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ABSTRACT Extracting specific attributes of a face within an image, such as emotion, age, or head pose
has numerous applications. As one of the most widely used vision-based attribute extraction models, HPE
(Head Pose Estimation) models have been extensively explored. In spite of the success of these models, the
pre-processing step of cropping the region of interest from the image, before it is fed into the network,
is still a challenge. Moreover, a significant portion of the existing models are problem-specific models
developed specifically for HPE. In response to the wide application of HPE models and the limitations of
existing techniques, we developed a multi-purpose, multi-task model to parallelize face detection and pose
estimation (i.e., along both axes of yaw and pitch). This model is based on the Mask-RCNN object detection
model, which computes a collection of mid-level shared features in conjunction with some independent
neural networks, for the detection of faces and the estimation of poses. We evaluated the proposed model
using two publicly available datasets, Prima and BIWI, and obtained MAEs (Mean Absolute Errors) of
8.0 ± 8.6, and 8.2 ± 8.1 for yaw and pitch detection on Prima, and 6.2 ± 4.7, and 6.6 ± 4.9 on BIWI
dataset. The generalization capability of the model and its cross-domain effectiveness was assessed on the
publicly available dataset of UTKFace for face detection and age estimation, resulting a MAE of 5.3± 3.2.
A comparison of the proposed model’s performance on the domains it was tested on reveals that it compares
favorably with the state-of-the-art models, as demonstrated by their published results. We provide the source
code of our model for public use at: https://github.com/kahroba2000/MTL_MRCNN.

INDEX TERMS Head tracking, head pose estimation, multi-task learning, age detection, object detection,
mask R-CNN.

I. INTRODUCTION
HPE (Head pose estimation) is an open research area that
has drawn the attention of specialists in different domains.
The wide applications of HPE in assistive systems, human-
computer interface systems, virtual reality etc., have brought
it into the center of attention of the research community.
For instance, HPE is one of the most efficient UIs (User
Interfaces) for paralyzed patients who are suffering from
complete quadriplegia [1], [2]. The patients in this group have
little control over their four limbs, so head movement is one
of the few ways for them to interact with computers and elec-
tronic devices. For example, several studies have used head
movements in the yaw and pitch directions to control an EPW
(Electric Powered Wheelchair) [3]–[5]. Another application
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of HPEs lies in vehicle-related technologies, where HPEs
are implemented to examine the attention of drivers [6]–[8],
as well as students’ attention in class [9], [10]. On the
other hand, the recent success of VR-related technologies
motivated researchers to use HPE for estimating the users’
gaze and FOV (Field of View) via head pose informa-
tion [11]. Having a fast and reliable HPE model for all the
aforementioned applications is critical, and to this end the
research community has been focusing on two main HPE
approaches; sensor-based and vision-basedmethods. Though
sensor-based (IMU, tilt sensors, etc.) approaches are regarded
as promising solutions, they impose an unwelcome level of
discomfort and distraction to the users, due to their required
attachment to the users’ heads.

In contrast, vision-based techniques enable us to calculate
Euler angles from 2D scans of a user’s head, without requiring
physical contact. Vision-based HPE is not a new idea, and
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FIGURE 1. Simultaneous head detection, segmentation and pose estimation, validated on two public datasets
of A) BIWI B) Prima.

various studies with different levels of success have been
carried out to tackle this problem [12]–[18]. Despite the
promising success of these models in pose estimation, they
often suffer from the lack of an integrated head detection
mechanism. Therefore, before feeding the image to the model
for estimation, a preprocessing step needs to be introduced for
cropping the ROI (region of interest; in this study, faces). This
can be achieved either manually or via existing face detection
modules [19]–[21]. Face detection algorithms, used in con-
junction with the HPE, can adversely affect accuracy, speed,
and efficiency [22]. Also, a non-integrated head detection
mechanism would introduce significant processing demands
and delays in a multi-face pose estimation task. Following the
recent success of neural networks in performing concurrent
face detection and landmark detection [23]–[25] through a
set of shared features, some works have proposed the idea
of using multi-task learning models for parallelizing the face
detection and the pose estimation process [22], [26], [27].

