
Received April 26, 2022, accepted May 16, 2022, date of publication May 20, 2022, date of current version June 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176634

Schatten Graph Neural Networks
YOUFA LIU 1, YONGYONG CHEN 2, (Member, IEEE), GUO CHEN 3, AND JIAWEI ZHANG1
1College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
2School of Computer Science, Harbin Institute of Technology, Shenzhen 518055, China
3School of Business, Hubei University, Wuhan 430062, China

Corresponding authors: Yongyong Chen (yongyongchen.cn@gmail.com) and Guo Chen (guochen@hubu.edu.cn)

This work was supported in part by the Natural Science Foundation of Hubei Province under Grant 2021CFB139, in part by the
Fundamental Research Funds for the Central Universities under Project 2662020XXQD002, and in part by the Shenzhen College Stability
Support Plan under Grant GXWD20201230155427003-20200824113231001.

ABSTRACT Graph Neural Networks (GNNs) have been intensively studied in recent years because of their
promising performance over graph-structural data and have provided assistance in many fields. Recalling
recent works on graph neural networks, we found that imposing graph smoothing via Frobenius norm was
proven to be effective in the architecture of graph neural networks from the standpoint of the graph signal
processing. In this paper, we aim to model the graph smoothness of graph neural networks using a Schatten
p-norm with p in the interval [1, 2) to characterize smoothness and propose a novel architecture called
Schatten graph neural networks. This architecture stems from a primal-dual solution scheme for a graph
signal denoising problem. There is difficulty in solving subproblems with respect to the Schatten p-norm.
We propose a fixed point iteration scheme and prove that it tracks with the linear convergence rate with solid
mathematical analysis. Extensive experiments demonstrate the effectiveness of the proposed architecture of
graph neural networks and their robustness to the graph adversarial attacks.

INDEX TERMS Low-rank constraint, Schatten p-norm, graph signal processing, primal-dual optimization,
graph adversarial attack.

I. INTRODUCTION
Although deep neural networks have seen great development
in recent years, they have no ability to treat irregular
data, such as that in social networks [1], protein-protein
networks [2] and traffic networks [3]. Graph neural networks
(GNNs) [4] have been one of the most popular tools to deal
with this kind of data and can learn powerful representation
from graph-structural data. GNNs can be used in many tasks
including node classification [5], link prediction [6], graph
classification [7] and recommendation systems [8] and many
others [43]–[46].

Based on the mode of local computation, GNNs can
be roughly divided into two classes: graph convolution
networks [5] and message passing networks [9]. The graph
convolution stems from the convolution in deep neural
networks which operate on regular graphs, such as image,
text and videos. Graph convolution can deal with an irregular
graph and capture local information to generate better
representations.Mathematically, the k-th graph convolutional
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layer is

X (k)
= ϕk (̃LX (k−1)W (k)),

where X (k−1) is the (k − 1)-th layer representation, W (k) is
the feature transformation matrix and ϕk is the activation
function. Graph convolutional network (GCN) [5] and
graph attention network (GAT) [10] are two classical graph
convolution networks. GCN adopts the spectral convolution
methods and simple approximation of a Chebyshev poly-
nomial. GAT extends the attention mechanism from deep
neural networks to graph neural networks. Message-passing-
based GNNs follow from the old message passing algorithms
and represents the shared functions by means of graph
neural networks. Mathematically, popular massage-passing
networks [9] can be unified by

Y (k)
= g(CT

outX
(k−1)),

Y
(k)
= CinY (k),

X (k)
= φ(XW1 + θ (Y

(k)
)W2),

where the first equation is k-step message computation, the
second equation is the k-step message aggregation and the
third equation is the k-step node state update.
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We examine message-passing networks in this paper.
Recently, it was shown in [11] that many such networks have
an affinitywith graph signal denoising problemswith l2 graph
smoothness. This includes a second-order approximation
term and Laplacian regularization term. As a matter of
fact, these networks can be deduced from the graph signal
denoising problem by using different formats of optimization
schemes, for example, a gradient descent algorithm with
different step sizes. ElasticGNN [12] attempts to improve
the smoothness by both l1- and l2-based graph smoothing.
Further, it considers the l21- and l2-based graph smoothing
schemes.

