
Received March 25, 2022, accepted May 9, 2022, date of publication May 20, 2022, date of current version May 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176729

Optimizing MapReduce Task Scheduling on
Virtualized Heterogeneous Environments
Using Ant Colony Optimization
RATHINARAJA JEYARAJ AND ANAND PAUL , (Senior Member, IEEE)
School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Anand Paul (paul.editor@gmail.com)

This work was supported by the BK21 FOUR Project (AI-driven Convergence Software Education Research Program) through the Ministry
of Education, School of Computer Science and Engineering, Kyungpook National University, South Korea, under Grant 4199990214394.

ABSTRACT Consuming Hadoop MapReduce via virtual infrastructure as a service is becoming common
practice as cloud service providers (CSP) offers relevant applications and scalable resources. One of the
predominant requirements of cloud users is to improve resource utilization in the virtual cluster during the
service period. However, it may not be possible when MapReduce workloads and virtual machines (VM)
are highly heterogeneous. Therefore, in this paper, we addressed these heterogeneities and proposed an
efficient MapReduce scheduler to improve resource utilization by placing the right combination of the map
and reduce tasks in each VM in the virtual cluster. To achieve this, we transformed the MapReduce task
scheduling problem into a 2-Dimensional (2D) bin packing model and obtained an optimal schedule using
the ant colony optimization (ACO) algorithm. As an added advantage, our proposed ACO based bin packing
(ACO-BP) scheduler minimized the makespan for a batch of jobs. To showcase the performance improve-
ment, we compared our proposed scheduler with three existing schedulers that work well in a heterogeneous
environment. As expected, results show that ACO-BP significantly outperformed the existing schedulers
while dealing with workload and VM level heterogeneities.

INDEX TERMS Ant colony optimization, bin packing, heterogeneity, MapReduce, resource utilization, task
scheduling.

I. INTRODUCTION
There is an exponential growth in data volume [1] in the
last couple of decades. Small scale businesses and research
sectors wish to process such huge data and get insight for
the benefit of decision making. There are different big data
processing tools widely available to accomplish different data
processing objectives. MapReduce [2] is one of the efficient
batch processing tools to crunch big data. It processes huge
data in parallel on a cluster of physical machines (PM) or
VMs. However, deploying on-premise Hadoop infrastruc-
ture is still not affordable for small-scale businesses to store
humongous data and process them on demand due to the
complex responsibilities to manage the infrastructure. This
drives them to seek cost-efficient cloud-based MapReduce
services from CSPs like Amazon and Google. They offer

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomas F. Pena .

MapReduce as a service over the Internet on a cluster of
PMs or VMs [3]. As the virtual cluster is scalable on-demand
and pay-per-use basis, most of the cloud users prefer Hadoop
MapReduce on a cluster of VMs. Despite CSP offering an
infinite amount of virtual resources, they are not utilized
100% at any point of time during the service period. On a
rough estimation, if 0.25 GB of memory is unused per VM,
overall unused memory in a virtual cluster of 200 VMs is
approximately 50 GB. It largely affects cloud users to pay for
unused capacity over time, which is highly undesirable on
a business platform. Such resource under-utilization occurs
due to many reasons for different applications. One of the
primary problems is the existence of various heterogeneities
in the Cloud Data-Center (CDC). A layer of heterogeneities
is identified from the platform level (cluster of PMs) to the
application level (MapReduce jobs), which are elaborately
discussed in [4]. They are namely, hardware heterogeneity,
VM heterogeneity, and workload heterogeneity.

55842 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0165-181X
https://orcid.org/0000-0002-0737-2021
https://orcid.org/0000-0002-7622-4698

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 1. Heterogeneous workloads, VMs, and PMs in CDC.

These heterogeneities are further discussed by refer-
ring to the information given in Fig. 1. Consider a CDC
that contains a set of PMs (PM1,PM2, . . .PM50), VMs
(VM1,VM2, . . .VM100) that belong to different VM Fla-
vors/types (VMF1,VMF2, . . .VMF5), and MapReduce jobs
(J1, J2, . . . J6). In general, PMs in the CDC are not of similar
configuration and capacity. It is because when the number
of cloud users increases and applications demand varying
resource requirements, CSPs are forced to equip the CDC
with different servers in terms of configuration and per-
formance. This negatively introduces heterogeneous perfor-
mance for applications. Sometimes, services are hosted on a
cluster VMs of different types [5] to satisfy users’ require-
ments based on price. The resource configuration of these
VMs may change over time due to competitors’ business
plans and other technological advancements. Therefore, the
same application can be hosted on VM that belongs to differ-
ent types. Finally, a batch of MapReduce jobs is periodically
executed on the hired virtual cluster. These jobs exhibit het-
erogeneous nature based on varying resource requirements,
input dataset size, job nature (CPU or IO-intensive), etc.
Moreover, job execution order in a batch results in differ-
ent job latency, makespan, and resource utilization. Hence,
heterogeneity at any level can significantly impact MapRe-
duce job performance [6] and pose challenges to satisfy
user expectations. So, in this paper, we have addressed
VM and workload level heterogeneities for MapReduce task

scheduling to maximize resource utilization and minimize
makespan on heterogeneous virtual environments.

Upon the user request for MapReduce as a service on
a cluster of VMs, VMs in MapReduce virtual cluster is
deployed [7] on different PMs located in different racks in
the CDC. Then, huge data are loaded or streamed onto the
MapReduce virtual cluster. Data is then divided into small
units, called ‘‘blocks’’ (by default, 128 MB), and distributed
across the MapReduce virtual cluster with default replication
factor (3), which is processed by a set of MapReduce jobs
on demand. A MapReduce job consists of two primary tasks:
map and reduce.
• A map task receives a set of data blocks as input, reads
data as records from the data blocks, and produces
intermediate output records, by partitioning them into
multiple segments, which are then distributed to many
reduced tasks based on different criteria.

• A reduce task gets a portion of these intermediate out-
put records from all the map tasks. In general, it per-
forms three magical steps (merge, sort, and group). Each
reduce task merges the collected intermediate output
records into a single file, sorts, and groups them based on
the key. Finally, reduce function executes a user-defined
logic on the output of the group function to produce the
result.

For both map and reduce tasks, a resource unit is allo-
cated for execution. It is denoted by ‘‘slot’’ in MapReduce

VOLUME 10, 2022 55843

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 2. Task scheduling with/without heterogeneous capacity awareness.