Inspired by the wide applications of HPE, but taking into
account the limitations of the existing models and their lack
of extensibility to other domains, we developed a multi-
purpose, multitask object detection model. The proposed
model localizes objects of interest (in this case faces), while
it concurrently estimates attributes of that object. In other
words, the cross-domain, multitask object detection model
can be used for simultaneous face detection and pose estima-
tion, with adequate generalization capability to be also used
for estimation of other facial attributions (e.g. age). Conse-
quently, we developed an improved version of the current
Mask-RCNN model [19] to detect the face and estimate its
attributes (head pose in this case). Motivated by practical
applications of the HPE, as in assistive technologies for head-
operated wheelchairs [5], we developed our model for esti-
mating the head orientation in the yaw and pitch axes. The
model is built on top of the Mask-RCNN object detection
model and has been tested on two public datasets: BIWI
and Prima. The cross-domain aspect of the model is also
validated on the public dataset UTKFace, for face detection
and age estimation. In the next chapters, we first explore
the existing studies in this area (section II), followed by an

in-depth explanation of the proposed model (section III), and
its testing and evaluation (section IV). Section V discusses
the limitations of the proposed model, while the concluding
remarks summarizing the findings of this study are provided
in section VI.

II. RELATED WORKS
Due to the various applications of HPE, a number of vision-
based techniques for this purpose has been proposed by the
research community. In this section, we first discuss the exist-
ing vision-based HPE techniques, followed by a comprehen-
sive exploration of the multitask learning models developed
for parallelizing several tasks in neural networks.

A. HEAD POSE ESTIMATION
Vision-based techniques for pose estimation have gained
momentum in the computer vision area. Several advantages
over sensor based methods make them more attractive to
developers and end users, including the fact that they require
minimal equipment, being contactless, and ability to be set
up cost-effectively (using just an RGB camera, for example).
Geometrical and learning-based are two approaches have
been used to develop vision-based HPE, in which the
geometry-based ones analyze geometrical features (such
as facial landmarks) to estimate the head pose, while the
learning-based ones estimate it with machine learning tech-
niques. Geometry-based approaches are mainly built upon
two individual modules; i) performing landmark detection
and ii) processing the geometry of the landmarks to esti-
mate the pose. Amongst the first attempts, [28] analyzed the
geometry of five facial landmarks to estimate the head pose.
In [29], the authors analyzed the facial landmark geometry
to estimate the head pose via two cascade steps: first, they
identified the facial landmarks, and then they processed the
landmarks with respect to a virtual web-shaped network for
head pose estimation, in all three axes of yaw, pitch, and roll.

In a more advanced approach, [30] developed a novel
face ellipsoidal model to estimate the yaw pose of drivers’
heads, with the aid of some facial landmarks. Similarly, [31]
utilized a set of modified facial feature extractors, including
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adaptive Hough transform [32], template matching, active
contour model, and projective geometry properties to detect
facial landmarks, and consequently estimate the yaw angles.
In line with the geometry-based approaches, some other
works attempt to estimate head pose from the correspon-
dence of the features, extracted from a 2D image, and a
3D facial model [11]. This technique analyzes the projection
relationship between a 3D facial model and 2D features to
calculate the rotation matrix [33]–[36]. Another geometry-
based approach [3], estimated the head pose with the aid of
a Kinect sensor and three landmarks on the head. Given the
high cost of Kinect, other studies have used inexpensive RGB
web cameras to capture facial frames that seem to be more
cost-effective [4], [37], [38].

On the other hand, we have the learning-based HPE mod-
els. Learning-based techniques aim to train a model for esti-
mating the spatial head pose via appearance features. This
spatial pose estimation can be either a classification, that
classifies the input head images in specific position intervals
(discrete), or a regression approach that estimates the head
pose continuously. The features in this technique are mainly
extracted automatically by convolutional neural networks
that need to be trained with a large, annotated face dataset.
For instance, [37] deployed a set of Gabor features (i.e. a
linear filter used for texture analysis in image processing),
along with a machine learning model (i.e., random forest
algorithm), for face images classification. Due to the classi-
fication nature of this model, it is considered as a discrete
HPE model. In another study, [38] proposed a new model
for yaw and facial landmark estimation in the wild. Similar
to [37], they have classified facial images into several classes
of yaw angles with intervals of 15◦. Following the great
success of CNN in the extraction of features, [39] has trained
a deep neural network to learn the mapping function between
the visual appearance and the 3D head orientation angles.
The authors developed their model as a regression model
that finds the correlation of extracted features from a CNN.
Similarly, [16] developed an HPE model based on a multi-
loss neural network with a function to estimate each of the
Euler angles.

