR False positive rate
gNB Next generation NodeB
HARQ Hybrid automatic repeat request
IoT Internet of things
KPI Key performance indicator
MAC Medium access control
MC Multi-connectivity
ML Machine learning
PCell Primary cell
PDC Proactive dual-connectivity
PRB Physical resource block
PUSCH Physical uplink shared channel
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QoS Quality of service
Rc Recall
RRC Radio resource control
RRH Remote radio head
RSRP Reference signal received power
SC Single connectivity
SCell Secondary cell
SF Single-frequency
SINR Signal-to-noise-plus-interference
TDD Time division duplex
UE User equipment
UL Uplink
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