v1 and represented as an ordered pair < vCPU ,memory >.
Therefore, a slot is a logical pack of virtual CPU (vCPU)
and memory. VMs are logically partitioned into multiple
discrete slots which can run individual map/reduce tasks.
The downside of this approach is these slot sizes are fixed
and cannot be configured on a job basis. As heterogeneous
jobs in batch demand different slot sizes, we need to set the
maximum resource requirement of a task among all jobs as
common slot sizes. Moreover, a map task cannot be executed
on reduce slots and vice versa. This leads to huge resource
under-utilization, and hence, such a concept is eliminated in
MapReduce v2 [4], wherein a slot is a called ‘‘container’’.
Unlike the slot, the container is flexible and can be defined for
map/reduce tasks of each job. Consider the MapReduce jobs
{Ji, where i=1 to 6} mentioned in Fig. 1. These jobs demand
different sizes of containers for map and reduce tasks. For
example, the map task of J1 requires 1 vCPU and 2 GBmem-
ory, and the reduce task requires 1 vCPU and 1 GB memory.
In addition, the number of map and reduce tasks, and the job
nature also vary. When a batch of such heterogeneous jobs is
periodically executed, flexible containers impact makespan
and resource utilization. Moreover, VMs in MapReduce vir-
tual cluster are also highly heterogeneous [7], as shown in
Fig. 1. This increases the complexity of task scheduling due
to the varying number of containers launched in VMs over
time. Hence, workload and VM level heterogeneities together
affect the performance task scheduling in terms of makespan
and resource utilization. It is illustratedwith an example given
in Fig. 2. Consider two VMs with different configurations
< vCPU ,memory >: < 4, 6 > and < 2, 4 >. As shown in
Fig. 2(a), scheduling first and secondmap tasks (map1,map2)
from J4 in VM1 leaves 3 GB of memory unused till their
completion. Similarly, scheduling the first map task (map1)
from J2 and J3 in VM2 leaves 1.5 GB of memory unused.
However, scheduling map tasks of different jobs based on the
size of containers and VMs can minimize memory wastage.
For instance, as shown in Fig. 2(b), scheduling the first map
task (map1) from J1, second map task (map2) from J5, and
J6 completely utilized all the resources in VM1. Similarly,
the first map task (map1) from J1 and J5 utilized all the
resources in VM2. Reduce tasks of different jobs also demand
varying size containers. In addition to these heterogeneities,

map and reduce tasks have different constraints (data locality
for map tasks and minimal network bandwidth for reduce
tasks) to meet before scheduling. Therefore, finding the right
combinations of map and reduce tasks from different jobs
for each VM becomes a complex task. It ultimately results
in virtual resource under-utilization, which in turn degrades
the makespan.

Motivation: If there are hundreds of VMs and tens of
MapReduce jobs with thousands of map and reduce tasks,
finding a schedule that chooses the right combination of map
and reduce tasks from different jobs in each VM becomes
an NP-complete problem. To mitigate the impact of these
heterogeneities, the following key contributions are provided
in this paper.

• We, initially, formulate the typical MapReduce task
scheduling problem into a constrained 2D bin packing
problem to improve the Quality of Services (QoS), such
as makespan and resource utilization. The idea of bin
packing is given n bins of capacity c and m objects of
different weights/sizes, the objective is to minimize the
total number of bins to contain allm objects. We assume
each VM in the virtual cluster as a bin and assign a suit-
able combination of map and reduce tasks from different
jobs, satisfying the task-related constraints.

• Then, we employ Ant ColonyOptimization (ACO) algo-
rithm to obtain a suitable combination ofmap and reduce
tasks from different jobs in a batch. The feasibility
of other meta-heuristic optimization algorithms in a
cloud environment for scheduling problems is critically
reviewed in [8]. The reason for choosing ACO is the
problem we solve in this paper involves a huge discrete
search space, for which ACO is typically used for find-
ing an optimal solution [9].

The rest of this paper is organized as follows. Related
works on MapReduce task scheduling in a heterogeneous
virtualized environment for heterogeneous workloads and bin
packing are discussed in Section 2. The proposed method to
find the right combinations of the map and reduce tasks using
ACO is formulated in Section 3. Results of our proposed
method are presented in Section 4, while the conclusion and
future work are mentioned in Section 5.

55844 VOLUME 10, 2022

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

II. LITERATURE SURVEY
In this section, we discussed some of the significant research
works on heterogeneity that exists in MapReduce jobs and
VMs, to improve job latency, makespan, and resource utiliza-
tion. The classical fair scheduler [10] tends to fairly share the
resources among the jobs in a batch. It does not consider the
heterogeneities that exist on the cloud data processing plat-
form. A heuristic-based MapReduce job scheduler (HMJS)
is proposed in [11] to model the multi-layer heterogeneity
that exists in a cloud-MapReduce virtualization environment.
The authors modelled a MapReduce task scheduling problem
as 2D bin packing using a simple heuristic. Then, they used
roulette wheel scheme (RWS) based data block placement
on heterogeneous VMs to improve makespan and resource
utilization. Various scheduling schemes for Hadoop MapRe-
duce in a heterogeneous environment are discussed in [12].
The authors focused on how the heterogeneous environ-
ment affects the performance in MapReduce job execution
sequence. To improve data locality, minimize the number of
non-local executions, and virtual network bandwidth con-
sumption, ACO is used in [13], which splits and spreads
the data block based on processing capacity VMs. A sim-
ilar approach is used in [14] to improve the MapReduce
scheduler performance in a heterogeneous environment. The
data blocks are allocated to nodes based on their processing
capacity and made scheduling decisions separately for the
map and reduce tasks based on the computing ability of
each node. A novel greedy scheduling algorithm is proposed
in [15] to allocate resources for heterogeneous MapReduce
jobs. The authors minimized service time and cost by allo-
cating resources efficiently. Estimating execution time and
resource usage of jobs in the batch is done in [16] to prepare a
schedule in the heterogeneous environment. To achieve this,
the authors extracted the execution log of jobs and used it to
estimate the parameters, which are then used for scheduling
jobs to improve resource utilization and makespan. Chi-Ting
Chen et al. [17] proposed a dynamic grouping integrated
neighbouring search strategy to improve resource utiliza-
tion and data locality in a heterogeneous environment. First,
the authors grouped heterogeneous jobs into two categories:
IO-bound, and CPU bound. These job types require varying
resources throughout the execution. Therefore, jobs reorder-
ing is performed to occupy the available resources. To handle
the varying size of map/reduce tasks of different jobs, a flex-
ible elastic container is devised in [18] to scale up/down the
resources at runtime based on tasks’ resource requirements.
As the size of the container is not fixed inMapReduce v2, it is
essential to manage the complexity introduced by workload
heterogeneity.

Hardware heterogeneity is more prevalent when hetero-
geneous and federated clouds are used for hosting various
big data applications. Therefore, Thourayas Gouasmi, et al.
proposed a distributed heuristic algorithm in [19] to improve
job response time and cost by increasing the number of data
local executions and minimizing the bandwidth consumption

between clouds. This problem is modelled as a mixed-integer
program to evaluate the performance of the proposed sched-
uler. Mostly, dynamic schedulers ignore data block place-
ment, especially, in the heterogeneous environment while
concentrating on other parameters to improve. Therefore,
a multi-objective optimization problem is modelled and
solved in [20] using a genetic algorithm in the heterogeneous
environment, for dynamically handling data block placement
and resource scaling. A heuristic-based algorithm [21] is
introduced to improve energy efficiency while scheduling a
batch of heterogeneous jobs in a heterogeneous environment.
Based on the energy consumption in each node, a deci-
sion is made to launch map and/or reduce tasks. An ACO
algorithm is used in [22] to finalize the job execution in
a batch based on heterogeneous job size and its expected
latency. However, the job taking less data and response time
is given high priority in the job schedule. In addition, the
authors used Artificial Neural Network (ANN) to predict
the resource usage of a job in the heterogeneous execution
environment. In [23], performance and monetary cost trade-
offs in MapReduce job scheduling are addressed with the
help of Pareto-optimization to find a near-optimal solution.
It helps cloud service providers to charge their users based on
the IO operations performed.