B. MULTITASK LEARNING
For all the HPE models discussed in the previous subsection,
the presence of a face in the input image is an assumption.
It means in practice the face must be first detected and then
cropped from the original image before being fed into the
HPE network. Multitask Learning (MTL) models can sim-
plify this process by integrating a head detection step into
a HPE model. Given the fact that the early layers of a deep
CNN tend to learn generic features of an image, which can
be also be useful for other tasks, the idea of sharing learned
features for different tasks formed the first multitask learning
models [40], [41]. Sharing features in MTL models, does
not only lead to an increase in processing speed, but also to
less biased features against the data of a particular task [42].
Despite the recent success of MTL models, their application

in computer vision and object detection is still in its infancy.
One of the few examples is [43], which introduced amultitask
learning object detection model for detection of dangerous
objects, by detecting an object and estimating its distance
from the camera. The authors used a number of convolu-
tional layers for the extraction of features, which were shared
for both object detection and distance estimation. Similarly,
[44] developed an MTL learning model for object detection
and saliency estimation, trained from a non-jointly annotated
dataset. In the context of HPE, a lot of efforts have also been
put forward to develop a MTL head pose estimation model
[22], [26], [27], [42], [45], [46]. Some of them tried to jointly
estimate the head pose along with facial landmarks [27], [47],
while others tried to detect the head, along with estimating
its pose [42]. For instance, [48] used an Mask-RCNN model
in a multitask learning setup for joint position estimation,
orientation estimation, and body segmentation, by sharing the
global features among all tasks. However, the effectiveness of
such a network for head pose estimation remains unknown.
In a similar way, [42] has developed a multitask learning
approach to improve the performance of previous work by
integrating a face detection step with feature extraction and
pose estimation. Their model, outputs continuous values of
head orientation and demonstrated a MAE of less than 4◦.
One issue with the existing multitask learning HPEs is that
most of them are problem-specific models, with the sole goal
of face detection and head pose estimation.

The ideas and challenges discussed above, have led us
to develop a general purpose MTL model, whose use is
not restricted in the HPE domain (hence ‘‘cross-domain’’),
but can be trained to determine an attribute of choice
(e.g., other facial attributes, such as age), while performing
object detection. In the next section, we present the proposed
model architecture, the methodology of its implementation,
as well as the training considerations.

III. APPROACH
This section discusses the architecture of the proposedmodel,
the hyper parameters, and evaluation metrics.

A. ARCHITECTURE
The overview of the proposed model is presented in Figure 2
It is important to mention that the backbone of this algorithm
is adopted from Mask-RCNN [19]. The whole idea of the
proposed network is described as follows. The input images
are fed to both a RPN (Region Proposal Network) and a
feature descriptor (i.e., Resnet50 for extraction of features
from the input image). RPN is a network that identifies
the prospective objects (also known as ROIs; Region of
Interest) within images. ROIs are coordinates of rectangles
(known as bounding boxes) that are likely to contain an
object, which would be fed to another classifier to determine
the class of the bounded object. In Mask-RCNN [19], the
researchers have developed a novel, lightweight neural net-
work that performs a preliminary object detection to extract
the ROIs. The RPN network needs to be simultaneously

VOLUME 10, 2022 54705



S. M. Bafti et al.: Cross-Domain Multitask Model for Head Detection and Facial Attribute Estimation

FIGURE 2. Overview of the proposed model, developed on top of Mask-RCNN.

FIGURE 3. Pose estimation network. Getting input from the pyramid feature map, convert it to 28 × 28 fixed-size
feature map, followed by some Conv. pooling, batch normalization, and activation function layer.

trained along with the object detection and the attribute esti-
mationmodel. For training the RPN network, a window slides
over the image with a certain stride (sliding steps). For each
step, three different windows (called anchors in [20]) with
three different aspect ratios (9 anchors in total) are created.
RPN_ANCHOR_RATIOS and RPN_ANCHOR_SCALES are
two hyper parameters of the RPN, representing the width-
to-height ratio of the anchors and their sizes, respectively.
For instance, for stride of one, in an image with dimensions
w × h, the model generates w × h × 9 anchors. As defined
by [20], the anchors with an IOU (Intersection of Union;
a metric that measures the overlap between two windows)
greater than 70% with the GT’s (ground truth) bounding box,
are flagged as positive (foreground) and the ones with an
IOU below 30% are flagged as negative (background). These
positive and negative target anchors are then used to train the
RPN network. During the training process, the positive ROIs
generated by the RPN with an IOU greater than a threshold
(i.e. usually 50%), are selected for training the object detector
(a classifier to identify the class of the object) and other
headers (e.g., attribute estimation model); this technique is
known as NMS (non-Max Suppression). A certain number
of the positive and negative ROIs (specified by the Train-
ROIS-Per-Image parameter), generated by the RPN, with a
Positive/Negative ratio of ROI_POSITIVE_RATIO, are then
selected for training the headers.

