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ABSTRACT In application, frequency-hopping (FH) communication system often suffers various interfer-
ences, such as single frequency narrow-band interference, partial band blocking interference and tracking
interference, and so on. For all that, by using optimal Wide-Gap (WG) FH sequences, FH communication
system can significantly improve the anti-interference performances. In this paper, the relations betweenWG
FH sequence theoretic bounds published in the journal IEEE Access (Peihua Li et al., 2019) are first made
clear, and then five types of generalized methods are presented to design new classes of WG FH sequence
sets. It is shown that all designedWG FH sequence sets are optimal according to the bound derived by Peihua
Li et al. And by selecting appropriate original sequence sets, many of the optimal WG FH sequence sets can
be obtained by our methods. Most importantly, these WG FH sequence sets have new parameters that are
not covered in the literature.

INDEX TERMS Frequency-hopping sequence, hamming correlations, wide-gap, frequency-hopping com-
munication, electromagnetic interference.

I. INTRODUCTION
There exist usually all kinds of interferences in
communication system. In order to reduce or eliminate the
interferences, and achieve reliable and confidential commu-
nication, frequency-hopping (FH) communication emerges
as the times require [1], [2]. FH communication is realized
by the hopping of carrier frequencies, the hopping rule of
which is expressed by FH sequence. In FH communication
system, each user is given an FH sequence, on the basis
of which, each sender transmits a message along with the
switching frequencies in every time slot, and the correspond-
ing receiver receives the signals under the control of the
same FH sequence. There exists signal interference measured
by the so-called Hamming autocorrelation property of FH
sequence if only one FH sequence is employed by all users
and there exists another kind of signal interference measured
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by the so-called Hamming crosscorrelation property of FH
sequences otherwise. In a word, Hamming correlations (HCs)
influence the performances of FH communication system,
such as synchronization, anti-interference, multiple access
networking, and so on. Thus, it is very desired to design
FH sequence with low HCs. But normally, all the param-
eters of FH sequence subject to mathematical inequality
(the so-called theoretic bound). Many classes of optimal
FH sequences according to the corresponding theoretic bound
have been designed so far in the literature [3]–[10].

However, the interferences are upgrading and are appear-
ing the properties of dynamic and changeability in com-
munication system nowadays. It is demanded that the FH
sequences not only have optimal HC properties but also have
the property of Wide-Gap (WG), that is, the gap between
any two frequencies adjacent to each other is greater than the
given positive integer. The use of Wide-Gap FH sequences
(WG FH sequences) is beneficial to resist the enemy’s
intentional interferences in the complicated electromagnetic
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interference conditions, such as single frequency narrow-
band interference, partial band blocking interference and
tracking interference. Many methods to design WG FH
sequences have so far been presented in the litera-
ture. For example, removing intermediate frequency bands
method [11], dual frequency bands method [12], random
translation substitution method and random uniform transfer
substitution method [13], [14], designs of intelligent WG FH
sequences [15], [16], designs of WG FH sequences based
on prime number [17], constructions based on chaos the-
ory [18], [19], constructions over the finite fields [20]–[23],
and so on. In addition, in order to evaluate the perfor-
mances of WG FH sequences, the WG FH sequence the-
oretic bounds, including the bounds [20], [21] when the
maximum periodic HC is equal to 1 and the bounds [25],
[26] when the maximum periodic HC is greater than 0,
have been also put forwarded. Although there have existed
many known designs of WG FH sequences, but until now,
there have been very few WG FH sequences with optimal
HCs according to the corresponding theoretic bounds in the
literature [20]–[24].

To instruct the designs of optimal WG FH sequences well,
one objective of this paper is to derive the relations between
the WG FH sequence theoretic bounds [25]. The other objec-
tive is to present generalized methods to design new WG
FH sequence sets with optimal maximum periodic HC. The
rest of this paper is organized as follows. Section 2 gives
the terms and definitions, studies the relations between WG
FH sequence theoretical bounds; Section 3 gives the gen-
eralized methods, and bases on which to design WG FH
sequence sets; and Section 4 gives the summary of full
paper.

II. PRELIMINARIES
We always use the following notations in this paper:
• (Lu,Nu, qu,M(u)): An FH sequence set u of Nu FH

sequences of length Lu over a frequency set of size qu, with
the maximum periodic Hamming correlation (PHC)M(u).
• (Lw,Nw, qw, dw,M(w)): AWGFH sequence setw ofNw

FH sequences of length Lw over a frequency set of size qw,
with the maximum PHC M(w) and with the minimum fre-
quency gap dw > 1.
• (Lv, qv, dv,M(v)): A WG FH sequence v of length Lv

over a frequency set of size qv, with the maximum PHCM(v)
and with the minimum frequency gap dv > 1.
•M(X , τ ): The maximum PHC of FH sequence set X at

the relative delay τ .
• gcd: The greatest common divisor.
• lcm: The least common multiple.
• ⊗: The Cartesian Product.
• 〈x〉L : The least positive integer of x modulo L.
• dxe: The least integer greater than or equal to x.
• bxc: The greatest integer less than or equal to x.
• |x|: The absolute value of x.
• Fi, 0 ≤ i ≤ k − 1: The set of {0, 1, . . . , pi − 1}.

A. ON THE MAXIMUM PHC
Let s = {si = (si0, s

i
1, . . . , s

i
N−1)|i = 0, 1, . . . ,M − 1} be any

FH sequence set (N ,M , q,M(s)). For any two FH sequences
si and sj in s, at the relative delay τ , 1 ≤ τ < N if si = sj
and 0 ≤ τ < N if si 6= sj, the PHC of si and sj is defined as
follows:

Hsi,sj (τ ) =
N−1∑
k=0

h(sik , s
j
〈k+τ 〉N

) (1)

where h(sik , s
j
〈k+τ 〉N

) = 1 if sik = sj
〈k+τ 〉N

, h(sik , s
j
〈k+τ 〉N

) = 0
otherwise.

For any FH sequence set s, the maximum periodic
Hamming autocorrelation Ma(s), the maximum periodic
Hamming crosscorrelation Mc(s) and the maximum PHC
M(s) are defined as follows, respectively:

Ma(s) = max
1≤τ≤N−1

{Hsi,si (τ )|∀si ∈ s},

Mc(s) = max
0≤τ≤N−1

{Hsi,sj (τ )|∀si 6= sj ∈ s},

M(s) = max{Ma(s),Mc(s)}.

The maximum PHC M(s) under the relative delay τ 6= 0 is
defined by

M(s) = max{ max
1≤τ≤N−1

{Hsi,si (τ )|∀si ∈ s},

max
1≤τ≤N−1

{Hsi,sj (τ )|∀si 6= sj ∈ s}}.

B. ON THE WG FH SEQUENCES
Definition 1: Assume X =

(
x0, x1, . . . , xNX−1

)
is any

single FH sequence. Let the maximum frequency be fmax and
the minimum frequency be fmin. From the broad sense, X is
called special WG FH sequence if the minimum frequency
gap dmin ≥ 2, namely,

min{|xk+1 − xk |, fmax − fmin + 1− |xk+1 − xk |}

= dmin ≥ 2 (2)

for k = 0, 1, . . . ,NX − 1. And X is called general WG FH
sequence, if the minimum frequency gap dmin ≥ 2, namely,

min{|xk+1 − xk |} = dmin ≥ 2 (3)

for k = 0, 1, . . . ,NX − 1.
Definition 2: For any FH sequence set s, s is called special

WG FH sequence set if any FH sequence of which is special
WG FH sequence, and is called general WG FH sequence set
if any FH sequence of which is general WG FH sequence.