Bin packing is being widely applied in various fields, espe-
cially in a cloud environment, from task scheduling [24], job
scheduling [20], to VM scheduling [25], for different objec-
tives and improving various QoS, such as latency, makespan,
resource utilization, etc. To improve the resource utilization
and application response time, Jesus et al. [26] proposed a
system that consists of three modules to place the maximum
number of tasks in VMs. The authors are predicting the
maximum resource requirement of a task, scheduling the task
to suitable VMs, and monitoring the resource availability.
A dynamic bin packing model for cloud resource allocation
is discussed in [24] to minimize the total cost of the VMs
used over time. A multi-dimensional bin packing problem for
minimizing energy is introduced in [27] along with a fine-
grained map/reduce task scheduling. The authors specifically
addressed dynamic resource management and job scheduling
for big data applications in a heterogeneous virtualized envi-
ronment. Task consolidation using bin packing with meta-
heuristic algorithms has many use cases including resource
management in cloud computing. Based on the problem, the
dimension of bin packing differs. For example, a simple 1D
bin packing problem and applicability of evolutionary algo-
rithms are explored in [28]. A hybrid evolutionary algorithm
is used in [29] to solve a 2D bin packing problem to assign a
set of rectangular items into uniformly sized bins. A 3D bin
packing problem [30] is studied for consolidating tasks using
a differential evolutionary algorithm to increase container
space utilization. A multi-objective optimization technique
to solve 2D bin packing is proposed in [31], in which a
particle swarm optimization algorithm is used to explore mul-
tiple favourable solutions. When the number of constraints

VOLUME 10, 2022 55845

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

TABLE 1. List of notations.

increases, possible search space decreases, which increases
the complexity of finding an optimal solution. For real-time
applications, tasks depend on data that is streamed, which
eventually causes a gap between different task execution in
heterogeneous resource clusters. To solve this problem, the
authors [32] combine multiple imprecise computations for
continuous execution by avoiding the execution gap as maxi-
mum as possible. Some works [33], [34] focus on varying the
bin size to manage heterogeneity, while some works focus on
varying the size of the workloads [35], [36] for placing them
into homogeneous/heterogeneous bins. Bin packing is also
widely used in mapping VMs to PMs to improve resource
utilization. Various bin packing methods for VM placement
are discussed in [37].

In summary, improving makespan and resource utiliza-
tion are the major challenges in heterogeneous virtualized
environments. Even though the approaches discussed in the
literature use optimization algorithm for scheduling decisions
at the MapReduce job level, there is a chance to improve
makespan and resource utilization further at the task level by
exploiting workload and VM level heterogeneities. However,
MapReduce task scheduling is not like a general task schedul-
ing that is based on the directed acyclic graph. Applying
meta-heuristic optimization algorithms face a lot of con-
straints that limit the search space for exploring the solution
for MapReduce task scheduling. To handle this problem,
we model the MapReduce task scheduling problem as a
constrained 2D bin packing model and solve using ACO to
find the possible combinations of map and reduce tasks from
different jobs in the batch and assign to VMs in the Hadoop
virtual cluster.

III. 2-DIMENSIONAL BIN PACKING MODEL
FOR MAP/REDUCE TASKS
Bin packing tasks is largely studied in a heterogeneous vir-
tual environment for various applications. Our objective of
this proposed method is to pack the right combination of

MapReduce tasks from heterogeneous jobs into VMs (bins)
based on heterogeneous VM capacity and container size
to improve makespan and resource utilization using ACO.
In this section, we initially define the problem statement and
objective function, model bin packing problem for MapRe-
duce task scheduling, and use the ACO to explore various
possible combinations. Various notations used throughout
this paper are listed out in Table 1.

A. PROBLEM DEFINITION
The 2D bin packing model for MapReduce task scheduling
was first proposed by the authors in [11] to exploit the VM
and workload level heterogeneities, using simple heuristics.
In this paper, the same 2D bin packing model is modified
further to adopt ACO. The model definition is ‘‘scheduling
right combination of map and reduce tasks from a batch
of heterogeneous jobs onto heterogeneous bins to maximize
virtual resource utilization and makespan’’ is represented
by Eq. 1.

∀i,j,CombJj < nmap,mreduce >→ Bh,gi (1)

Here, nmap tasks andm reduce tasks combinations (Comb)
of jth job (J) can be executed at any point of time on a
bin (Bh,gi) running on hth PM mounted in gth rack in CDC,
where CombJj is an ordered pair. A Bh,gi might execute any
combination of map and reduce tasks (CombJ1 < 5, 0 > ∧
CombJ2 < 0, 2 > ∧ CombJ3 < 0, 0 > ∧ . . . ∧ CombJM
< 3, 0 >) from different jobs. However, it is not certain that
all the map and/or reduce tasks are executed in Bh,gi at any
time. Because, if there are no data blocks to be processed
by a job, map/reduce tasks of that particular job will not be
included in this pair sequence.

B. OBJECTIVE FUNCTION
As the number of map tasks is typically huge, we initially
discuss the bin packing model with only map tasks to find
the right combination of map tasks of different jobs. This is

55846 VOLUME 10, 2022

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

applicable for the reduce tasks and the combination of map
and reduce tasks as well. The motivation of this problem
is to improve virtual resource utilization while executing
heterogeneous jobs on heterogeneous VMs. When we aim to
improve resource utilization, makespan could be a tradeoff.
So, we also focused on a fair share of resources between
the jobs in a batch to reach optimal makespan, such that
every job gets its turn to execute the tasks. Consequently, this
may affect job completion time. For example, the shortest
job in the batch may finish its execution after a long job is
completed. Because a batch of jobs is submitted, individual
job latency is ignored to improve resource utilization. How-
ever, minimizing the makespan is highly preferred. Firstly,
we find the possible combinations <map, reduce> of Jj in
every bin. For example, as shown in Fig. 3, consider 2 jobs
(J1, J2), and 100 VMs, each with 4 containers. For simplicity,
only map tasks of these two jobs are considered for finding
the right combinations. So, possible combinations for jobs
(J1, J2) in B

h,g
i are < 4, 0 >< 0, 0 >, < 3, 0 >< 1, 0 >,

< 2, 0 >< 2, 0 >, < 1, 0 >< 3, 0 >, and < 0, 0 >

< 4, 0 >. One of these combinations is < 1, 0 >< 3, 0 >,
which indicates the number of < map, reduce > tasks from
J1 and J2 in a bin. So, 1 map task and 0 reduce task from J1,
3 map tasks and 0 reduce task from J2 are possible in a bin.
Such possible combinations are identified for each bin in the
virtual cluster.

As we ensure fair sharing of resources among the jobs
while bin packing, it guarantees the performance of the task
scheduler in terms of makespan. Therefore, we take every
combination from each bin (for instance, < 4, 0 >< 0, 0 >
from Bh,g1 , < 2, 0 >< 2, 0 > from Bh,g2 , < 1, 0 >< 3, 0 >

from Bh,g3 , . . . , < 1, 0 >< 3, 0 > from Bh,gN) and evaluate
whether all the resources are completely utilized using Eq. 2,
which comprises two components (vCPU , and memory) to
calculate Resource Utilization of Bh,gi (RUi). To find the
utilization of vCPU in Bh,gi , we find a ratio between the
number of vCPU occupied (

∑Ti
k=1 AR

v
k) by all the tasks (Ti)

running in Bh,gi at present and the total number of vCPU

available in Bh,gi (BRvi). Similarly, we calculate the utilization
of memory, as well. If any one of the resources is utilized
very less, for example, 90% (vCPU) and 10% (memory), then
RUi is just 0.09 (0.9 x 0.1), which is not desired. Therefore,
for all the combinations found in each bin, RUi is calculated.
Table 2 lists out the RUi calculated for map task combinations
from different jobs described in Fig. 1 for a VM that belongs
to different VMF. Finally, we choose the combinations that
result RUi over 90%.