The positive ROIs, are then cropped from the feature map
and converted to two fixed-size feature maps with a technique
called ROIAlign (see [20] for more info). The feature map’s
size, which is the input for the bounding box and classifier
network, remains at the size of 7× 7, according to [19]. The
cropped ROI for the pose estimation is resized to the fixed-
size of 28× 28. The feature maps are then connected to three
sets of head networks, including a network for classifying
objects within the proposals and fine tuning the bounding
box coordinates, a network for generating masks, and yet
another one for attribute (i.e., pose) estimation. The fixed-
size 28 × 28 feature map is fed to a network that contains a
series of convolutional layers, activation functions, and dense
layers (see Figure 3).

In our pose estimation convolutional network, a fixed-size
feature map is passed through two sets of Conv. Layer (kernel
size: 3 × 3) + Max-pooling layer (window size: 2 × 2) +
BatchNormalization+Activation function (ReLU), followed
by one more Conv. Layer and some dense layers as shown
in Figure 3. In the last layer, a linear activation function
generates the full range of 0 to 1, which is then linearly
mapped to the range of 0 to ϕmax .

B. MULTI-LOSS
The different tasks in neural networks result in different
losses, making it necessary for multitask learning algorithms
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to have a multi-loss function. For our model, we proposed a
multi-loss that combines the losses of the bounding box, clas-
sifier, segmentation, and pose estimation regressors. For the
bounding box detection, the L1 loss function is implemented
as below:

LBB =
∑

Smooth L1(BBTrue − BBprediction), (1)

where the Smooth L1 is defined as below:

Smooth L1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 if |x| ≥ 1

(2)

Here, BBprediction is the vectorized tensor of the predicted
bounding box with a length of 4 (x, y, w, h) and BBTrue is
the true bounding box. In [19], the L1 loss function has been
implemented to eliminate the malicious effect of potential
outliers in bounding boxes. However, due to the restricted
pose labels in our datasets, we implemented an L2-loss for
training the pose regressor as:

LPose =
∑m

i=0

(
GTi

Pose − f (x)iPose
)
, (3)

where GT pose and f (x)pose are the real and predicted pose
values of the ith instance. To train the classifier, to distinguish
between face and non-face ROIs, the difference between the
prediction and the GT isminimized by computing the softmax
cross-entropy loss as:

LClass = −
∑m

i=0
yi.logxi (4)

In Eq. 4, let yi be the real class of the ith instance,
yi ∈ {0, 1}, and xi be the probability that the proposed region
by RPN network contains a face or not. The combination of
the individual loss functions, explained in this section, are
jointly used for training the model. The next section describes
the training process as well as the various hyper parameters.

C. DATA AUGMENTATION
Due to some factors like clearance, brightness, resolution,
occlusion, etc., images taken in controlled environments are
fundamentally different from those taken in the wild. This
discrepancy can be detrimental to the performance of a model
trained on a controlled-environment dataset in real-world
scenarios, due to the lack of generalization. On the other hand,
if the training dataset covers a variety of possible imaging
conditions (i.e. well-diversified), the trained model will be
well-generalized, and automatic translation invariance will be
guaranteed [42]. However, the generation of such a diversi-
fied dataset is tedious and expensive. For bridging this gap,
we have utilized a set of augmentation filters over the input
images to enhance the dataset, both in quantity and quality,
and improve the resulting model’s generalization capability.
Figure 4 demonstrates the augmentation of an original image
with applied contrast, blur, Gaussian noise, pixelation, fog,
rain, and snow filters. Varying weather conditions and camera
vibration in the wild are among themost prevalent factors that
can affect the quality of the captured image.

FIGURE 4. Original image and augmentation filters; snowflake, rain,
contrast, fog, Gaussian noise, etc.