In this paper, we propose to establish a graph signal
denoising problem with the Schatten p-norm for p in the
interval (0, 2). It is well-known that the rank function is
the p-order power of the Schatten p-norm at p = 0.
When p approaches zero, the low-rank property emerges.
In practice, the nuclear norm (i.e. p = 1) is often used
as a convex surrogate of rank function for the convenience
of optimization. When p lies in the interval [1, 2), the
p-order power of the Schatten p-norm is finite and convex.
In this case, the sparsity occurs when we take an appropriate
regularization coefficient. Note that the Schatten p-norm
with p in the interval [1, 2) dominates the l2 norm. As a
result, the proposed graph signal denoising model incudes
the smoothness between l2 and the Schatten p-norm with
p ∈ [1, 2). When p is greater than 2, the graph signal
denoising model just characterizes the l2 smoothness because
the l2 norm is the upper bound of the Schatten p-norm
for p ≥ 2. This is why we restrict the value of p in the
interval [1, 2).
We also discuss the optimization of the graph signal

denoising problemwith a Schatten p-norm for p in the interval
[1, 2). Note that when p ≥ 1, the p-order power of the
Schatten p-norm is convex. With this good property, the
objective function in the graph signal denoising problem is
the composition of two convex functions. We choose the
modified Proximal Alternating Predictor-Corrector (PAPC)
optimization scheme [13] to find a solution, which actually
belongs to a primal-dual solution scheme. With a special
choice of step sizes in PAPC, we obtain a novel architecture
of graph neural networks.

In the PAPC schemes, there is difficulty in solving the
subproblem of the proximal operator of the Fenchel conjuagte
with respect to a convex function (i.e., the scaling p-order
power of the Schatten p-norm). By Moreau decomposition,
we just need to solve the proximal operator of the scaling
p-order power of the Schatten p-norm. We propose an
efficient fixed-point iteration scheme. Theoretical analysis
shows that this scheme has a linear convergence rate O(ρk )
with some ρ ∈ (0, 1).
The robustness under a graph adversarial attack is also

examined in our experiments. By setting different attack
ratios, the performance is recorded and reported. This
reveals the effective robustness of the proposed graph neural
networks.

As summarization, the contribution of this paper is as
follows.

(1) We propose a novel architecture of graph neural
networks called Schatten graph neural networks from the
standpoint of graph signal processing, in which, Schatten
p-norm is employed to characterize the smoothness. When
p ∈ (1, 2), it gives rise to the mixture of low-rank and l2
smooth property.

(2) The convergence of the proposed message passing
schemes is theoretically proved. In particular, this scheme
contains a subproblem of solving proximal operator with
respect to the Schatten p-norm. We develop a fixed point
iteration algorithm and prove that it bears with linear
convergence rate.

The remainder of this paper is organized as fol-
lows. In Section II, related works are briefly reviewed.
In Section III, we give the problem formulation and notations
that are used in the latter sections. In Section IV, we set up
the methodology. In Section V, we propose the graph neural
network architecture. In Section VI, convergence analysis is
performed. Complexity analysis is provided in Section VII.
Extensive experiments are conducted in Section VIII. Finally,
we conclude this paper in Section IX.

II. RELATED WORKS
A. GRAPH SIGNAL PROCESSING
The popular architectures of graph neural networks including
GCN [5] and GAT [10] can be implicitly obtained by using a
gradient descent algorithm to solve the following graph signal
denoising problem with a particular step:

min
X∈Rn×d

1
2
‖X − Xinput‖2F + λ

n∑
i=1

n∑
j=1

Aij‖x[i :]− x[j :]‖22,

(1)

where Xinput is the input signal, A ∈ Rn×n is the symmetric
adjacency matrix whose entries are Aij, x[i, :] is the i-th row
instances and λ is a positive trade-off parameter. The last
term indicates the global l2 smoothness. Recently, Elastic
GNNs [12] were proposed to improve the smoothness. GNNs
include l1- and l21-level smoothness, which induces a better
sparsity of graph signals. The l1 smoothness is characterized
by

min
X∈Rn×d

1
2
‖X − Xinput‖2F + λ1‖1X‖1 +

λ2

2
tr(XT L̃X ), (2)

where 1 ∈ {−1, 0, 1}m×n is the oriented incident matrix,
where m is equal to |E| and each row is like

(0, 0,−1, 0, · · · , 0, 1, 0, 0), (3)

where the nonzero terms denote two nodes with directed
edges. The l21 can induce the row sparsity of X . This provides
more precise sparsity than the Frobenius norm. The l21
smoothness is characterized by

min
X∈Rn×d

1
2
‖X − Xinput‖2F + λ1‖1X‖21 +

λ2

2
tr(XT L̃X ), (4)
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B. GRAPH ADVERSARIAL ATTACK
An adversarial attack on graph structured data [14] is an
active field of graph learning. For a given graph structured
datasetD = (cj,Gj, yj), if we changeGj as G̃j a little such that
the adversarial samples G̃j andGj become similar under some
specified metrics, the performance of the graph task is worse
than before. This is the general adversarial attack problem
over graph data. There exist many works on graph adversarial
attacks including [14] and [15]. To effectively generate
adversarial samples, nodes or edges can be slightly changed
and the similarity can be achieved by some perturbation
evaluation metrics. As in [14], the imperceptible perturbation
can be roughly categorized into four classes: node-level
perturbation, edge-level perturbation, structure preserving
perturbation and attribute preserving perturbation.