∀i,RUi =

∑Ti
k=1 AR

v
k

BRvi
×

∑Ti
k=1 AR

u
k

BRui
, k ∈ Taskk,running,ij

(2)

After calculating RU for each bin, our objective is to
improve the virtual resource utilization in each bin using

TABLE 2. Resource utilization in bins that belong to different VMF for all
six jobs given in Fig. 1.

Eq. 3, and overall resource utilization in the virtual cluster
using Eq. 4.

(i) Utilization_of_individual_bin=

Min(1− RUi) (3)

(ii) Utilization_of_virtual_cluster=

Min
N∑
i=1

(1− RUi) (4)

VOLUME 10, 2022 55847

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 3. Number of map task combinations from different jobs.

TABLE 3. Maximum number of map tasks possible for each job in
each VMF.

Once the right combinations (that improve resource uti-
lization) of map tasks from different jobs are identified,
task related constraints are verified. For instance, data local
execution is the desirable property for a map task, which
is verified using Eq. 5. So, pth map task of Jj (Task

p
j) in

CombJj is checked whether Bh,gi has a right data block to
process, such thatmaximumnon-local executions are avoided
to minimize the unnecessary local bandwidth consumption
and job latency. Then, the fairness in resource sharing among
jobs that are active in a batch is ensured using Eq. 6 at every
Ct seconds. Ct is a variable constant, which can be set based
on the expected latency of a job in the batch.

∀j,CombJj

← {∀j,p,Task
p
j ∈ B

h,g
i block_location} (5)

∀j,

∑p
r=1 AR

v
j +

∑q
s=1 AR

v
j∑N

i=1 B
v
i

×

∑p
r=1 AR

u
j +

∑q
s=1 AR

u
j∑N

i=1 B
u
i

≤

∑N
i=1 B

v
i

|J |
×

∑N
i=1 B

u
i

|J |
(6)

The total ratio of vCPU allocated for each job (p map
tasks, and q reduce tasks) is calculated by using

∑p
r=1 AR

v
j +∑q

s=1 AR
v
j over total vCPU in the virtual cluster (

∑N
i=1 B

v
i).

Similarly, the ratio of memory used by each job is also
calculated. Then, the outcome of multiplication of memory
and vCPU usage of each job should not exceed the equal
share of resources for the jobs running in the cluster.

C. BIN PACKING MAP/REDUCE TASKS USING ANT
COLONY OPTIMIZATION
Finding the right combinations of the map and reduce tasks
from different jobs is less compute-intensive when there are

FIGURE 4. Finding tasks combinations using ACO.

less number of jobs and bins. If there are hundreds of bins
and tens of MapReduce jobs, finding the right combinations
of tasks for every bin involves a huge search space, which
takes huge time to linearly evaluate. The number of task
combinations in a bin depends on the size of the container
and bins. For instance, as shown in Fig. 3, consider 100 bins,
2 MapReduce jobs, and 4 containers in each bin. In this case,
each bin gets five different combinations. The combination
< 3, 0 >,< 1, 0 > in Bh,gi denotes that 3 map tasks,
0 reduce task from J1 and 1 map task, 0 reduce task from J2.
If there are 100 bins, then 5100 combinations are possible in
the search space, which is huge to linearly evaluate RU for
every combination and find fair share among the jobs. But
the scheduling decision is needed very quickly after a batch is
submitted. Therefore, we use ant colony optimization (ACO)
algorithm, which is a well-known and suitable meta-heuristic

55848 VOLUME 10, 2022

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

Algorithm 1 Bin Packing Map/Reduce Tasks Using ACO
1) Get the information on workloads and bins.
2) Find different combinations of map/reduce tasks of different jobs that can be run in each bin.

For map tasks
a) Find the maximum number of map tasks of each job possible in each VMF (Table 3).

Maxposji = ∀j,

∑
ARv,uj,r
BRv,ui

(7)

b) Find all possible combinations of map tasks from all the jobs that are currently active in the batch.
c) Calculate RUi (as in Table 2).
d) Consider the top 5 combinations of map tasks in each bin ensuring data locality.

For reduce tasks
a) Map output in Racks (MOR):

∀g,MORg = ∀j,h,

∑N
i=1(

∑p
r=1 TaskOutput

r
j ∈ B

h,g
i)∑X

g=1(
∑N

i=1(
∑p

r=1 TaskOutput
r
j ∈ B

h,g
i))

(8)

b) Preferred rack (Pref_rack) to process reduce task: Pref_rack= max(MOR)
c) Map Output in VMs (MOV) in Pref_rack:

∀i,MOVi = ∀j,h,

∑p
r=1 TaskOutput

r
j ∈ B

h,PrefRrack
i∑N

i=1

(∑p
r=1 TaskOutput

r
j ∈ B

h,PrefRack
i

) (9)

d) Preferred VM (Pref_VM) to process the reduce task: Pref_VM=sort_des_order(MOV)
e) Consider the top 50% of bins from Pref_VM to launch reduce tasks.

3) Find the possible combinations < map, reduce > tasks that belong to Jj in each bin using ACO.
a) i = 10, k = 0
b) Repeat untill i! = 100

i) ∀j,CombJj = ACO(Bk+1 to k+i, 510combinations,Pref _VM)
ii) k = i, i = i + 10

c) end
4) Schedule the tasks.
5) Check for unused resources every Ct , and repeat Step 2 until all the jobs in a batch finish the execution.

search algorithm for huge discrete search space. As given in
Algorithm 1, we initially find (Fig. 4) the maximum number
of map tasks of each job possible in each VMF (Maxposji)
using Eq. 7. We use only five VMFs in our experiment,
as listed in Table 3, and it is fixed for a batch of jobs until its
completion. Because, for any search space, we need to know
the range within which we have to look for the solution. For
instance, VMF5 can execute up to 12, 12, 12, 6, 12, and 6 map
tasks of J1, J2, . . . J6, respectively. Now, for each bin that
belongs to different VMFfinds different combinations ofmap
tasks from different jobs, subsequently, RUi are calculated,
as given in Table 2. One possible combination of map tasks
from different jobs in a bin that belongs to VMF5 is (0, 0,
0, 5, 2, 2), for which RUi is calcualted. Similarly, we calcu-
late the resource utilization of all possible combinations and
choose the combinations that result RUi over 90%. Finally,
we choose top five map task combinations from different jobs
in each bin based on RUi value.

For reduce tasks, we look for a set of VMs running in a
specific rack. Firstly, we find a rack that might transfer more
map output data among all the racks that host virtual cluster,
using Eq. 7. As we cannot find the exact map output size
in advance before all map tasks from different jobs, we just
find the running total of map output size from map task’s
in-memory buffer. After finding a rack that could cause more
map task output, we find a set of VMs in the rack that will
produce more map output, in the same way, using Eq. 7. After
this, the right combination of < map, reduce > is found for
each job. If the early reduce feature is enabled, before all the
map tasks of a job is over, all the reduce tasks are launched.
Therefore, we need to include reduce tasks also in finding
the right combinations (as given in ordered pair) that result
in considerable resource utilization. This way, we minimize
the inter-rack bandwidth consumption after launching reduce
tasks. In general, every job executes numerous map tasks as
the input dataset is huge. Therefore, most of the time, only

VOLUME 10, 2022 55849

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

Algorithm 2 ACO for Finding the Schedule

Function ACO(Bk+1 to k+i, 510,Pref _VM):
Initialization:
• Assign pheromone values on 5× 5 edges
between each bin from k + 1 to k + i.