Vertical and horizontal flipping of images is one of the
most common augmentation practices in the computer vision
domain. However, this technique does not apply to this study
because the datasets already contain the same angle on both
sides of yaw, and therefore, flipping the images will add very
little to no variability to the dataset due to its symmetric
nature. Moreover, a tricky and very important consideration
about the flipping augmentation is that the image flipping also
requires the GT to be changed accordingly, to account for the
reversed angle. See Figure 5 for further clarification.

FIGURE 5. Example of two original images and their corresponding
flipped ones. The diagonal arrows shows how the flipped images are
visually identical with the corresponding original image in the dataset.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
The public datasets of Prima and BIWIwere used for training
and testing the proposed model. The Prima dataset contains
images of 15 participants; each participant’s images have
been taken in two different conditions (i.e., different clothes,
different hairstyle, with or without glasses, etc.); 93 images
in each condition are taken per participant. The images are
taken in 13 different yaw angles (15◦ intervals) and 9 different
pitch angles. The dataset contains close-up images of par-
ticipants, with mostly gray backgrounds. On the other hand,
the BIWI dataset contains facial images from 20 participants
(14 males, 6 females) with a head pose distribution of ±75◦

degrees and±60◦ in the yaw and pitch direction, respectively.
Figure 6 shows some sample images of the two datasets.
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FIGURE 6. Sample images of head pose datasets; A) Prima B) BIWI.

TABLE 1. Training pipeline of our model.

For training, we generated a jointly annotated dataset1 for
multitask learning. Generated datasets have been annotated
in the COCO format [49] that enables us to train our model,
requiring the GT of the faces’ bounding boxes, the heads’
masks, the class label of the instance (face/non-face), and
most importantly, the yaw and the pitch.

B. TRAINING
In order to evaluate our method, we have trained two indi-
vidual models for each training dataset (Prima and BIWI).
We used 70% of the datasets to train the models, while the
rest was equally split between the testing and validation sets
(15% for test and 15% for validation). The final global loss
function for convergence of the model is declared as below:

LGlobal = λBBLBB + λClassLClass + λPoseLPose,

where λ denotes the weight for each loss term. Throughout
the training process, each batch of data, contains the raw
images, the GT for the bounding boxes, the segmentations,
and the attribute values (i.e. yaw and pitch). The model is
trained for 10 epochs with 1000 iteration per epoch. The
learning rate is set to 0.001. For achieving a high processing
speed, the image meta-size is set to 128× 128. Table 1 sum-
marizes the hyper parameter values and the training pipeline.

1www.ai-console.com

Given that not all of the proposed regions by the RPN
contain a face, a NMS (non-max suppression) technique
is implemented to eliminate negative (non-face) regions as
explained in section III.A. The NMS technique computes
the overlap between the ROIs and the GT bounding boxes,
as measured by IOU, and removes the proposed regions
with an overlap below the threshold. As with most object
detection approaches, the threshold of IOU for NMS is 50%.
When it comes to joint face detection and pose estimation,
the 50% threshold might degrade the performance, since the
proposed region with an overlap of more than 50%, might
be detected as positive, but a lot of information and face
components might be lost on the other 50% [42]. Various
techniques have been proposed to overcome this problem.
For instance, [16] has used a Kinect depth sensor to detect
a face area in the input images as a pre-processing step
for the detection of face. In our approach, to avoid this
issue, we set the NMS threshold to 80% to ensure that the
proposed anchors cover the majority of the face’s charac-
teristics. Then, the models have been trained with 70% of
the datasets, while the rest was then used for evaluation.
Figure 7 shows some of the learned features from the different
layers of the Resnet50 descriptor. For training the model,
given the limited number of faces within the image and
in order to have a decent training time, we set the hyper
parameters as follows. Post_NMS_ROIS_Training = 1000,
Train_ROIS_Per_Image = 100, RPN_NMS_Threshhold =
0.8, and ROI_Positive_Ratio = 0.33, which means 100 of
the 1000 ROIs (generated by RPN), with a score above

0.8, and with a ratio of ROIS+

ROIS−
= 0.33 would be selected

for training the headers. We reduced the number of the
ROIs (Train_ROIS_Per_Image) from 1000 (i.e. as suggested
by [19]) to 100, since we already knew that there is very few
number of faces per image in the current datasets. Practition-
ers might need to increase the values if they want to train the
model for crowded images.

FIGURE 7. Examples of learned features by Resnet-50 feature descriptor;
the output of 6 different layers are presented for illustration, e.g. from left
to right; face edge, forehead, eyebrow and nose, etc.