C. LOW-RANK MATRIX MINIMIZATION
The low-rank approximation model is formulated as

min
X∈Rn×d

L(X ,Y )+ λrank(X ), (5)

However, this optimization problem is difficult to solve. Then
nuclear norm is considered an approximate scheme because
the nuclear norm is is the convex envelope of rank on the
unit ball of matrix operator norm [16]. Hence, one can get
a relaxed version as

min
X∈Rn×d

L(X ,Y )+ λ‖X‖∗, (6)

where the nuclear norm is

‖X‖∗ =
min{n,d}∑
i=1

σi(X ). (7)

The low-rank matrix approximation of a given matrix Y ∈
Rn×d with the Schatten p-norm is described as

min
X∈Rn×d

L(X ,Y )+ λ‖X‖pSp , (8)

where L is the loss function, p > 0 and

‖X‖Sp =

min{n,d}∑
i=1

σ
p
i (X )

 1
p

. (9)

It includes nuclear norm (p = 1) and Frobenius norm (p = 2)
as two popular examples.

Apart from the power form of eigenvalues, a more general
nonconvex and nonsmoothness low-rank minimization is
summarized in [17].

min
X∈Rn×d

L(X ,Y )+
n∑
i=1

gλ(σi(X )), (10)

where λ ≥ 0 is a nonnegative controlling parameter. The
usual examples of penalty include Lp [18], SCAD [19] and
Laplace [20]. Lp penalty is

gλ(θ ) = λθp. (11)

The SCAD penalty is described as

gλ(θ ) =


λθ, if θ ≤ λ;
−θ2 + 2γ λθ − λ2

2(γ − 1)
, if λ < θ ≤ γ λ;

λ2(γ + 1)
2

, if θ > γλ.

(12)

The Laplace penalty is

gλ(θ ) = λ
(
1− e−

θ
γ

)
. (13)

D. OPTIMIZATION
Smooth optimization [22] and non-smooth optimization [21]
have been widely studied in machine learning fields. Some
optimization problems can be decomposed as the sum of
convex smooth and nonsmooth components. Mathematically,

min
X∈Rn×d

f (X )+ g(X ), (14)

where f and g are convex functions but f is smooth function.
For the convex function g, its Fenchel conjugate is

g∗(X ) = sup
Z∈Rn×d

〈X ,Z 〉 − g(Z ). (15)

Then, we can obtain the equivalent saddle point problem

min
X∈Rn×d

max
Z∈Rn×d

f (X )+ 〈X ,Z 〉 − g∗(Z ), (16)

Candidate algorithms such as Alternating Direction
Method of Multipliers (ADMM) [23] and Newton type [24]
may work. These candidate algorithms may contain the
task of finding the solution to some nontrivial sub-problem
with a heavy computation burden. Intermediate optimization
problem-solving may be incompatible with the standard
back-propagation (BP) algorithms in general deep learning.
The Proximal Alternating Predictor-Corrector (PAPC) [13]
is a kind of primal-dual optimization algorithm that has been
proven to be effective in the recent work ElasticGNN [12].

III. PROBLEM FORMULATION AND NOTATIONS
Let G = (V, E,F) be a graph. V is the vertex set, F is the
collection of features of nodes and E is the edge set. E =
{e1, · · · , em} can be represented by a matrix A ∈ Rn×n called
adjacency matrix for the graph G, where n is the number of
vertices. If node vi and vj in the vertex set V are connected,
then set Aij = 1; otherwise, set Aij = 0. E can also be
considered in another way: the edge set is characterized by
the incident matrix

1 =


11
12
· · ·

1m

 ,
where 1i is like

(0, 0,−1, 0, · · · , 0, 1, 0, 0) ∈ Rn,

in which −1 indicates the initial point of edge ei, and
1 denotes its terminal point.
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Let Ã = I + A, where I is the identity matrix of order n.
Actually, Ã is the self-looped version because every node in
V is self-connected. Let D̃ be the degree matrix w.r.t Ã and
L̃ = D̃ − Ã is the normalized Laplacian matrix. Given any
matrix B, σi(B) denotes the its i-th largest singular value.
For each node v ∈ V , a feature xv ∈ Rm(xv ∈ F)

is assigned, in which m is the feature dimension. We use
l labeled nodes {(x1, y1), · · · , (xl, yl)} and n − l unlabeled
nodes {xl+1, · · · , xn}. The task of node classification is to
establish a GNN model f : (X ,Yl,A) → Y , where X =
[x1, · · · , xn]T ∈ Rn×m, Yl = {y1, · · · , yl}, and Y denotes
the label space. With this learned model, the predicted label
of each unlabeled node is produced. We also consider the
robustness of the proposed approach under graph adversarial
attacks.