• Other algorithm control parameters, such as
number of ants, exploration, and exploitation are
initialized.

while NOT end do
1) Path construction between each bin

from k + 1 to k + i
2) Ants generation
3) Mapping ants with path
4) Evaluate the objective function

Min(1− RUi) ANDMin
∑N

i=1(1− RUi)
5) Fitness value calculation
6) Local pheromone update
7) Global pheromone update

end
Return the optimal schedule

map task combinations of different jobs are considered at the
initial stage.

After finding the possible bins to launch the map and
reduce tasks, as shown in Fig. 4, we invoke ACO, which runs
Algorithm 2, for every 10 bins, sequentially, to find the right
combination of map/reduce tasks to maximize the individual
bin resource utilization. For instance,< 4, 0 >< 0, 0 > from
Bh,g1 , < 2, 0 >< 2, 0 > from Bh,g2 , < 1, 0 >< 3, 0 >

from Bh,g3 , etc. In order to ensure a fair share of resources
among jobs, we need to evaluate all 5100 combinations if
the number of bins is 100. Therefore, we break down the
combinations by taking every 10 bins to find the fair share,
which will cause only 510 combinations. This takes very
less time to find a perfect schedule, part by part. We con-
sider every 10 bins for finding the combinations because the
algorithm should not face huge search space nor run more
iterations. In Algorithm 2, bins and task combination details,
such as Bk+1 to k+i, 510 combinations, Pref _VM are received
as input. Final combinations (schedule for the current 10 bins)
are sent back to Algorithm 1.

To begin with ACO, a pheromone valuematrix is generated
that records a value between 0 to 1. Between every bin from
k + 1 to k + i, 25 edges (5 × 5) are possible, on which the
pheromone is deposited. Other algorithm related parameters
such as the number of ants, exploration, and exploitation are
initialized. Then, the probability value is calculated using the
pheromone matrix to construct the path matrix between every
bin from k+1 to k+i. After this, ants (a real number between
0 to 1) are generated on the edges (path). Each ant is mapped
with the path constructed and decided whether to choose a
particular combination from each bin pair. Once pairs are
identified, objective functions are evaluated using the input

values given to the algorithm to choose the right combination.
Then, the fitness value is calculated to decide whether the
current solution should be considered for the next iteration.
Based on the fitness value, local and global pheromones are
updated. This is repeated until the solution does not change
or desired number of times. Finally, an optimal schedule for
the current 10 bins is obtained and continued until all the
bins (100 here) are evaluated. This whole process is repeated
whenever a batch of jobs is submitted or every Ct seconds to
find the resource availability and schedule tasks that are yet
to be executed.

IV. RESULTS AND ANALYSIS
A. EXPERIMENTAL SETUP
To showcase the efficiency and effectiveness of our pro-
posed bin packing model for MapReduce task scheduling
(ACO-BP), we modified classical FS and compared it with
the default fair scheduler (FS) [10], RWS and HMJS [11],
for a batch of MapReduce jobs (wordcount (J1), wordmean
(J2), word standard deviation (J3), kmean (J4), sort (J5),
and join (J6)) on a heterogeneous virtualized environment.
To compare and contrast, we used several parameters, such as
latency, makespan, non-local executions, and finally utiliza-
tion of vCPU and memory. To observe the working behaviour
of our proposed method that deals with heterogeneous envi-
ronments and workloads, we implemented our simulator
framework in Java [38] and executed it on a server with
12 core hyper-threaded and 32 GB memory. The simulator is
run several times and the median results are presented in this
section. All the CDC and workload related parameters and
their values are considered as in Fig. 1. However, values for
algorithm, workload and CDC related parameters specified in
this paper can be customized.

1) CDC RELATED PARAMETERS
We assumed the CDC related parameters, such as a num-
ber of racks, PMs, VMs, VMFs, and network bandwidth
capacity for inter and intra-rack in CDC. We set 50 PMs
in CDC with different configuration settings as an ordered
pair <clock_rate in GHz, number of cores, memory size
in GB>. Based on this, 15 PMs < 1.9, 6, 32 >, 5 PMs
< 2.4, 28, 128 >, 15 PMs < 3.2, 6, 16 >, and 15 PMs
< 3.4, 4, 16 > are considered. These 50 PMs with different
configurations and performances exhibit the heterogeneity
at the hardware level in CDC. On top of this hardware set,
we used 20 VMs (bins) from each VMF (types) to establish
Hadoop virtual cluster and distributed them across CDC.
< vCPU ,memory > configuration of VMF1,. . . ,VMF5 are
< 1, 2 >, < 2, 4 >, < 4, 8 >, < 8, 16 >, and <
12, 24 >, respectively. In addition, it is assumed that there
is no interference for Hadoop VMs by non-Hadoop VMs in
the simulation.

2) WORKLOAD RELATED PARAMETERS
We used the values for workload related parameters, such as
the number of map/reduce tasks and resource requirements
for simulation, as given in Fig. 1. There are six workloads

55850 VOLUME 10, 2022

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 5. Job latency with FS, RWS, HMJS, and ACO-BP.

J1, J2, . . . J6 (MapReduce jobs) in a batch used for the exper-
iment. The resource requirement of each workload varies,
therefore container size is highly heterogeneous for the map
and reduce tasks from different jobs. A container is rep-
resented by <vCPU, memory in GB> and the containers
for map and reduce task are denoted as (<map container>,
<reduce container>) for each job. Based on this, (< 1, 2 >,
< 1, 1 >), (< 1, 1 >,< 2, 1 >), (< 1, 1.5 >,< 2, 2 >),
(< 2, 1.5 >,< 2, 2.5 >), (< 1, 2 >,< 0, 0 >), and
(< 2, 2 >,< 1, 1 >) size of containers are used for
J1, J2, . . . J6, respectively. Each workload is given different
dataset, whose sizes are 128, 64, 256, 192, 76.8, 153.6 in GBs.
Default block size (128MB) is used to distribute input dataset
into HDFS cluster with default replication factor 3. Based on
the size of each dataset and block size, the number of map
tasks is decided. We set the number of reduce tasks based
on the nature of the job. Hence, the number of (map tasks,
reduce tasks) for each job is (1000, 20), (500, 15), (2000, 50),
(1500, 10), (600, 0), and (1200, 5), respectively. Similarly,
the latency of (map, reduce) tasks are approximately (7, 13),
(6, 11), (5, 10), (7, 15), (6, 0), and (13, 27), seconds
respectively. These latencies are the observed units from the
real execution we conducted and fixed the same for our
simulation.

3) ALGORITHM RELATED PARAMETERS
a: BIN PACKING PARAMETERS
We considered only vCPU andmemory (2D) to packmap and
reduce tasks from different jobs in a batch. Besides packing
them into bins, typical map and reduce task-related con-
straints are preserved. For instance, a map task should adhere
to data locality and reduce tasks are to be hosted in racks
that minimize inter-rack bandwidth consumption. In addition,
fair resource sharing is ensured every Ct seconds. It is set to
20, as map/reduce tasks are launched every 20 seconds based

on the resource availability observed. In addition, ACO finds
an optimal schedule for every 10 bins, and incrementally,
adds the schedule up to 100 bins (as specified in this article).
However, it is tunable to any whole number that is not huge
to process, based on the problem settings.

b: ACO PARAMETERS
The number of ants (no_ants) and iterations (no_iter) used
in the ACO algorithm are 10 and 50, respectively. We use
the default local and global pheromone update rule [39] to
emphasize the ant’s exploration. Pheromone decay factor (ρ)
in local and global pheromone update rule controls the inten-
sification and diversification behaviour of ants to explore the
search space. The parameters, no_ants and no_iter are fixed
with the trial and error method, while ρ is set to 0.5 to balance
intensification and diversification, as we divide the search
space into small boundaries.