For any FH sequence set s denoted as (N ,M , q,M(s)),
besides HCs, the minimum frequency gap dmin is another
important index used to evaluate the performance of anti-
interference.

dmin = min
0≤i≤M−1

{di,min}

where di,min denotes the minimum frequency gap of any FH
sequence si in s.
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Lemma 1: Any WG FH sequence is also general WG FH
sequence if which is special WG FH sequence, but the con-
verse may not be true.
Lemma 2: For anyWGFH sequence set s, s is also general

WG FH sequence set if s is special WG FH sequence set, but
the converse isn’t necessarily true.

For the maximum PHC, Li et al [25] obtained the
following theoretical bounds of WG FH sequence set
in 2019.
Lemma 3: Let (N ,M , q, d,M(s)) be any WG FH

sequence set s over F, I = bMNq c. Then

M(s) ≥
⌈
(MN − q)N
(MN − 3)q

⌉
(4)

and

M(s) ≥
⌈
2IMN − (I + 1)Iq

(MN − 3)M

⌉
. (5)

There exist the relations between (4) and (5) as
follows:
Theorem 1: Assume (N ,M , q, d,M(s)) is any WG FH

sequence set s over F. Let MN = Iq + J , 0 ≤ J ≤ q − 1.
Then, (4) and (5) are identical, that is,

M(s) ≥
⌈
(MN − q)N
(MN − 3)q

⌉
=

⌈
2IMN − (I + 1)Iq

(MN − 3)M

⌉
for J = 0. (5) is tighter than (4) in some cases when
J 6= 0 otherwise.

Proof: Let λ0 =
(MN−q)N
(MN−3)q and N = M(s)q + r . One

has

dλ0e =

⌈
M(s)−

( (q− 3)N
(MN − 3)q

−
r
q

)⌉
=

⌈
M(s)−

(q− 3)N − (MN − 3)r
(MN − 3)q

⌉
.

Let A = (MN − 3)r , B = (q − 3)N , C = (MN − 3)(r + q)
and D = (MN − 3)(r + 2q). There exist four cases:

Case 1: We obtain (q−3)N−(MN−3)r
(MN−3)q < 0 when (MN −

3)r > (q− 3)N i.e. A > B. Therefore

dλ0e ≥M(s)+ 1.

Case 2: 0 ≤ (q−3)N−(MN−3)r
(MN−3)q < 1 when (MN − 3)r ≤

(q− 3)N < (MN − 3)(r + q) i.e. A ≤ B < C . Thus

dλ0e =M(s).

Case 3: 1 ≤ (q−3)N−(MN−3)r
(MN−3)q < 2 when (MN−3)(r+q) ≤

(q− 3)N < (MN − 3)(r + 2q) i.e. C ≤ B < D. So

dλ0e =M(s)− 1.

Case 4: (q−3)N−(NM−3)r
(NM−3)q ≥ 2 when (q − 3)N ≥ (MN −

3)(r + 2q) i.e. B ≥ D. Hence

dλ0e <M(s)− 1.

Furthermore, let λ1 =
2IMN−(I+1)Iq
(MN−3)M , one can verify that

λ0 − λ1 =
(MN − q)MN − 2IMNq+ (I + 1)Iq2

(MN − 3)qM

=
(J − q)J

(MN − 3)qM
.

Obviously, (4) and (5) are identical when J = 0.Moreover,
we can get

dλ1e =

⌈
(MN − q)N
(MN − 3)q

+
(q− J )J

(MN − 3)qM

⌉
=

⌈
M(s)−

(q− 3)MN − (MN − 3)rM − (q− J )J
(MN − 3)qM

⌉
.

Thus, when only consider the case of optimal, another
representations of (4) and (5) can be given respectively as

M(s) =


⌈
(MN − q)N
(MN − 3)q

⌉
A ≤ B < C,⌈

(MN − q)N
(MN − 3)q

⌉
+ 1 C ≤ B < D,

(6)

and

M(s) =


⌈
(MN − q)N
(MN − 3)q

⌉
A ≤ B−4 < C,⌈

(MN − q)N
(MN − 3)q

⌉
+ 1 C ≤ B−4 < D.

(7)

where 4 = (q−J )J
M . According to (6) and (7), it is clear that

(5) is tighter than (4) in some cases when J 6= 0. �
Definition 3: Let (N ,M , q, d,M(s)) be any WG FH

sequence set s. According to the bound (5), s is said to be
optimal ifM(s) let the equality hold, and to be almost optimal
ifM(s)− 1 let the equality hold.

III. NEW SETS OF OPTIMAL WG FH SEQUENCE
In this section, generalized methods will be presented to
construct several types of WG FH sequence sets with optimal
maximum PHC with respect to the bound (5).

A. CONSTRUCTIONS OF WG FH SEQUENCE SETS WITH
MAXIMUM PHC 1 OR 2
1) THE FIRST GENERALIZED METHOD
Let X0 = {x i0 = (x i0(0), x

i
0(1), . . . , x

i
0(L − 1))|i = 0, 1,

. . . ,N0−1} be any FH sequence set (L,N0, p0,M(X0)) over
frequency set F0 and the minimum frequency gap of which
be dX0,min satisfying
A. 1. dX0,min = 1.
Furthermore, let Xa = {x

j
a = (x ja(0), x

j
a(1), . . . , x

j
a(L −

1))| j = 0, 1, . . . ,Na − 1} be any FH sequence set
(L,Na, pa,M(Xa)) over frequency set Fa, a = 1, 2, . . . ,
k − 1. And for h with 1 ≤ h ≤ k − 1, assume Xh satisfies
A. 2. |x ihh (t)− x

ih
h (t + 1)| < ph − 1 if (x i00 (t)− x

i0
0 (t + 1))

(x ihh (t)−x
ih
h (t+1)) = |x

ih
h (t)−x

ih
h (t+1)| for t = 0, 1, . . . ,L−

1, 0 ≤ i0 ≤ N0 − 1, 0 ≤ ih ≤ Nh − 1.
Over frequency set F0 ⊗ F1 ⊗ · · · ⊗ Fk−1, generate

the desired FH sequence set X = {(Xl(0),Xl(1), . . . ,Xl
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(L − 1))|l = (l0, l1, . . . , lk−1), 0 ≤ l0 < N0, 0 ≤ l1 <

N1, . . . , 0 ≤ lk−1 < Nk−1} as

Xl(t) = x l00 (t)p1p2 · · · pk−1 + x
l1
1 (t)p2p3 · · · pk−1

+ · · · + x lk−2k−2(t)pk−1 + x
lk−1
k−1(t)

for t = 0, 1, . . . ,L − 1.
Theorem 2: A. The maximum PHCM(X ) satisfies

M(X ) ≤ min{M(X0),M(X1), . . . ,M(Xk−1)}

if there exists max{M(X0, 0),M(X1, 0), . . . ,M(Xk−1, 0)}
≤ min{M(X0),M(X1), . . . ,M(Xk−1)}.
B. X is general WG FH sequence set (L,N0N1 · · ·Nk−1,

p0p1 · · · pk−1,M(X )).
Proof: A. Let η = (η0, η1, . . . , ηk−1), µ = (µ0,

µ1, . . . , µk−1). Assume Xη and Xµ are any two sequences
in X , we have

HXη,Xµ (τ ) =
L−1∑
t=0

h((x
η0
0 (t), x

η1
1 (t), . . . , x

ηk−1
k−1 (t)),

(x
µ0
0 (t + τ ), x

µ1
1 (t + τ ), . . . , x

µk−1
k−1 (t + τ )))

=

L−1∑
t=0

h(x
η0
0 (t), x

µ0
0 (t + τ ))h(x

η1
1 (t), x

µ1
1 (t + τ ))

· · ·h(x
ηk−1
k−1 (t), x

µk−1
k−1 (t + τ )).