IV. METHODOLOGY
In this paper, we propose modelling the smoothness by
the Schatten p-norm which is different from the Elas-
ticGNN [12]. For any p > 0 and Z ∈ Rn×d ,

‖Z‖Sp = Tr((ZTZ )
p
2 )

1
p (17)

=

min{n,d}∑
i=1

σ
p
i (Z )

 1
p

. (18)

Mathematically, we consider the following graph signal
denoising model.

min
X∈Rn×d

1
2
‖X−Xinput‖2F +

λ1

2
tr(XT L̃X )︸ ︷︷ ︸

f (X )

+ λ2‖1̂X‖
p
Sp︸ ︷︷ ︸

u(1̂X )

, (19)

where Xinput is the initial graph signal, p is a positive number,
λ1 > 0 and λ2 > 0 are two trade-off parameters, and

1̂ = 1D̃−
1
2 . (20)

In this model, λ1 forces the l2-smoothness. λ2 forces the
property induced by the Schatten p-norm, i.e. low-rank
property, l2-smooth property or their mixture, which depends
on the value of p.
We interpret this model in detail and devise a novel graph

neural networks later. The first term in the objective makes X
approximate to Xinput . The tr(XT L̃X ) in the second term can
be expanded as

tr(XT L̃X ) = ‖1̂X‖22

=
1
2

n∑
i=1

n∑
j=1

Aij‖x[i :]− x[j :]‖22, (21)

where x[i :] and x[j :] denote the i-th and j-th row vectors
of X , respectively. This reveals that the l2 sparsity is directly
implied by the second term in (19).

By choosing proper parameter λ1, two connected nodes
draw closer to each other in the search space, which is similar
to the manifold regularization [25]. The last term ‖1̂X‖pSp
may have diverse meanings. It depends on the value of p.

There exist some particular cases as follows. Recall that when
p tends to zero, for any Z ∈ Rm×d , we have

lim
p→0+

‖Z‖pSp = rank(Z ). (22)

If p is equal to 1, then the Schatten 1-norm is the standard
nuclear norm, i.e.

‖Z‖S1 = ‖Z‖∗. (23)

For p = 2, the corresponding Schatten 2-norm is exactly
the Frobenius norm, i.e.

‖Z‖S2 = ‖Z‖F . (24)

If p = ∞, then the Schatten ∞-norm is operator norm,
namely,

‖Z‖S∞ = max
x∈Rd−{0}

‖Zx‖2
‖x‖2

. (25)

According to [26], we have the following inequalities,
namely,

‖Z‖S∞ ≤ ‖Z‖S2 ≤ ‖Z‖S1 . (26)

Set Z = 1̂X . It is readily seen from the meaning of 1̂ that
every line of Z is of the form

x[j :]− x[i :]. (27)

if there exists a directed edge eij ∈ E from node i to node
j. For an undirected graph, each edge can be decomposed as
two directed edges with opposite orientation. In other words,
if nodes vi and vj are connected, then two directed edges Ei→j
and Ej→i emerge.

When p is small, the last regularization term in (19) induces
the low-rank property of 1̂X . When p ≥ 2, ‖Z‖Sp ≤ ‖Z‖S2 ,
which implies that the second term in (19) dominates the
last term. In this case, the model (19) is just l2-smooth.
It is well-known that the Schatten p-norm is convex when
p ≥ 1, which is friendly to the usual optimization strategy.
Therefore, we restrict the value of p in the interval [1, 2].
When p ∈ [1, 2], we have ‖Z‖S2 ≤ ‖Z‖Sp ≤ ‖Z‖S1 , which
means that the last term in (19) induces a mixed property
between the low rank and sparsity of 1̂X . In the next section,
we propose a novel graph neural network architecture from
the optimization of (19).