B. ACO BASED BIN PACKING MAP/REDUCE TASKS
Fig. 5 shows the latency of each job with four methods,
FS, RWS, HMJS, and ACO-BP. As expected, ACO-BP min-
imized the job latency up to 53%, 34%, 60%, 69%, and
44% for J1, J2, J3, J5, and J6, respectively, when compared
to classical FS. It also outperformed the RWS scheduler
with 42%, 22%, 55%, 57%, and 39% improvement for J1,
J2, J3, J4, and J6, respectively, which is very significant to
consider. Similarly, ACO-BP achieved prominent results over
HMJS, which outperformed RWS and FS while dealing with
heterogeneous workloads in a heterogeneous environment.
The improvement of ACO-BP over HMJS is considerably
better with 38%, 9%, 36%, 24%, 37%, and 22% for J1, J2,
J3, J5, and J6, respectively. Surprisingly, a 13% increase in
job latency is observed for J5. It is because J5 contains only
600 map tasks and does not have to reduce tasks to execute.
As jobs are submitted as a batch, reduce tasks of all other

VOLUME 10, 2022 55851

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 6. Number of non-local executions with FS, RWS, HMJS, and ACO-BP.

jobs are scheduled during the execution of map tasks. This
prevents the shortest job that contains only 600 map tasks to
delay its execution. Altogether, ACO-BP minimized the job
latency up to 44%, 38%, and 22% over FS, RWS, and HMJS,
respectively, on average.

In addition to scheduling the map tasks, data locality is
also ensured. Fig. 6 exhibits the number of non-local execu-
tions for map tasks of different jobs with all four schedulers.
Considering the results obtained, ACO-BP minimized the
number of non-local executions up to 24.3% and 1.4%,
compared to the FS and RWS. The FS focuses on sharing
resources among the jobs, which eventually compromised the
data-local executions, which account for the maximum num-
ber of non-local executions. On the other hand, RWS places
the data blocks based on the computing capacity of each
bin, which restricts fair sharing of the resources to a certain
extent. Therefore, in the tug of war between fair sharing and
data locality, the number of non-local executions minimized
is not significant over RWS. In contrast, HMJS considers a
set of heuristics, such as processor performance, amount of
resources utilized or remaining in the bins, it is still possible
to minimize the number of non-local executions compared to
RWS. Therefore, the performance of ACO-BP dropped up to
3% when compared to HMJS. Because ACO-BP attempts
to find the perfect combination of map and reduce tasks, with
data local execution as a primary constraint for map tasks that
belongs to network-intensive jobs. Hence, improvement in
number of non-local executions were not beyond the expecta-
tion when compared to HMJS, because of trying to achieve a
fair share among the jobs and resource utilization, which are
partially contradicting the objectives.

Jobs J1, J2, and J3 are highly network intensive, as they
require to transfer of all the map task output to reduce tasks.
In this case, the input size of reduce tasks is almost equivalent
or higher to the size of job input. Hence, pushing the output of

FIGURE 7. Throughput.

all map tasks into a less number of reduce tasks require a lot
of local network bandwidth to transfer. So, for reduce tasks,
latency minimization is realized when the expected amount
of bandwidth consumption between racks, and between PMs
(that host VMs) in each rack, as given in Algorithm 1. These
factors ultimately help improve the makespan of the proposed
method. When compared to FS, RWS, and HJMS, ACO-BP
minimized the makespan for the batch of jobs considered,
up to 60%, 48%, and 23%, respectively, as shown in Fig. 7.
The ultimate objective of ACO-BP is to improve the virtual
resource utilization by forming the optimal combinations of
map and reduce tasks that belong to different jobs in the
batch. As shown in Table 2, any one of the combinations in
each bin is considered to pack the map/reduce tasks, based

55852 VOLUME 10, 2022

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 8. Unused vCPU over time.

FIGURE 9. Unused memory over time.

on the resource availability every 20 seconds. This causes
ACO-BP to come up with different possible schedules by
relaxing the actual fair share to obtain a better combination
of tasks. In a production environment, a MapReduce job
typically contains thousands of map tasks and a very less
number of reduce tasks, sometimes only map tasks are used
in jobs for pre-processing the data. Therefore, most of the
task combinations in the final schedule are only map tasks
from different jobs. Therefore, we discuss the results of our
proposedmodel based onmap task combinations. To trace the
resource usage, we recorded utilization of vCPU andmemory
in the Hadoop virtual cluster every 10 seconds with all four
schedulers, as shown in Fig. 8, and Fig. 9.

The FS shares the resources among all the jobs that are
active. Therefore, regardless of the map and reduce tasks in

jobs, based on the resource quota, tasks are assigned. In the
heterogeneous environment, where the resource requirements
of tasks, underlying VM configuration (VMF), and phys-
ical resource performance, FS has failed to provide better
resource utilization. On the other hand, RWS focuses on
placing the number of data blocks based on the resource
processing capacity of the individual bin. It means that a bin
that contains low processing power attracts less number of
tasks and vice versa. Therefore, it is slightly better than FS
in minimizing latency, makespan and maximizing resource
utilization. Similarly, HMJS uses runtime heuristics about the
underlying physical and virtual resources, which improves
the performance and resource utilization compared to HMJS.
As ACO-BP finds the right combination of map and reduce
tasks in each bin, it promises optimal resource utilization

VOLUME 10, 2022 55853

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

FIGURE 10. Average unused resources (vCPU and memory) after all the
jobs completed.

at any point in time during execution. At times, to keep
the resources busy, some non-local execution is performed,
which indirectly affects the job latency. However, our pro-
posed model largely minimized the number of idle resources
(vCPU and memory) of the entire virtual cluster during exe-
cution, compared to other schedulers taken for comparison.
As shown in Fig. 10, on average, it minimized unused vCPU
up to 60%, 59%, and 52%, and unused memory up to 77%,
75%, and 57%, when compared to FS, RWS, and HMJS,
respectively. To improve resource utilization using the bin
packing model, sometimes it is required to compromise with
the number of non-local execution, which, however, does not
degrade the makespan.

V. CONCLUSION
Hadoop MapReduce on the cloud using virtual clusters
is nowadays increasingly being used for various real-
world applications like transportation monitoring, advertis-
ing, marketing, banking, etc. Even though the resources are
scalable on-demand in the cloud, there is no guarantee that
the hired virtual resources are completely utilized. In addi-
tion, various heterogeneities (hardware, VM, performance,
workload) are realized between the underlying hardware and
task scheduling. These heterogeneities result in vast resource
underutilization in the hired virtual cluster. Motivated by this,
to improve the virtual resource utilization, we introduced a
constrained 2D bin packing model using ACO to find the
right combination of map and reduce tasks from different
MapReduce jobs. As expected, it significantly minimized the
unused vCPU up to 60%, 59%, and 52%, and unusedmemory
up to 77%, 75%, and 57%, when compared to FS, RWS, and
HMJS, respectively. As part of future work, it is possible to
think of energy consumption as another dimension to improve
the scheduler performance, as it is also highly dynamic based
on the workload and underlying resource capacity. Therefore,
dynamic energy consumption can also be considered in addi-
tion to the layer of heterogeneities mentioned in this paper.