It can be divided into the following two cases to discuss.
Case 1: (η0, η1, . . . , ηk−1) = (µ0, µ1, . . . , µk−1), τ 6= 0.

HXη,Xη (τ ) =
L−1∑
t=0

h(x
η0
0 (t), x

η0
0 (t + τ ))h(x

η1
1 (t), x

η1
1 (t + τ ))

· · · h(x
ηk−1
k−1 (t), x

ηk−1
k−1 (t + τ ))

≤ min{M(X0),M(X1), · · · ,M(Xk−1)}.

Case 2: (η0, η1, . . . , ηk−1) 6= (µ0, µ1, . . . , µk−1), τ = 0.
Case 2.1:M(Xj, 0) = 0, j = 0, 1, . . . , k − 1. We have

HXη,Xµ (0) =
L−1∑
t=0

h(x
η0
0 (t), x

µ0
0 (t))h(x

η1
1 (t), x

µ1
1 (t))

· · · h(x
ηk−1
k−1 (t), x

µk−1
k−1 (t)) = 0.

Case 2.2:Without loss of generality, assume M(X0, 0) 6=
0 andM(X0, 0) = max{M(Xj, 0), j = 0, 1, . . . , k − 1}.
Case 2.2.1: η0 6= µ0. For any η and µ, we have

HXη,Xµ (0) ≤
L−1∑
t=0

h(x
η0
0 (t), x

µ0
0 (t))h(x

η1
1 (t), x

η1
1 (t))

· · · h(x
ηk−1
k−1 (t), x

ηk−1
k−1 (t))

=M(X0, 0).

Case 2.2.2: η0 = µ0. For any η and µ, one can get

HXη,Xµ(0) =
L−1∑
t=0

h(x
η1
1 (t), x

µ1
1 (t)) · · · h(x

ηk−1
k−1 (t), x

µk−1
k−1 (t))

≤ max{M(X1, 0), · · · ,M(Xk−1, 0)}.

Case 2.3: 0 < τ ≤ L − 1. We assume M(Xk ′ ) =
min{M(X0), . . . ,M(Xk−1)}, 0 ≤ k ′ < k . It follows that
Case 2.3.1: ηk ′ 6= µk ′ . For any η and µ, one can get

HXη,Xµ (τ ) ≤
L−1∑
t=0

h(x
ηk′

k (t), x
µk′

k (t + τ ))

=M(Xk ′ ).

Case 2.3.2: ηk ′ = µk ′ . For any η and µ, one can have

HXη,Xµ(τ ) =
L−1∑
t=0

h(x
η0
0 (t), x

µ0
0 (t + τ ))

· · · h(x
µk′

k (t), x
µk′

k (t + τ )) · · · h(x
ηk−1
k−1 (t),

x
µk−1
k−1 (t + τ ))

≤M(Xk ′ ).

B. Now let xl(t) = x l00 (t)p1 · · · pk−1 + x
l1
1 (t)p2 · · · pk−1 +

· · · + x lk−2k−2(t)pk−1 + x lk−1k−1(t) and xl(t + 1) = x l00 (t + 1)
p1p2 · · · pk−1 + x l11 (t + 1)p2p3 · · · pk−1 + · · · + x lk−2k−2(t +
1)pk−1 + x lk−1k−1(t + 1) are any two adjacent frequencies in
any FH sequence Xl ∈ X , x lvv (t) ∈ Fv, x lvv (t + 1) ∈ Fv,
v = 0, 1, . . . , k − 1. Since p1 · · · pk−1, p2 · · · pk−1, . . .,
pk−2pk−1 and pk−1 are linear independence, xl(t) = xl(t+1)
if and only if x l00 (t + 1) = x l00 (t), x

l1
1 (t + 1) = x l11 (t), . . .,

x lk−1k−1(t + 1) = x lk−1k−1(t). Thus, xl(t) 6= xl(t + 1). Suppose
xl(t) < xl(t+1) and 1 < h < k−3, the frequency gap dt+1,t
between xl(t) and xl(t + 1) can be calculated by

dt+1,t = (x l00 (t + 1)− x l00 (t))p1p2 · · · pk−1

+ (x l11 (t + 1)− x l11 (t))p2p3 · · · pk−1 + · · ·

+ (x lh−1h−1(t + 1)− x lh−1h−1(t))phph+1 · · · pk−1

+ (x lhh (t + 1)− x lhh (t))ph+1ph+2 · · · pk−1

+ (x lh+1h+1(t + 1)− x lh+1h+1(t))ph+2ph+3 · · · pk−1

+ · · · + (x lk−1k−1(t + 1)− x lk−1k−1(t))

It can be divided into the following three cases to discuss.
Case 1: (x l00 (t + 1)− x l00 (t))(x

lh
h (t + 1)− x lhh (t)) = |x

lh
h (t +

1)− x lhh (t)|. Basing on the condition of A. 2, we have

dt+1,t ≥ p1p2 · · · pk−1 − (p1 − 1) p2p3 · · · pk−1
− · · · − (ph−1 − 1) phph+1 · · · pk−1
− (x lhh (t + 1)− x lhh (t))ph+1 · · · pk−1
− (ph+1 − 1) ph+2ph+3 · · · pk−1
− · · · − (pk−2 − 1) pk−1 − (pk−1 − 1)

= (ph − (x lhh (t + 1)− x lhh (t))− 1)ph+1 · · · pk−1 + 1

> 1.

Case 2: (x l00 (t+1)−x
l0
0 (t))(x

lh
h (t+1)−x

lh
h (t)) = − |x

lh
h (t+

1)− x lhh (t)|. It follows that

dt+1,t ≥ p1p2 · · · pk−1 − (p1 − 1) p2p3 · · · pk−1
− · · · − (ph−1 − 1) phph+1 · · · pk−1
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+ |x lhh (t + 1)− x lhh (t)|ph+1 · · · pk−1
− (ph+1 − 1) ph+2ph+3 · · · pk−1
− · · · − (pk−2 − 1) pk−1 − (pk−1 − 1)

= (ph + |x
lh
h (t + 1)− x lhh (t)| − 1)ph+1 · · · pk−1 + 1

> 1.