V. THE PROPOSED ARCHITECTURE OF THE GRAPH
NEURAL NETWORKS
A. REFORMULATION AS SADDLE POINT PROBLEM
The procedure is displayed in Figure 1. Themethod of solving
optimization (19) is the key to deducing the Schatten graph
neural networks. To solve problem (19), we consider its
saddle point formulation. Let

L(X ,Z ) = G(X )+ H (X ,Z ), (28)

where

G(X ) =
1
2
‖X − Xinput‖2F +

λ1

2
tr(XT L̃X ) (29)
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FIGURE 1. The illustration of the procedure. The graph neural networks
can be constructed by the inspiration of the optimization for solving
graph signal denoising problems. For example, the GCN [5] can be
regarded as a gradient descent scheme with a particular stepsize [12].
Analogously, our proposed Schatten graph neural networks can be
derived by a optimization scheme (i.e. PAPC scheme).

and

H (X ,Z ) = 〈1̂X ,Z 〉 − g∗(Z ), (30)

in which g∗(Z ) is the Fenchel conjugate of g(Z ) = λ2‖Z‖
p
Sp ,

i.e.,

g∗(Z ) = sup
Y∈Rm×d

〈Z ,Y 〉 − g(Y ). (31)

With these notations, the optimization problem (19) can be
written as

min
X∈Rn×d

G(X )+ g∗(1̂X ). (32)

Then (19) can be further reformulated as a saddle point
problem

min
X∈Rn×d

max
Z∈Rm×d

L(X ,Z ). (33)

B. OPTIMIZATION SCHEME
Following [12], we use the modified Proximal Alternating
Predictor-Corrector (PAPC) [13] scheme as follows:

X
(k+1)

= X (k)
− γ∇G(X (k))− γ 1̂TZ (k), (34)

Z (k+1)
= proxβg∗ (Z

(k)
+ β1̂X

(k+1)
), (35)

X (k+1)
= X (k)

− γ∇G(X (k))− γ 1̂TZ (k+1). (36)

Equation (35) involves the proximal operator of Fenchel con-
jugate g∗. This is not easy to compute directly. By employing
Moreau’s decomposition [27], we have

Z = proxβg∗ (Z )+ λproxβ−1g(
1
β
Z ). (37)

If we can solve the proximal operator of g, the problem with
(35) is readily solved.

Recall that g(Z ) = λ2‖Z‖
p
Sp . Then the proximal operator

with respect to g is

proxβ−1g(Z ) = arg min
Y∈Rm×d

1
2
‖Y − Z‖2F +

λ2

β
‖Z‖pSp . (38)

By [39], it is closely related to

min
δ≥0

h(δ) =
1
2
(δ − σ )2 + ωδp. (39)

In Section VI, we provide an efficient fixed-point iteration
algorithm to solve this problem with strong convergence
analysis. Once proxβ−1g(Z ) is solved, by (37),

proxβg∗ (Z ) = Z − proxβ−1g(Z ). (40)

C. NETWORK ARCHITECTURE
Based on the selected optimization scheme, we deduce
a novel message-passing-mechanism based graph neural
network architecture.

Let

W (k)
= X (k)

− γ∇G(X (k)), (41)

where the function G(·) comes from Eq. (29). The first-order
derivative of G is

∇G(X ) = X − Xinput + λ1L̃X . (42)

Inserting (40) into (39), we have

W (k)
= [(1− γ )I − λ1γ L̃]X (k)

+ γXinput . (43)

Combining (34-36) and (42), the optimization scheme can
be formulated as

W (k)
= [(1− γ )I − λ1γ L̃]X (k)

+ γXinput ,

X
(k+1)

= W (k)
− γ 1̂TZ (k),

Z
(k)
= Z (k)

+ β1̂X
(k)
,

Z (k+1)
= proxβg∗ (Z

(k)
+ β1̂X

(k+1)
),

X (k+1)
= W (k)

− γ 1̂TZ (k+1).

(44)

It is sufficient to take γ = 1
1+λ1

and β = 1
2γ for

convergence (This will be proved in Theorem 1.). With this
in mind, we have the following scheme:

W (k)
= γXinput + (1− γ )̃AX (k),

X
(k+1)

= W (k)
− γ 1̂TZ (k),

Z
(k)
= Z (k)

+ β1̂X
(k)
,

Z (k+1)
= proxβg∗ (Z

(k)
+ β1̂X

(k+1)
),

X (k+1)
= W (k)

− γ 1̂TZ (k+1).

(45)

if X (k) and Z (k) are regarded as the node’s embedding of the
k-th layer and connection parameters, then we can construct a
graph neural network by stacking layer by layer. For intuition,
we change (45) as the language of graph neural networks and
provide the network architecture in Figure 2.