REFERENCES
[1] D.-H. Shin, ‘‘Demystifying big data: Anatomy of big data developmental

process,’’ Telecommun. Policy, vol. 40, no. 9, pp. 837–854, Sep. 2016, doi:
10.1016/j.telpol.2015.03.007.

[2] S. G. Jeffrey Dean, ‘‘MapReduce: Simplified data processing on large
clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 2140–2144, 2008, doi:
10.1145/1327452.1327492.

[3] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. Ullah Khan, ‘‘The rise of ‘big data’ on cloud computing: Review and
open research issues,’’ Inf. Syst., vol. 47, pp. 98–115, Jan. 2015, doi:
10.1016/j.is.2014.07.006.

[4] J. Rathinaraja, V. S. Ananthanarayana, and A. Paul, ‘‘Dynamic ranking-
based mapreduce job scheduler to exploit heterogeneous performance in a
virtualized environment,’’ J. Supercomput., vol. 75, no. 11, pp. 7520–7549,
Nov. 2019, doi: 10.1007/s11227-019-02960-0.

[5] S. Bardhan andD. A.Menasce, ‘‘The anatomy ofmapreduce jobs, schedul-
ing, and performance challenges,’’ in Proc. Annu. Int. Conf. Comput.
Meas., vol. 1, 2013, pp. 619–631.

[6] Z. Zhang, L. Cherkasova, and B. T. Loo, ‘‘Exploiting cloud heterogeneity
to optimize performance and cost of mapreduce processing,’’ ACM SIG-
METRICS Perform. Eval. Rev., vol. 42, no. 4, pp. 38–50, Jun. 2015, doi:
10.1145/2788402.2788409.

[7] R. Boutaba, L. Cheng, and Q. Zhang, ‘‘On cloud computational models
and the heterogeneity challenge,’’ J. Internet Services Appl., vol. 3, no. 1,
pp. 77–86, May 2012, doi: 10.1007/s13174-011-0054-7.

[8] M. Kalra and S. Singh, ‘‘A review of metaheuristic scheduling techniques
in cloud computing,’’ Egyptian Informat. J., vol. 16, no. 3, pp. 275–295,
2015, doi: 10.1016/j.eij.2015.07.001.

[9] X.-S. Yang and M. Karamanoglu, Nature-Inspired Computation
and Swarm Intelligence: A State-of-the-Art Overview. Amsterdam,
The Netherlands: Elsevier, 2020.

[10] Fair Scheduler. Accessed: Mar. 20, 2022. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[11] R. Jeyaraj, V. S. Ananthanarayana, and A. Paul, ‘‘Improving mapre-
duce scheduler for heterogeneous workloads in a heterogeneous environ-
ment,’’ Concurrency Comput., Pract. Exper., vol. 32, no. 7, Apr. 2020,
Art. no. e05558, doi: 10.1002/cpe.5558.

[12] K. Kalia and N. Gupta, ‘‘Analysis of Hadoop mapreduce scheduling
in heterogeneous environment,’’ Ain Shams Eng. J., vol. 12, no. 1,
pp. 1101–1110, Mar. 2021, doi: 10.1016/j.asej.2020.06.009.

[13] G. Singh, A. Sharma, R. Jeyaraj, and A. Paul, ‘‘Handling non-
local executions to improve mapreduce performance using ant colony
optimization,’’ IEEE Access, vol. 9, pp. 96176–96188, 2021, doi:
10.1109/ACCESS.2021.3091675.

[14] N. S. Naik, A. Negi, B. R. T. Bapu, and R. Anitha, ‘‘A data locality based
scheduler to enhance mapreduce performance in heterogeneous environ-
ments,’’ Future Gener. Comput. Syst., vol. 90, pp. 423–434, Jan. 2019, doi:
10.1016/j.future.2018.07.043.

[15] X. Zeng, S. K. Garg, Z. Wen, P. Strazdins, A. Y. Zomaya, and
R. Ranjan, ‘‘Cost efficient scheduling of MapReduce applications on
public clouds,’’ J. Comput. Sci., vol. 26, pp. 375–388, May 2018, doi:
10.1016/j.jocs.2017.07.017.

[16] A. Gandomi, A. Movaghar, M. Reshadi, and A. Khademzadeh, ‘‘Design-
ing a mapreduce performance model in distributed heterogeneous plat-
forms based on benchmarking approach,’’ J. Supercomput., vol. 76, no. 9,
pp. 7177–7203, Sep. 2020, doi: 10.1007/s11227-020-03162-9.

[17] C.-T. Chen, L.-J. Hung, S.-Y. Hsieh, R. Buyya, and A. Y. Zomaya,
‘‘Heterogeneous job allocation scheduler for Hadoop mapreduce using
dynamic grouping integrated neighboring search,’’ IEEE Trans. Cloud
Comput., vol. 8, no. 1, pp. 193–206, Jan. 2020, doi: 10.1109/TCC.2017.
2748586.

[18] Y. Xu, W. Chen, S. Wang, X. Zhou, and C. Jiang, ‘‘Improving utiliza-
tion and parallelism of Hadoop cluster by elastic containers,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 180–188, doi:
10.1109/INFOCOM.2018.8486400.

[19] T. Gouasmi, W. Louati, and A. H. Kacem, ‘‘Exact and heuristic mapreduce
scheduling algorithms for cloud federation,’’ Comput. Electr. Eng., vol. 69,
pp. 274–286, Jul. 2018, doi: 10.1016/j.compeleceng.2018.01.021.

[20] V. Seethalakshmi, V. Govindasamy, and V. Akila, ‘‘Real-coded
multi-objective genetic algorithm with effective queuing model for
efficient job scheduling in heterogeneous Hadoop environment,’’
J. King Saud Univ.-Comput. Inf. Sci., Aug. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157820304298,
doi: 10.1016/j.jksuci.2020.08.003.

[21] V. Pandey and P. Saini, ‘‘A heuristic method towards deadline-aware
energy-efficient mapreduce scheduling problem in Hadoop YARN,’’ Clus-
ter Comput., vol. 24, no. 2, pp. 683–699, Jun. 2021, doi: 10.1007/s10586-
020-03146-7.

55854 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.telpol.2015.03.007
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1007/s11227-019-02960-0
http://dx.doi.org/10.1145/2788402.2788409
http://dx.doi.org/10.1007/s13174-011-0054-7
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.1002/cpe.5558
http://dx.doi.org/10.1016/j.asej.2020.06.009
http://dx.doi.org/10.1109/ACCESS.2021.3091675
http://dx.doi.org/10.1016/j.future.2018.07.043
http://dx.doi.org/10.1016/j.jocs.2017.07.017
http://dx.doi.org/10.1007/s11227-020-03162-9
http://dx.doi.org/10.1109/TCC.2017.2748586
http://dx.doi.org/10.1109/TCC.2017.2748586
http://dx.doi.org/10.1109/INFOCOM.2018.8486400
http://dx.doi.org/10.1016/j.compeleceng.2018.01.021
http://dx.doi.org/10.1016/j.jksuci.2020.08.003
http://dx.doi.org/10.1007/s10586-020-03146-7
http://dx.doi.org/10.1007/s10586-020-03146-7

R. Jeyaraj, A. Paul: Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using ACO

[22] R. Alanazi, F. Alhazmi, H. Chung, and Y. Nah, ‘‘A multi-optimization
technique for improvement of Hadoop performance with a dynamic job
execution method based on artificial neural network,’’ Social Netw. Com-
put. Sci., vol. 1, no. 3, pp. 1–11, May 2020, doi: 10.1007/s42979-020-
00182-3.