As shown in Figure 8, the error for bounding box detec-
tion, pose estimation, as well as global loss, has converged
exponentially.

The performance of the trained model, in terms of the head
pose estimation is presented in the next subsection.
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FIGURE 8. Training and validation error terms; blue: training, orange:
validation.

C. RESULTS
The performance of our proposed model is reported in this
section. The performance is evaluated by the MAE (Mean
Absolute Error) metric as:

MAE =
1
N

∑N

i=0

∣∣p̂i − pi∣∣ , (5)

where N is the number of images, and p̂i and pi rep-
resent the GT and the predicted pose respectively. Given
the importance of real-time inference for such algorithms
in real-world scenarios, and the fact that there is only
one face per image, to increase the inference time we set
the detection parameters as: Detection_Max_Instances = 5,
Post_NMS_ROIS_Inference = 5. In this case, the model
selects 5 ROIs (generated by RPN) with the highest confi-
dence score for detection of up to 5 instances. It is important
to mention that the Post_NMS_ROIS_Inference has been set
to 5, given that the lower the number, the higher speed.
For detection, also theMin_Detection_Confidence was set to
70%, meaning that any detected instances by the model with
a confidence score above 70% was considered as positive.
The results of our models’ performance on both datasets are
shown in Table 2.

FIGURE 9. Distribution of yaw and pitch detection (actual vs predicted in
degrees). Blue dots represent the GT and red dots represent the
predictions.

Given the wide range of the standard deviation, we plot
the distribution of detections on yaw and pitch axes for both
datasets in Figure 9, where the blue dots represent the GT,

and the red ones show the predicted value by the algorithm.
Due to the smaller intervals between the labels of the BIWI
dataset, we can see a more scattered plot for the BIWI dataset.
According to Figure 9, apart from some outliers, the model
on both datasets appears to perform well. Comparing our
model’s performance with the state-of-the-art algorithms,
as shown in Table 2, revealed that the proposed model can
estimate the pose on par with the current state-of-the-art
models. Figure 1 demonstrates some successful cases of head
detection and pose estimation from the Prima and BIWI
datasets. We deployed our trained model on two machines:
1) NVidia Xavier development board (for mobile robot appli-
cations) 2) NVidia GT2070 GPU, where the FPS (frames per
second) of ∼4.5 and ∼16, were respectively achieved. The
model was also tested on its effectiveness in detecting faces.
Performance was measured as F1-scores at the minimum
detection confidence of 70%, as defined below:

F1− Score =
2× TP

2× TP+ FP+ FN
, (6)

where TP (true positive), FP (false positive), and FN (false
negative) represent the number of correctly detected faces,
the number of mistakenly detected faces, and the number
of missed faces, respectively. Not surprisingly, the model
achieved the high F1-score values of 98.7% and 97.2% for
the Prima and BIWI datasets, respectively. One potential
explanation for the high F1-Scores is the similarity between
the images’ visual characteristics in the datasets, which leads
the models to be able to detect most of the faces with just a
low number of missed or mistakenly detected faces. Another
helping factor to the high accuracy, is that the images in the
two datasets were taken in a controlled way, with a relatively
clean background.

D. GENERALIZATION TEST
CNN networks have shown promising results in extracting
meaningful features for a wide range of facial attribute esti-
mations, including gender, age, or hairstyle [52]. Therefore,
we believe that our proposed model can also be applied to
other domains, as its backbone is the standard Resnet-50 fea-
ture descriptor. To investigate the generalization capability of
the proposed model, we have trained our model on the public
dataset UTKFace for age estimation. This dataset contains
∼20,000 facial images of people in the range of 0 to 116 years
old with wide variation in terms of illumination, pose, facial
expression, etc. We used a randomly sampled portion of the
dataset (∼30%) for face detection, segmentation, and age
estimation. Like the head pose estimation model, we jointly
annotate the dataset, where the final annotation file contains
the bounding box, masks, class labels, and the corresponding
ages. Both output nodes of the attribute estimation header,
which were initially developed for yaw and pitch estimation
in the HPE problem (see Section III), were now assigned for
age prediction. Figure 10 shows some example images of the
dataset that are used both in training and in testing.
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TABLE 2. Comparison of MAE of our model and different methods on two datasets; Prima and BIWI.

FIGURE 10. Example images of UTKFace dataset for age detection.