VI. CONVERGENCE ANALYSIS
In this section, we provide the iteration scheme of (45)
with convergence guarantee in Theorem 1. Since there is a
subproblem of solving proximal operator in (45), which is
related to (39). We propose a foxed-point iteration scheme to
solve (39) with the analysis of linear convergence rate.
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FIGURE 2. The visualization of the iteration scheme Eq. (45). The detailed
process from X (k) to X (k+1) is illustrated. This process includes several
fusion operations and computation of a proximal operator. The fusion
operation is indeed the linear operation on matrices.

Lemma 1: Let u(W ) = ‖W‖pSp be the function from the
graph signal denoising model (19). The function u(W ) =
‖W‖pSp is convex for p ≥ 1.

Proof: Recall from [40] that the Schatten p-norm ‖•‖Sp
is convex for p ≥ 1. Note that l(t) = tp is convex over {t ∈
R : t ≥ 0} for p ≥ 1 because the second-order derivative of
l satisfies l ′′(t) = p(p − 1)tp−2 ≥ 0. The function u can be
decomposed as the composition of l and ‖ • ‖Sp , i.e. u(•) =
l ◦ ‖ • ‖Sp . Since the composition of two convex function is
still convex, u(•) is convex. �
Theorem 1: Let γ =

1
1+λ1

and β =
1
2γ . The

message-passing scheme (45) converges to the optimal
solution of graph signal model (19).

Proof: By Lemma 1, the function u is convex in the
graph signal denoising model (19). The objective function in
(19) is the sum of f (X ) and u(1̂X ), where 1̂ is a bounded
linear operator. The gradient∇f satisfies Lipschitz condition.
By [41] and [42], the iteration scheme (45) is convergent
under γ < 2

L and β < 4
3γ λmax(1̂1̂T )

, where L is the Lipschitz

constant. L can be computed as L = λmax(∇2f (X )) = 1 +
λ1‖L̃‖2. For a matrix R, let ‖R‖2 denotes its spectral norm.
Note that ‖L‖2 = ‖1̂1̂T

‖2 = ‖1̂
T 1̂‖2 ≤ 2. Hence the

given values of λ and β satisfy

γ =
1

1+ λ1
<

1
1+ 2λ1

≤
1

1+ λ1‖L̃‖2
=

2
L

and

β =
1
2γ

<
2
3γ
≤

4

3‖1̂1̂T ‖2
≤

4

3γ λmax(1̂1̂T )
.

respectively. �
Note that there exits a subproblem of solving proximal

operator. The key is to solve (39). We find that (39) can be
efficiently solved by fixed point iteration. As a matter of fact,
for a sufficiently small positive number ε, the (39) has an
identical solution to

min
δ>ε

h(δ) =
1
2
(δ − σ )2 + ωδp. (46)

In practice, we find that ε = 0.1 works well.
We propose the fixed-point iteration as follows:

δ(k+1) = J (δ(k)), (47)

where

J (δ) = σ − ωpδp−1. (48)

The following theorem provides the global convergence
analysis with a convergence rate.
Theorem 2: Let p ∈ (1, 2). Assume positiveω and ε satisfy

ρ =
ωp(p− 1)
ε2−p

∈ (0, 1). (49)

The fixed point iteration scheme (47) is convergent to a
unqiue point δ̃∗ with rate O(ρk ), i.e.

|δ(k) − δ̃∗| ≤ ρk |δ(0) − δ̃∗|. (50)

Furthermore, the solution to (46) is

δ∗ = max{̃δ∗, ε}. (51)
Proof: First of all, we prove the contraction property of

J (δ) on R, i.e., for δ and δ′ in the interval R− [−ε, ε],

|J (δ)− J (δ′)| ≤ c|δ − δ′|, (52)

where c ∈ (0, 1).
By Mean Value Theorem, there exists ξ between δ and δ′

such that

|J (δ)− J (δ′)| ≤ |J ′(ξ )||δ − δ′|. (53)

Note that

J ′(ξ ) = −ωp(p− 1)δp−2. (54)

Since |ξ | > ε,

|J ′(ξ )| < ρ =
ωp(p− 1)
ε2−p

∈ (0, 1). (55)

Combing (53) with (55), we have

|J (δ)− J (δ′)| ≤ ρ|δ − δ′|. (56)

According to the Hahn-Banach Theorem [28], we have that
the function J has a unique fixed point δ̃∗ in the interval R−
[−ε, ε].

|δ(k) − δ̃∗| = |J (x(k−1))− δ̃∗|

= |J (x(k−1))− J (̃δ∗)|

≤ ρ|δ(k−1) − δ̃∗|

≤ · · ·

≤ ρk |δ(0) − δ̃∗|, (57)

where the first equality holds by the (47) and the second
equality is true by the meaning of fixed point.