Case 3: x l00 (t + 1)− x l00 (t) ≥ 2. It follows again that

dt+1,t ≥ 2 p1p2 · · · pk−1 − (p1 − 1) p2p3 · · · pk−1
− · · · − (ph−1 − 1) phph+1 · · · pk−1
− (ph − 1)ph+1 · · · pk−1
− (ph+1 − 1) ph+2ph+3 · · · pk−1
− · · · − (pk−2 − 1) pk−1 − (pk−1 − 1)

≥ p1p2 · · · pk−1

So, X is a general WG FH sequence set. This completes
the proof. �

2) THE SECOND GENERALIZED METHOD
Let Y0 = {yi0 = (yi0(0), y

i
0(1), . . . , y

i
0(N − 1))|i = 0, 1,

. . . ,M0−1} be any FH sequence set (N ,M0, p0,M(Y0)) over
frequency set F0 and the minimum frequency gap of which be
dY0 satisfying
B. 1. dY0 = 1.
And select FH sequence set Yb = {y

j
b = (yjb(0), y

j
b(1),

. . . , yjb(N −1))|j = 0, 1, . . . ,Mb−1} denoted as (N ,Mb, pb,
M(Yb)) over frequency set Fb, b = 1, 2, . . . , k − 1. For h
with 1 ≤ h ≤ k − 1, the FH sequence set Yh satisfies
B. 2. |Y jhh (t) − Y jhh (t + 1)| < ph − 1 if (Y j00 (t) − Y j00 (t +

1)) (Y jhh (t) − Y jhh (t + 1)) = |Y jhh (t) − Y jhh (t + 1)| for t =
0, 1, . . . ,N − 1, 0 ≤ j0 ≤ M0 − 1, 0 ≤ jh ≤ Mh − 1.
Over the frequency set F0 ⊗ F1 ⊗ · · ·⊗ Fk−1, let Y =
{(Ye (t))

N−1
t=0 |e = 0, 1, . . . , M1M2 · · ·Mk−1 − 1} be the

desired FH sequence set defined by

Ye (t) = y
〈e〉M0
0 (t) p1p2 · · · pk−1 + y

e1
1 (t) p2p3 · · · pk−1

+ · · · + yek−2k−2 (t) pk−1 + y
ek−1
k−1 (t)

where 0 ≤ e1 < M1, . . . , 0 ≤ ek−1 < Mk−1.
Theorem 3: A. The maximum PHCM(Y ) satisfies

M(Y ) ≤ min{M(Y0),M(Y1), . . . ,M(Yk−1)}.

if Y0,Y1, . . . ,Yk−1 satisfy max{M(Y1, 0), . . . ,M(Yk−1, 0)}
≤ min{M(Y0), . . . ,M(Yk−1)}.
B. Y is a generalWGFH sequence set (N ,M1M2 · · ·Mk−1,

p0p1 . . . pk−1,M(Y )).
Proof: A. Now let η = (η0, η1, . . . , ηk−1), µ =

(µ0, µ1, . . . , µk−1) and assume Yη and Yµ are any two
sequences in Y . It follows that

HYη,Yµ(τ ) =
N−1∑
t=0

h((y
η0
0 (t), y

η1
1 (t), . . . , y

ηk−1
k−1 (t)),

(y
µ0
0 (t + τ ), y

µ1
1 (t + τ ), . . . , y

µk−1
k−1 (t + τ )))

=

N−1∑
t=0

h(y
η0
0 (t), y

µ0
0 (t + τ ))h(y

η1
1 (t), y

µ1
1 (t + τ ))

· · · h(y
ηk−1
k−1 (t), y

µk−1
k−1 (t + τ )).

There exist the following three cases.
Case 1: (η0, η1, . . . , ηk−1) = (µ0, µ1, . . . , µk−1), τ 6= 0.

HYη,Yη (τ ) =
N−1∑
t=0

h(y
η0
0 (t), y

η0
0 (t + τ ))h(y

η1
1 (t), y

η1
1 (t + τ ))

· · · h(y
ηk−1
k−1 (t), y

ηk−1
k−1 (t + τ ))

≤ min{M(Y0),M(Y1), . . . ,M(Yk−1)}.

Case 2: (η0, η1, . . . , ηk−1) 6= (µ0, µ1, . . . , µk−1), τ = 0.
Case 2.1:M(Yj, 0) = 0, j = 0, 1, . . . , k − 1. We have

HYη,Yµ (0) =
N−1∑
t=0

h(y
η0
0 (t), y

µ0
0 (t))h(y

η1
1 (t), y

µ1
1 (t))

· · · h(y
ηk−1
k−1 (t), y

µk−1
k−1 (t))

= 0.

Case 2.2: Assume Yh satisfies M(Yh, 0) 6= 0 for h =
r0, r1, . . . , rd , 0 ≤ r0, r1, . . . , rd ≤ k − 1. It is clear that
(η1, . . . , ηk−1) 6= (µ1, . . . , µk−1) for any η0, µ0. Thus, one
can verify that

HYη,Yµ (0) =
N−1∑
t=0

h(y
η0
0 (t), y

µ0
0 (t))h(y

η1
1 (t), y

µ1
1 (t))

· · · h(y
ηk−1
k−1 (t), y

µk−1
k−1 (t))

≤ max{M(Y1, 0), . . . ,M(Yk−1, 0)}.

Case 3: 0 < τ < N . We suppose that M(Yk ′ ) = min{
M(Y0), . . . ,M(Yk−1)}, 0 ≤ k ′ < k . One can has

HYη,Yµ (τ ) ≤
N−1∑
t=0

h(y
η0
0 (t), y

µ0
0 (t + τ ))

· · · h(yηkk (t), yµkk (t + τ )) · · · h(y
ηk−1
k−1 (t),

yµk−1
k−1 (t + τ ))

=M(Yk ′ ).

Thus, the statement holds. �
Construction 1: Select any FH sequence set (L1,N0, p0,

M(X0)) denoted as X0 satisfying A. 1. And select any FH
sequence set (L1,Ni, pi, 1) denoted as Xi, i = 1, 2, . . . , k−1.
Xh satisfies A. 2 for h with 1 ≤ h ≤ k − 1. Based on all Xi’s,
a new class of WG FH sequence set S1 can be constructed by
the first generalized method.
Theorem 4: Let N = N0N1 · · ·Nk−1, p = p0p1 · · · pk−1,

L1N = Ip + J and L1 = 2p + r, 0 ≤ J ≤ p − 1. According
to (5), one can check that
(1). S1 is an almost optimal general WG FH sequence set

(L1,N , p, 2) if p + r <
(p−3)L1N−(p−J )J

(L1N−3)N
< 2p + r and

M(X0, 0) = 2.
(2). S1 is an optimal general WG FH sequence set

(L1,N , p, 1) ifM(X0, 0) ≤ 1.
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Construction 2: Select any FH sequence set (L2,M0,

p0, 1) satisfying A. 1 as base sequence set X0, and select any
FH sequence set (L2,Mi, pi,M(Xi)) overFi as base sequence
sets Xi, i = 1, 2, . . . , k − 1. Let Xh satisfy A. 2 for h with
1 ≤ h ≤ k − 1. The desired WG FH sequence set S2 can be
obtained by the first generalized method.
Theorem 5: Let M = M0M1 · · ·Mk−1, p = p0p1 · · · pk−1,

L2M = Ip+ J and L2 = 2p+ r, 0 ≤ J ≤ p− 1. We have
(1). S2 is an almost optimal general WG FH sequence set

(L2,M , p, 2) if max{M(X1, 0),M(X2, 0), . . . ,
M(Xk−1, 0)} = 2 and p+ r < (p−3)L2M−(p−J )J

(L2M−3)M
< 2p+ r.