Like the pose estimation, 70% of the annotated images
were used for training the model (see Section IV.B) with
the same parameters. We then evaluated the performance of
the trained model as measured by the MAE (Mean Absolute
Error). As shown in Table 3, the model achieved a MAE of
5.3 ± 3.2 on the evaluation dataset. Comparing the results
with the state-of-the-art, revealed that our model performs
equally well, however, it did not achieve the best result.
Figure 11 presents some successful examples of age detection
via our model.

FIGURE 11. Successful examples of face detection, segmentation, and
age detection on UTKFace dataset via our proposed model.

A closer look at the result of Table 3, shows that [53] is
the only model that performs better than our proposed model,
however, the requirement to manually crop the face before
feeding the image to the network can act as a deterrent for its
practical applicability.

V. LIMITATIONS
We have developed a novel multitask cross-domain object
detection model and tested its ability to detect faces and esti-
mate facial attributes, including head pose or age. Although
the proposed model has shown promising results and good

TABLE 3. Mean average error of age estimation with our model, using the
UTKFace dataset.

generalization capability, there are still ways in which it
can be improved. Practical deployment of the HPE models
on an NVidia Xavier development board, when tested on
the snapshots of a webcam stream, revealed that the HPE
model is very sensitive to several factors, such as the distance
between the camera and the face of the user, as well as the
background of the snapshots. It is fair to assume that this
is a matter of the training datasets’ limited diversity, and
we believe that a collective effort is needed to generate a
richer dataset to enable training a well-generalized model,
suited for real-world applications. In addition, we recommend
that future systems implement GANs [57] to generate cost-
effective, diversified synthetic images in order to train a well-
generalized HPE model for real-world applications.

Apart from the limitation discussed above, the test of the
model on the NVidia Xavier also shows some outlier estima-
tions which can be problematic if the system is intended to be
used in a sensitive real-world scenarios like head-controlled
EPWs [1], [2]. Fortunately, these outliers can be dampened
by some techniques like moving average or Kalman filter,
however, they can adversely affect the FPS of the system.
The FPS of ∼4.5 that was achieved on the specific platform
may not be fast enough for some real-world applications.
Therefore, in future studies optimizing the model speed needs
to be a point of focus and further exploration. Using a shal-
lower feature descriptor than Resnet50, or optimization of
the headers by reducing their size and complexity, are some
potential solutions that can be explored in the forthcoming
studies. Furthermore, while determining the yaw and pitch
may be adequate for some applications like head-controlled
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EPWs, roll estimation may also be required in some cir-
cumstances, and thus, needs to be taken into account in the
relevant implementations.

VI. DISCUSSION AND CONCLUSION
Inspired by the wide application of HPE models, we have
presented a cross-domain multitask learning (MTL) model
for object (head) detection, segmentation, and attribute esti-
mation (pose estimation). Our model is developed on top
of the state-of-the-art MRCNN [19] object detection model,
where a Resnet50 feature descriptor for extraction of high-
level features is implemented. After extracting the features,
they are converted into two fixed-size feature maps (sizes
7 × 7, and 28 × 28), which are then passed to the clas-
sifier/regressors for head detection, bounding box estima-
tion, and pose estimation. The performance of our proposed
model has been evaluated on two public datasets, BIWI and
Prima, for pose estimation. Our model achieved a MAE of
6.2 ± 4.7 and 6.6 ± 4.9 for the yaw and pitch on the BIWI
dataset, and 8.0 ± 8.6 and 8.2 ± 8.1 on the Prima dataset
(see Table 2). Comparing those results to the state-of-the-
art models for HPE, our model appears to have an equally
strong performance, or just marginally lower in a few cases.
Moreover, our model’s smaller standard deviation demon-
strates better consistency (i.e., less uncertainty) in terms of
estimation (see Table 2). We also evaluate the generalization
capability of our model by testing it on a different domain
problem for age estimation. For this evaluation, our model
was trained and tested on the public dataset UTKFace, for
head detection and age estimation where we achieved a MAE
of 5.3± 3.2.

The proposed multitask learning model parallelized the
process of the object detection (i.e. head) and attribute esti-
mation (pose, age), which eliminates the requirement for
manual cropping of the images or the requirement of having
access to expensive equipment like depth camera sensors
(e.g. Kinect). The proposed model shows promising results
and the potential to be used in various domains, while it main-
tains an advantage over the problem-specific state-of-the-art
models by merging a two-stage process into a single one.
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