[23] N. Zacheilas and V. Kalogeraki, ‘‘A Pareto-based scheduler for explor-
ing cost-performance trade-offs for mapreduce workloads,’’ EURASIP
J. Embedded Syst., vol. 2017, no. 1, Dec. 2017, doi: 10.1186/s13639-017-
0077-7.

[24] Y. Li, X. Tang, and W. Cai, ‘‘Dynamic bin packing for on-demand cloud
resource allocation,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,
pp. 157–170, Jan. 2016, doi: 10.1109/TPDS.2015.2393868.

[25] Z. Wang, ‘‘Variable size vector bin packing heuristics–application to the
machine reassignment problem,’’ Hal, vol. 6025, pp. 16–29, May 2014.

[26] J. O. Iglesias, M. De Cauwer, D. Mehta, B. O’Sullivan, and L. Murphy,
‘‘Increasing task consolidation efficiency by using more accurate
resource estimations,’’ Future Gener. Comput. Syst., vol. 56, pp. 407–420,
Mar. 2016, doi: 10.1016/j.future.2015.08.018.

[27] Y. Shao, C. Li, J. Gu, J. Zhang, and Y. Luo, ‘‘Efficient jobs schedul-
ing approach for big data applications,’’ Comput. Ind. Eng., vol. 117,
pp. 249–261, Mar. 2018, doi: 10.1016/j.cie.2018.02.006.

[28] A. Stawowy, ‘‘Evolutionary based heuristic for bin packing prob-
lem,’’ Comput. Ind. Eng., vol. 55, no. 2, pp. 465–474, Sep. 2008, doi:
10.1016/j.cie.2008.01.007.

[29] C. Blum and V. Schmid, ‘‘Solving the 2D bin packing problem by
means of a hybrid evolutionary algorithm,’’ Proc. Comput. Sci., vol. 18,
pp. 899–908, Jan. 2013, doi: 10.1016/j.procs.2013.05.255.

[30] X. Li and K. Zhang, ‘‘A hybrid differential evolution algorithm for multiple
container loading problem with heterogeneous containers,’’ Comput. Ind.
Eng., vol. 90, pp. 305–313, Dec. 2015, doi: 10.1016/j.cie.2015.10.007.

[31] D. S. Liu, K. C. Tan, S. Y. Huang, C. K. Goh, and W. K. Ho, ‘‘On solving
multiobjective bin packing problems using evolutionary particle swarm
optimization,’’ Eur. J. Oper. Res., vol. 190, no. 2, pp. 357–382, Oct. 2008,
doi: 10.1016/j.ejor.2007.06.032.

[32] G. L. Stavrinides and H. D. Karatza, ‘‘Scheduling real-time DAGs
in heterogeneous clusters by combining imprecise computations and
bin packing techniques for the exploitation of schedule holes,’’ Future
Gener. Comput. Syst., vol. 28, no. 7, pp. 977–988, Jul. 2012, doi:
10.1016/j.future.2012.03.002.

[33] C. Paquay, S. Limbourg, and M. Schyns, ‘‘A tailored two-phase con-
structive heuristic for the three-dimensional multiple bin size bin packing
problemwith transportation constraints,’’Eur. J. Oper. Res., vol. 267, no. 1,
pp. 52–64, May 2018, doi: 10.1016/j.ejor.2017.11.010.

[34] C. Bassem and A. Bestavros, ‘‘Multi-capacity bin packing with dependent
items and its application to the packing of brokered workloads in virtu-
alized environments,’’ Future Gener. Comput. Syst., vol. 72, pp. 129–144,
Jul. 2017, doi: 10.1016/j.future.2016.08.017.

[35] C. Liu and S. Baskiyar, ‘‘Scheduling mixed tasks with deadlines in grids
using bin packing,’’ in Proc. 14th IEEE Int. Conf. Parallel Distrib. Syst.,
Dec. 2008, pp. 229–236, doi: 10.1109/ICPADS.2008.127.

[36] Z.-H. Jia and J. Y.-T. Leung, ‘‘A meta-heuristic to minimize makespan
for parallel batch machines with arbitrary job sizes,’’ Eur. J. Oper. Res.,
vol. 240, no. 3, pp. 649–665, Feb. 2015, doi: 10.1016/j.ejor.2014.07.039.

[37] S. Kumaraswamy and M. K. Nair, ‘‘Bin packing algorithms for virtual
machine placement in cloud computing: A review,’’ Int. J. Elect. Comput.
Eng., vol. 9, no. 1, pp. 512–524, 2019, doi: 10.11591/ijece.v9i1.pp512-
524.

[38] R. Jeyaraj. Simulator. Accessed: Mar. 21, 2022. [Online]. Available:
https://github.com/rathinaraja/DBP

[39] M. Randall and E. Tonkcs, ‘‘Intensification and diversification strategies
in ant colony system,’’ Complex. Int., vol. 9, pp. 1–7, Jan. 2002.

RATHINARAJA JEYARAJ received the Ph.D.
degree from the Department of Information
Technology, National Institute of Technology
Karnataka, India. He is currently a Postdoctoral
Researcher with the School of Computer Science
and Engineering, Kyungpook National University,
Daegu, South Korea. His current research interests
include cloud computing, big data, the IoT, and
data science. Personal website: https://jrathinaraja.
co.in/

ANAND PAUL (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
National Cheng Kung University, Tainan, Taiwan,
in 2010. He is currently working as a Full-Time
Associate Professor with the School of Computer
Science and Engineering, Kyungpook National
University, Daegu, South Korea. He is a Delegate
representing South Korea for M2M Focus Group
and forMPEG. His research interests include algo-
rithm and architecture re-configurable embedded

computing. He was a guest editor of various international journals.

VOLUME 10, 2022 55855

http://dx.doi.org/10.1007/s42979-020-00182-3
http://dx.doi.org/10.1007/s42979-020-00182-3
http://dx.doi.org/10.1186/s13639-017-0077-7
http://dx.doi.org/10.1186/s13639-017-0077-7
http://dx.doi.org/10.1109/TPDS.2015.2393868
http://dx.doi.org/10.1016/j.future.2015.08.018
http://dx.doi.org/10.1016/j.cie.2018.02.006
http://dx.doi.org/10.1016/j.cie.2008.01.007
http://dx.doi.org/10.1016/j.procs.2013.05.255
http://dx.doi.org/10.1016/j.cie.2015.10.007
http://dx.doi.org/10.1016/j.ejor.2007.06.032
http://dx.doi.org/10.1016/j.future.2012.03.002
http://dx.doi.org/10.1016/j.ejor.2017.11.010
http://dx.doi.org/10.1016/j.future.2016.08.017
http://dx.doi.org/10.1109/ICPADS.2008.127
http://dx.doi.org/10.1016/j.ejor.2014.07.039
http://dx.doi.org/10.11591/ijece.v9i1.pp512-524
http://dx.doi.org/10.11591/ijece.v9i1.pp512-524