Now we need show that

δ∗ = max{̃δ∗, ε}. (58)

is indeed the solution to (46).
The second-order derivative of h is

h′′(δ) = 1+ ωp(p− 1)δp−2. (59)

Note that

|ωp(p− 1)δp−2| ≤ ρ. (60)
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TABLE 1. Statistics on benchmark datasets.

FIGURE 3. The illustration of the change of function value withe respect
to the iteration number.

Then

h′′(δ) ∈ (1− ρ, 1+ ρ). (61)

Since ρ ∈ (0, 1), h′′(δ) > 0 which implies that h is strictly
convex on R − [−ε, ε]. If δ̃∗ falls into (−∞,−ε), then the
minimizer of (46) is just ε. Otherwise, the minimizer is δ̃∗

itself. �
In this theorem, p = 1 is excluded. In fact, when p = 1, the
problem (39) has a closed-form solution [17].
Example: We give an example as follows. Take σ = 10,

ω = 0.4, ε = 0.1 and p = 1.5.

min
δ>ε=0.1

h(δ) =
1
2
(δ − 10)2 + 0.4 ∗ δ1.5. (62)

The initial value is set as 10. The minimizer is δ = 9.8084.
We display the iteration process in Figure 3. The iteration
converges with very few iteration. This examples empirically
show the efficiency of the proposed iteration scheme.

VII. COMPUTATIONAL COMPLEXITY
In this section, we provide the analysis of computational
complexity with respect to the iteration Eq. (45). The com-
putational cost mainly comes from the matrix multiplication
and the proximal operating which needs SVD and fixed
point iterations. Let d be the hidden dimension. For the
k-iteration of Eq. (45), the first equation needs the cost of
O(n2d). The second equation needs the cost O(nmd). The
third equation needs the cost ofO(mnd). The fourth equation
needs the cost of O(md2 + min{m, d}Tmax), where Tmax
is the maximum iteration number of fixed point iteration

scheme Eq. (47). The fifth equation needs the cost ofO(mnd).
Assume the maximum iteration number of Eq. (45) is Kmax,
then the overall computational cost isO(((n2+mn)d+md2+
min{m, d}Tmax)Kmax).

VIII. EXPERIMENTS
In this section, extensive experiments are performed to verify
the effectiveness of the proposed Schatten graph neural
networks. We state the used datasets and baselines. The
parameter setting strategy is also formulated in detail. The
robustness of the proposed Schatten graph neural networks is
considered. We also provide an ablation study to measure the
impact of parameters.

A. DATASETS AND BASELINES
We conduct experiments on eight graph-structural datasets
that contain three citation graphs (Cora, Citeseer,
Pubmed [29]), two co-authorship graphs (Coauthor CS and
Coauthor Physics [30]), two co-purchase graphs, (Amazon
Computers and Amazon Photo [30]), and one blog graph
(Polblogs [31]). In the Polblogs graph, node features are not
available and we specify the feature map as an identity matrx.
For all of these datasets, the statistics such as classes, edges
and features are displayed in Table 1.

The baselines are selected as some recent approaches,
such as GCN [5], GAT [10], SGC [32], GraphSAGE [33],
APPN [34], ElasticGNN [12] and EigenGCN [35]. For fair
comparison, a two-layer network architecture with 64 hidden
dimensional representations is adopted in all models. This
setting strategy follows the Elastic GNN [12]. We choose
the classification accuracy as the comparison criterion of the
performance.

B. PARAMETER SETTING AND SUMMARY
The average performance together with the standard variance
within 10 runs is reported in Table 2. The learning rate is
selected from {0.05, 0.01, 0.005}. The weight decay is tuned
over the set {5 × 10−4, 5 × 10−5, 5 × 10−6}. The Adam
optimizer is used in our experiments. The choice of optimizer
is based on our experience. We found that Adam optimizter
typically returns a better local minimizer than SGD optimizer
in experiments. The dropout rate lies in the set {0.5, 0.8}.
The hidden dimension of node embedding is fixed as 64.
The number of layers of the proposed Schatten GNN is
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TABLE 2. Node classification accuracies (%) on benchmark datasets. ‘−’ denotes that there is no available result in the original paper.

FIGURE 4. The sensitivity of λ1.