(2). S2 is an optimal general WG FH sequence set (L2,M,
p, 1) if max{M(X1, 0),M(X2, 0), . . . ,M(Xk−1, 0)} ≤ 1.
Construction 3: Select any FH sequence set Y0 denoted

as (L3,M0, p0,M(Y0)) satisfying M(Y0) ≥ 3, M(Y0,
0) ≥ 3 and the condition of B. 1. And select any FH
sequence set (L3,Mj, pj,M(Yj)) as base sequence sets Yj, j =
1, 2, . . . , k − 1. Let Yh satisfy B. 2 for h with 1 ≤ h ≤ k − 1.
The WG FH sequence set S3 can be designed by the second
generalized method.
Theorem 6: Let M = M1M2 · · ·Mk−1, p = p0p1 · · · pk−1,

L3M = Ip+ J and L3 = 2p+ r, 0 ≤ J ≤ p− 1. We have
(1). S3 is an almost optimal general WG FH sequence

set (L3,M , p, 2) if p + r <
(p−3)ML3−(p−J )J

(ML3−3)M
< 2p + r,

min{M(Y1),M(Y2), . . . , M(Yk−1)} = 2, M(Yi, 0) ≤ 2,
i = 1, 2, . . . , k − 1.
(2). S3 is an optimal general WG FH sequence set

(L3,M , p, 1) if min{M(Y1),M(Y1), . . . ,M(Yk−1)} = 1,
M(Yi, 0) ≤ 1, i = 1, 2, . . . , k − 1.
Example 1: Select any FH sequence set (28,23,29,1)

denoted as X0 = {X0,0, . . . ,X0,21,X0,22} over F29, such that

X0,0= (1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27,

25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15);

. . . . . .

X0,21= (25, 26, 28, 3, 11, 27, 1, 7, 19, 14, 4, 13, 2, 9, 23,

22, 20, 16, 8, 21, 18, 12, 0, 5, 15, 6, 17, 10);

X0,22= (0, 1, 3, 7, 15, 2, 5, 11, 23, 18, 8, 17, 6, 13, 27, 26,

24, 20, 12, 25, 22, 16, 4, 9, 19, 10, 21, 14).

Select any FH sequence set (28,10,14,7) denoted as X1 =
{X1,0, . . . ,X1,8,X1,9} over R = {0, 1, . . . , 13} as follows:

X1,0 = (12, 12, 13, 3, 0, 6, 4, 4, 4, 8, 7, 6, 5, 2, 11, 11, 10, 1,

1, 7, 8, 8, 10, 4, 6, 5, 3, 13);

. . . . . .

X1,9 = (12, 2, 3, 7, 4, 10, 8, 10, 10, 10, 11, 13, 9, 6, 1, 1, 6,

9, 13, 11, 12, 12, 0, 8, 10, 4, 7, 3).

It is clear that X0 and X1 are non WG FH sequence set,
and satisfy the conditions in the first generalized method.
The WG FH sequence set S = {S(i,j) = (S(i,j)(0),S(i,j)(1),
. . . ,S(i,j)(27))|S(i,j)(t) = 14X0,i(t)+X1,j(t), 0 ≤ t ≤ 27, 0 ≤
i ≤ 22, 0 ≤ j ≤ 9} over F29⊗R = {14a+ b|a ∈ F29, b ∈ R}

FIGURE 1. The WG property of S in example 1.

FIGURE 2. The complexity comparisons between X0, X1 and S in
example 1.

can be obtained:

S(0,0) = (26, 40, 69, 115, 224, 48, 88, 172, 340, 274, 133,

258, 103, 198, 403, 389, 360, 295, 183, 371, 330,

246, 80, 144, 286, 159, 311);

. . . . . .

S(22,9) = (12, 16, 45, 105, 214, 38, 78, 164, 332, 262, 123,

251, 93, 188, 379, 365, 342, 289, 181, 361, 320,

236, 56, 134, 276, 144, 301).

For every FH sequence S(i,j) in S, let the maximum fre-
quency be S(i,j),max , the minimum frequency be S(i,j),min, and
M = S(i,j),max − S(i,j),min + 1 − |S(i,j)(t + 1) − S(i,j)(t)|.
The minimum value of M and the minimum frequency gap
are shown in FIGURE 1, one can check that S is an optimal
special WG FH sequence set (28, 230, 406, 4, 1).
We use Fuzzy Entropy [27] to measure respectively the

complexity of any one FH sequence in X0, X1 and S, such
as X0,0, X1,0 and S(0,0). As shown in FIGURE 2, the Fuzzy
Entropy of S(0,0) is greater than that of X0,0 and X1,0 when
the measuring window length equates 5. So, compared with
X0 and X1, S has better complexity.

3) THE THIRD GENERALIZED METHOD
Select FH sequence set Zη = {Z iη = (ziη(0), z

i
η(1), . . . ,

ziη(L − 1))|i = 0, 1, . . . ,Mη − 1} over Fη as base sequence
sets (L,Mη, pη,M(Zη)), η = 0, 1, . . . , k − 1. Over F0 ⊗

F1 ⊗ · · ·⊗ Fk−1, generate a new class of FH sequence
set (L,M0M1 · · ·Mk−1, p0p1 · · · pk−1,M(Z )) denoted as
Z = {(Zj(0),Zj(1), . . . ,Zj(L − 1))|j = (j0, j1, . . . , jk−1),
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0 ≤ j0 < M0, 0 ≤ j1 < M1, . . . , 0 ≤ jk−1 < Mk−1} where

Zj(t) = zj00 (t)p1p2 · · · pk−1 + z
j1
1 (t)p2p3 · · · pk−1

+ · · · + zjk−2k−2(t)pk−1 + z
jk−1
k−1(t)

Theorem 7: A. The maximum PHCM(Z ) satisfies

M(Z ) ≤ min{M(Z0),M(Z1), . . . ,M(Zk−1)}

if there existsmax{M(Z0, 0),M(Z1, 0), . . . ,M(Zk−1, 0)} ≤
min{M(Z0),M(Z1), . . . ,M(Zk−1)}.
B. Z is WG FH sequence set if Z0 is WG FH sequence set.
C. Z is general WG FH sequence set if Zh is general WG

FH sequence set satisfying
C. |zihh (t) − zihh (t + 1)| < ph − 1 if (zi00 (t) − zi00 (t + 1))

(zihh (t)−z
ih
h (t+1)) = |z

ih
h (t)−z

ih
h (t+1)| for t = 0, 1, . . . ,L−1,

0 ≤ i0 < M0, 0 ≤ ih < Mh, 1 ≤ h ≤ k − 1.
Proof: A. It follows from the proofs of Theorem 2.

B. Let zj(t) = zj00 (t)p1p2 · · · pk−1 + zj11 (t)p2p3 · · · pk−1 +
· · · + zjk−2k−2(t)pk−1 + zjk−1k−1(t) and zj(t + 1) = zj00 (t + 1)
p1p2 · · · pk−1+z

j1
1 (t+1)p2p3 · · · pk−1+···+z

jk−2
k−2(t+1)pk−1+

zjk−1k−1(t+1) are two adjacent frequencies inZj ∈ Z , z
jv
v (t) ∈ Fv,

zjvv (t+1) ∈ Fv, v = 0, 1, . . . , k−1. Assume zj(t) < zj(t+1),
we have

dt+1,t = (zj00 (t + 1)− zj00 (t))p1p2 · · · pk−1

+ (zj11 (t + 1)− zj11 (t))p2p3 · · · pk−1 + · · ·

+ (zjhh (t + 1)− zjhh (t))ph+1ph+2 · · · pk−1

+ · · · + (zjk−1k−1(t + 1)− zjk−1k−1(t))

Let the minimum frequency gap of Z0 be d0, one can have

dt+1,t ≥ d0p1p2 · · · pk−1 − (p1 − 1) p2 · · · pk−1
− · · · − (pk−2 − 1) pk−1 − (pk−1 − 1)

= (d0 − 1)p1p2 · · · pk−1 + 1

Thus, Z isWG FH sequence set. It is easy to check that Z is
specialWG FH sequence set if Z0 is specialWG FH sequence
set.
C. There exist the following two cases.
Case 1: zjuu (t + 1) = zjuu (t), u = 0, . . . , h− 1. Without loss

of generality, let 1 ≤ h < k − 3 and the minimum frequency
gap of Zh be dh, we can get

dt+1,t = (zjhh (t + 1)− zjhh (t))ph+1ph+2 · · · pk−1

+ (zjh+1h+1(t + 1)− zjh+1h+1(t))ph+2ph+3 · · · pk−1

+ · · · + (zjk−2k−2(t + 1)− zjk−2k−2(t))pk−1

+ (zjk−1k−1(t + 1)− zjk−1k−1(t))

≥ (zjhh (t + 1)− zjhh (t))ph+1ph+2 · · · pk−1
− (ph+1 − 1)ph+2ph+3 · · · pk−1
− · · · − (pk−2 − 1)pk−1 − (pk−1 − 1)

= (dh − 1)ph+1 · · · pk−1 + 1

Case 2: zj00 (t + 1) 6= zj00 (t). Basing on the condition of C
and the proofs of the Theorem 2, we can get

dt+1,t > 1

This completes the proof. �

4) THE FOURTH GENERALIZED METHOD
Let Uη = {ujη = (ujη(0), u

j
η(1), . . . , u

j
η(N − 1))|j =

0, 1, . . . ,Mη − 1} be any FH sequence set over fre-
quency set Fη, η = 0, 1 . . . , k − 1. A new class of FH
sequence set U = {(Ul(0),Ul(1), . . . ,Ul(N − 1))|l =
0, 1 , . . . ,M1M2 · · ·Mk−1 − 1} denoted as (N ,M1 · · ·Mk−1,

p0p1 · · · pk−1,M(U )) over frequency set F0 ⊗ F1 ⊗ · · · ⊗

Fk−1 is designed by

Ul (t) = u
〈l〉N0
0 (t) p1p2 · · · pk−1 + u

l1
1 (t) p2p3 · · · pk−1

+ · · · + ulk−2k−2 (t) pk−1 + u
lk−1
k−1 (t)

where 0 ≤ l1 < M1, . . . , 0 ≤ lk−1 < Mk−1.
Theorem 8: A. The maximum PHCM(U ) satisfies

M(U ) ≤ min{M(U0),M(U1), . . . ,M(Uk−1)}.

if there exists max{M(U1, 0),M(U2, 0), . . . ,M(Uk−1, 0)}
≤ min{M(U0),M(U1), . . . ,M(Uk−1)}.
B. U is WG FH sequence set if U0 is WG FH sequence set.
C. U is general WG FH sequence set if Uh is general WG

FH sequence set satisfying
D. |uihh (t) − uihh (t + 1)| < ph − 1 if (ui00 (t) − ui00 (t +

1)) (uihh (t) − uihh (t + 1)) = |uihh (t) − uihh (t + 1)| for t =
0, 1, . . . ,N − 1, 0 ≤ i0 < M0, 0 ≤ ih < Mh, 1 ≤
h ≤ k − 1.
Construction 4: Select any FH sequence set (L4,M0, p0,

M(Z0)) denoted as Z0 over F0. And select any FH sequence
set (L4,Mi, pi, 1) denoted as Zi over Fi, i = 1, 2, . . . , k − 1.
Z0 is WG FH sequence set or Zh is general WG FH sequence
set satisfyingC, 1 ≤ h ≤ k−1. Based on all Zi’s, a new class
of WG FH sequence set S4 can be defined.
Theorem 9: Let M = M0M1 · · ·Mk−1, p = p0p1 · · · pk−1,

L4M = Ip+ J , L4 = 2p+ r, 0 ≤ J ≤ p− 1. We have
(1). S4 is an almost optimal general WG FH sequence set

(L4,M , p, 2) if p + r <
(p−3)L4M−(p−J )J

(L4M−3)M
< 2p + r and

M(Z0, 0) = 2.
(2). S4 is an optimal general WG FH sequence set

(L4,M , p, 1) ifM(Z0, 0) ≤ 1.
Construction 5: Select FH sequence set (L5,N0, p0, 1) as

base sequence set Z0 over F0, and select FH sequence set
(L5,Ni, pi,M(Zi)) as base sequence sets Zi over Fi, i =
1, 2, . . . , k − 1. Z0 is WG FH sequence set or Zh is general
WG FH sequence set satisfying C, 1 ≤ h ≤ k − 1. A new
kind of WG FH sequence set S5 can be obtained by the third
generalized method.
Theorem 10: Let N = N0N1 · · ·Nk−1, p = p0p1 · · · pk−1,

L5N = Ip + J and L5 = 2p + r, 0 ≤ J ≤ p − 1. According
to (5), we can have
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(1). S5 is an almost optimal general WG FH sequence set
(L5,N, p, 2) if max{M(Z1, 0), . . . , M(Zk−1, 0)} = 2 and

p+ r < (p−3)L5N−(p−J )J
(L5N−3)N

< 2p+ r.
(2). S5 is an optimal general WG FH sequence set (L5,N,

p, 1) if max{M(Z1, 0), . . . ,M(Zk−1, 0)} ≤ 1.
Construction 6:
Step 1: Over K0 = {0, 1, . . . , p − 1}, select any

FH sequence set (N ,M0, p, 1) as base sequence set T0 to
construct FH sequence set L0 over K0 ⊗ K0 ⊗ · · · ⊗ K0 =

{ak0−1p
k0−1 + ak0−2p

k0−2 + · · · + a1p + a0|ai ∈ K0, i =
0, 1, . . . , k0 − 1}.
Step 2: Over K1 = {0, 1, . . . , q − 1}, select any WG FH

sequence set (N ,M1, q,M(T1)) as base sequence set T1 to
construct another FH sequence set L1 over K1 ⊗K1 ⊗ · · · ⊗

K1 = {bk1−1q
k1−1+bk1−2q

k1−2+· · ·+b1q+b0|bi ∈ K1, i =
0, 1, . . . , k1 − 1}.