TABLE 3. Statistics on graph under adversarial attack.

tuned from {5, 10}. λ1 is tuned over {1, 10, 100}. λ2 is tuned
from selected from {0.1, 0.2, . . . , 1}. Set γ = 1

1+λ1
and

β = 1
2γ . The parameters can also be determined by 10-fold

cross validation.
The proposed Schatten GNN is derived from graph signal

processing problem Eq. (19) with a specific optimization
scheme Eq. (45). In fact, all the chosen comparison
methods in Table 2 can be derive from a kind of graph
signal processing problems with different regularizers and
optimization schemes. The difference between the proposed
Schatten GNN and recent Elastic GNN [12] is the last
regularization in Eq. (29). The experimental result reveals that
the mixed property of low rank and l2 smoothess will makes
the performance of graph neural networks stronger than just
l2 smoothness. All experiments are conducted on 1 Tesla
V100 GPU. The average running time is within few minutes
per task.

C. SENSITIVITY ANALYSIS
We empirically analyze the parameter sensitivity of the graph
signal denoising model under the Schatten p-norm. λ1 lies in
{1, 10, 100}. λ2 is selected from {0.1, 0.2, . . . , 1}. K is tuned
from {5, 10}. p ranges from {0.1, 0.5, 1, 1.5}. The sensitivity

FIGURE 5. The sensitivity of λ2.

FIGURE 6. The sensitivity of K .

curves are shown in Figure 4-7. The performance becomes
better as the λ1 takes larger values. The cause is that the larger
λ1 imposes stronger constraint of l2 sparsity. When λ2 takes
small value, the performance is good. when p approaches to 2,
the Schatten p-norm is far from low-rank property and close
to l2 smoothness but is looser. In this case, the performance
of the proposed approach achieves the best.

D. ABLATION STUDY
We perform an ablation study as follows. Aiming at the
graph signal denoising problem with the Schatten p-norm,
we set λ2 = 0 and observe the performance. In this
case, the graph signal denoising reduces to the l2 norm-
based graph smoothing. We show the performance change
of the proposed approach along with the number of layers K
in Figure 8.
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TABLE 4. Classification accuracy (%) under different perturbation rates of adversarial graph attack.

FIGURE 7. The sensitivity of p.

E. ROBUSTNESS UNDER GRAPH ADVERSARIAL ATTACK
The robust performance of the proposed Schatten GNN under
an adversarial graph attack is examined. The attack harms
the GNN model’s performance by slightly modifying the
underlying graph structure. We adopt the MetaAttack [36]
from DeepRobust [37], which is a PyTorch library for
adversarial attacks and defenses, to generate graphs of
adversarial attack for Cora, CiteSeer, Polblogs and PubMed.
We randomly split 10%/10%/80% nodes of these data into
a training set, validation set and test set, respectively. The
statistics of the modified graph are listed in Table 3. By the
works [36], [38], the largest connected component (LCC)
is used in the adversarial graphs. We are only concerned
with the robustness in the sense of l1-based graph smoothing
regardless of adversarial defense. The experimental results
are listed in the Table 4. The robustness of the proposed
approaches is best. This may be attributed to the balance of
the Schatten p-norm for p ∈ (0, 2) and l2 norm-based graph
smoothing.

FIGURE 8. The performance after ablation study with respect to the case
of λ2 = 0.

F. SUMMARIZATION AND ANALYSIS
The GCN [5] can be regarded as the base architecture in
experiments. In fact, it can be generated by taking λ2 in the
model (19) and performing a gradient scheme with particular
stepsize [12]. The proposed network architecture of Schatten
GNN is determined by the graph signal denoising problem
(19). In this sense, GCN is just a special case of Schatten
GNN when λ2 = 0.

Based on the experimental results in Table 2 and Table 4,
the proposed Schatten GNN achieve the best performance
when compared with recent works on GNNs. By [26], the
Schatten p-norm is between Frobenius norm and nuclear
norm when p lies in the interval [1, 2). The Frobenius norm
induces the l2 sparsity. The nuclear norm has an affinity with
low-rank property. Hence the Schatten p-norm indicates the
mixed property of l2 sparsity and low-rank property. Elastic
GNNs [12] impose l1 sparsity. Hence Elastic GNNs consider
mixed property of l1 and l2 sparsity. We can see that the
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performance of the proposedmethods outperforms the Elastic
GNNs a little. The increment of performance is small. This
is probably that the low-rank property of the signals is a bit
better than the property of l1 sparsity.

IX. CONCLUSION
Message passing networks are some of the most important
graph neural networks. In this paper, we proposed a novel
message-passing networks, called the Schatten graph neural
network, which is derived from a new proposed graph
signal denoising problem with the Schatten p-norm. There is
difficulty in solving the proximal operator in the intermediate
steps, and we proposed a novel fixed-point iteration scheme
for which the linear convergence rateO(ρk ) was theoretically
proved. Extensive experiments indicated that the proposed
approach outperforms the state-of-the-art approaches and is
robust under graph adversarial attacks.
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