T0 is WG FH sequence set or T1 is general WG FH
sequence set satisfying C.
Step 3: Basing on the third generalized method, use L0 and

L1 to design an FH sequence set S6 over K0 ⊗ · · · ⊗ K0 ⊗

K1 ⊗ · · · ⊗K1 = {ak0−1p
k0−1qk1 + · · · + a1pqk1 + a0qk1 +

bk1−1q
k1−1+· · ·+b1q+b0|ai ∈ K0, bj ∈ K1, i = 0, . . . , k0−

1, j = 0, . . . , k1 − 1}.
Theorem 11: Let NM0

k0M1
k1 = Ipk0qk1 + J and N =

2pk0qk1 + r, 0 ≤ J ≤ pk0qk1 − 1. According to (5), we have
(1). S6 is an almost optimal general WG FH sequence set

(N ,M0
k0M1

k1 , pk0qk1 , 2) ifM(L1, 0) = 2 and pk0qk1 + r <
(pk0qk1−3)NM0

k0M1
k1−(pk0qk1−J )J

(NM0
k0M1

k1−3)M0
k0M1

k1
< 2pk0qk1 + r.

(2). S6 is an optimal general WG FH sequence set
(N , M0

k0M1
k1 , pk0qk1 , 1) ifM(L1, 0) ≤ 1.

Construction 7: Select any FH sequence set (L7,M0, p0,
M(U0)) satisfying M(U0, 0) ≥ 3 and M(U0) ≥ 3 as
base sequence set U0 over F0, and select FH sequence set
(L7,Mj, qj, M(Uj)) as base sequence set Uj over Fj, j =
1, 2, . . . , k − 1. U0 is WG FH sequence set or Uh is general
WG FH sequence set satisfying D, 1 ≤ h ≤ k − 1. The WG
FH sequence set S7 can be designed by the fourth generalized
method.
Theorem 12: Let M = M1 · · ·Mk−1, p = p0p1 · · · pk−1,

L7M = Ip+ J and L7 = 2p+ r, 0 ≤ J ≤ p− 1. According
to (5), we have
(1). S7 is an almost optimal general WG FH sequence

set (L7,M, p, 2) if p + r <
(p−3)ML7−(p−J )J

(ML7−3)M
< 2p + r,

min{M(U1),M(U2), . . . ,M(Uk−1)} = 2, M(Ui, 0) ≤ 2,
i = 1, 2, . . . , k − 1.
(2). S7 is an optimal general WG FH sequence set

(L7,M , p, 1) if min{M(U1),M(U2), . . . ,M(Uk−1)} = 1,
M(Ui, 0) ≤ 1, i = 1, 2, . . . , k − 1.
Example 2: Select any WG FH sequence set (28,7,7,1,17)

denoted as R = {R0, . . . ,R6} over F7, such that

R0 = (1, 6, 4, 2, 0, 4, 1, 5, 2, 6, 3, 0, 3, 6, 2, 5, 1, 4, 0, 4, 1,
5, 2, 6, 3, 5, 2, 5);
. . . . . .

R6 = (0, 5, 3, 1, 6, 3, 0, 4, 1, 5, 2, 6, 2, 5, 1, 4, 0, 3, 6, 3, 0,
4, 1, 5, 2, 4, 1, 4).

FIGURE 3. The maximum PHC of R and Z in example 2.

It is clear that M(R, 0) = 0 and M(R) = 17, the HC
properties are obviously bad.

Select an FH sequence set (28,29,29,1) denoted as T =
{T0, . . . ,T27,T28} over F29 as follows:

T0 = (1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27,

25, 21, 13, 26,

23, 17, 5, 10, 20, 11, 22, 15);

. . . . . .

T28 = (0, 1, 3, 7, 15, 2, 5, 11, 23, 18, 8, 17, 6, 13, 27, 26,

24, 20, 12, 25, 22, 16, 4, 9, 19, 10, 21, 14).

By the third generalized method, the WG FH sequence
set Z = {Z(i,j) = (Z(i,j)(0),Z(i,j)(1), . . . ,Z(i,j)(27))|Z(i,j)(t) =
29Ri(t) + Tj(t), 0 ≤ t ≤ 27, 0 ≤ i ≤ 6, 0 ≤ j ≤ 28} over
F7×F29 = {29a+ b|a ∈F7, b ∈F29} can be obtained:

Z(0,0) = (30, 176, 120, 66, 16, 119, 35, 157, 82, 193, 96,

18, 94, 188, 86, 172, 54, 137, 13, 142, 52, . . .);

. . . . . .

Z(6,28) = (0, 146, 90, 36, 189, 89, 5, 127, 52, 163, 66, 191,

64, 158, 56, 142, 24, 107, 186, 112, 22, . . .).

As shown in FIGURE 3 and in FIGURE 4, compared with
the base sequence set R, the maximum PHC of Z reduce sig-
nificantly and achieve optimal, the minimum frequency gap d
increase obviously, Z is an optimal general WG FH sequence
set (28, 203, 203, 49, 1). For every FH sequence Zi ∈ Z , let
the maximum frequency be zi,max , the minimum frequency
be zi,min and M = zi,max − zi,min + 1 − |zi(t + 1) − zi(t)|,
for any adjacent frequencies zi(t + 1) and zi(t), the minimum
value of M and the minimum frequency gap d are shown in
FIGURE 3, and basing on which one can check that Z is an
optimal special WG FH sequence set (28, 203, 203, 35, 1).

Choose any FH sequence from R, T and Z respectively
and measure the complexity of which by Fuzzy Entropy [27],
As shown in FIGURE 5, the Fuzzy Entropy [26] of Z(0,0) is
greater than that of R0 and T0 when the measuring window
length equates 3. So, Z has better complexity.

B. CONSTRUCTIONS OF OPTIMAL WG FH SEQUENCE
SETS WITH ANY MAXIMUM PHC VALUE
In this section, we will introduce the fifth generalized method
to design WG FH sequence sets with any maximum PHC
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FIGURE 4. The WG property of Z in example 2.

FIGURE 5. The complexity comparisons between R, T and Z in example 2.

value by choosing appropriate original FH sequence set and
Solomon’s FH sequence set [28]. Then we first introduce the
construction of Solomon’s FH sequence set.
Lemma 4 (Solomon, [28): ] Let α be a primitive element

of finite field GF(p) and f (x) be a primitive polynomials over
finite field GF(pn) with f (α) = 0. Write down the nonzero
elements of GF(pn) as the powers of α, such that

G0 = (1, α, . . . , αp
n
−2).

Basing upon G0, we design an FH sequence set (pn − 1,
pn, pn, 1) denoted as V = {Vk = (vk (0), vk (1), . . . , vk (pn −
2))|k = 0, . . . , pn − 1} where

vk (t) = G0(t)+ βk , βk ∈ GF(pn).

for t = 0, 1, . . . , pn − 2.
It is easy to check that Ma(s) = 0,Mc(s) = 1 and

M(V , 0) = 0.

1) THE FIFTH GENERALIZED METHOD
Select any FH sequence set (N ,M , q, λ) denoted as R =
{Rj = (rj(0), rj(1), . . . , rj(N − 1))| j = 0, 1, . . . ,M − 1} over
frequency set F with size q. And R satisfies
(1)M(R, 0) = 0;
(2) |ri(0)− ri(N − 1)| ≥ 2 for any i with 0 ≤ i ≤ M − 1.

Furthermore, select a prime number p satisfying pn ≥ N
and design a Solomon’ FH sequence set [27] V = {Vk =
(vk (0), vk (1), . . . , vk (pn − 2))|k = 0, 1, . . . , pn − 1}. And
converts every element vk (t) to decimal, 0 ≤ k ≤ pn − 1,
0 ≤ t ≤ pn − 2. Basing on R and V , for any posi-
tive integer e with e > q, we design a desired FHS set
W = {Wj = (wj(0),wj(1), . . . ,wj(N (pn − 1) − 1))|j =
0, 1, . . . ,M − 1} whereWj is defined by (8), as shown at the
bottom of the page.
Theorem 13: Let MN (pn − 1) = Iqpn + J and N (pn −

1) = λqpn + r, 0 ≤ J ≤ qpn − 1. According to (5), W is an
optimal general WG FH sequence set (N (pn− 1),M , qpn, λ)
if r < (qpn−3)MN (pn−1)−(qpn−J )J

(MN (pn−1)−3)M < qpn + r.

Proof: Assume wη and wµ are any two sequences inW .
Let τ = τ1N + τ0, 0 ≤ τ0 ≤ N − 1. We have

Hwη,wµ (τ ) =
N−1∑
t0=0

pn−2∑
t1=0

h(rη(t0)+ evt0 (t1),

rµ(t0 + τ0)+ evt0+τ0 (t1 + τ1))

=

N−1∑
t0=0

pn−2∑
t1=0

h(rη(t0), rµ(t0 + τ0))

× h(vt0 (t1), vt0+τ0 (t1 + τ1))

There exist the following three cases:
Case 1: η 6= µ, τ = 0. We have

Hwη,wµ (τ ) =
N−1∑
t0=0

pn−2∑
t1=0

h(rη(t0), rµ(t0))

× h(vt0 (t1), vt0 (t1))

= 0

Case 2: τ = iN , i = 1, 2, . . . , pn − 2. One can check that

Hwη,wµ (τ ) =
N−1∑
t0=0

pn−2∑
t1=0

h(rη(t0), rµ(t0))

× h(vt0 (t1), vt0 (t1 + τ1))

= 0

Case 3: τ 6= iN , i = 1, 2, . . . , pn − 2. We have

Hwη,wµ (τ ) =
N−1∑
t0=0

pn−2∑
t1=0

h(rη(t0), rµ(t0 + τ0))

× h(vt0 (t1), vt0+τ0 (t1 + τ1))

≤ Hrη,rµ(τ0)

Let t = t1N + t0, 0 ≤ t0 ≤ N − 1. Now we analyse the
WG property ofW .

Wj =

(rj(0)+ ev0(0), rj(1)+ ev1(0), rj(2)+ ev2(0), . . . , rj(N − 1)+ evN−1(0),
rj(0)+ ev0(1), rj(1)+ ev1(1), rj(2)+ ev2(1), . . . , rj(N − 1)+ evN−1(1),

...
...

...
. . .

...

rj(0)+ ev0(pn − 2), rj(1)+ ev1(pn − 2), rj(2)+ ev2(pn − 2), . . . , rj(N − 1)+ evN−1(pn − 2))

(8)
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TABLE 1. The parameters of new optimal WG FH sequence sets generated by generalized methods.

Case 1: t 6= iN − 1, i = 1, 2, . . . , pn − 2. wl(t) = rl(t0)+
evt0 (t1) and wl(t + 1) = rl(t0 + 1) + evt0+1(t1) are any two
adjacent frequencies in any FH sequence wl ∈ W , rl(t0) ∈ F,
rl(t0+1) ∈ F, vt0 (t1) ∈ GF(pn), vt0+1(t1) ∈ GF(pn). Suppose
wl(t) < wl(t+1), the frequency gap dt+1,t between wl(t) and
wl(t + 1) can be calculated by

dt+1,t = rl(t0 + 1)− rl(t0)+ evt0+1(t1)− evt0 (t1)

Case 1. 1: rl(t0 + 1) 6= rl(t0). One can has

dt+1,t ≥ −(q− 1)+ e ≥ 2.

Case 1. 2: rl(t0 + 1) = rl(t0). We have

dt+1,t = evt0+1(t1)− evt0 (t1) ≥ e.

Case 2: t = iN − 1, i = 1, 2, . . . , pn − 2. t0 = 〈t〉N =
N − 1, 〈t0 + 1〉N = 0, wl(t) = rl(N − 1) + evN−1(t1) and
wl(t + 1) = rl(0) + ev0(t1 + 1) are any other two adjacent
frequencies in any FH sequence wl ∈ W , rl(N − 1) ∈ F,
rl(0) ∈ F, vN−1(t1) ∈ GF(pn), v0(t1+ 1) ∈ GF(pn). Suppose
wl(t) < wl(t+1), the frequency gap dt+1,t between wl(t) and
wl(t + 1) can also be calculated by

dt+1,t = rl(0)− rl(N − 1)+ ev0(t1 + 1)− evN−1(t1)

Case 2. 1: v0(t1+1) = vN−1(t1). Since |ri(0)−ri(N−1)| ≥
2 for any i with 0 ≤ i ≤ M − 1, one can have

dt+1,t ≥ 2.

Case 2. 2: v0(t1 + 1) 6= vN−1(t1). We have

dt+1,t ≥ −(q− 1)+ e ≥ 2.

So, the conclusion is true. �
Example 3: Select an FH sequence set (25,4,5,5) denoted

as R = {r0, r1, r2, r3} over GF(5) as follows:

r0 = (0, 1, 1, 1, 1, 1, 1, 0, 2, 3, 4, 1, 2, 4, 0, 3, 1, 3, 0, 4, 2,

1, 4, 3, 2);

. . . . . .

FIGURE 6. The WG property of W in example 3.

r3 = (1, 4, 4, 0, 0, 4, 4, 1, 3, 4, 3, 4, 0, 1, 2, 2, 4, 2, 2, 1, 0,

4, 3, 4, 3).

Let α be a primitive element of the finite field GF(3) and
f (x) = x3 + 2x2 + 1 be a primitive polynomials over the
finite field GF(33) with f (α) = 0. Design an FH sequence
set [28] (26,27,27,1) denoted as V = {v0, v1, . . . , v26}, and
the decimal version of which is

v0 = (1, 3, 9, 5, 15, 23, 13, 17, 20, 4, 12, 14, 11, 2, 6, 18,

7, 21, 16, 26, 22, 10, 8, 24, 25, 19);

. . . . . .

v26 = (20, 22, 1, 21, 7, 12, 5, 6, 9, 23, 4, 3, 0, 18, 25, 10,

26, 13, 8, 15, 14, 2, 24, 16, 17, 11).

By the fifth generalized method, the desirable WG FH
sequence setW = {w0,w1,w2,w3} can be obtained:

w0 = (10, 21, 41, 101, 31, 161, 211, 140, 152, 183, 54, 131,

122, . . .);

. . . . . .

w3 = (11, 24, 44, 100, 30, 164, 214, 141, 153, 184, 53,

134, 120, . . .).

For every FH sequence wi ∈ W , let the maximum fre-
quency be wi,max , the minimum frequency be wi,min and
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FIGURE 7. The complexity comparisons between y0, y1 and w in
example 3.

G = wi,max − wi,min + 1 − |wi(t + 1) − wi(t)|, for any
two adjacent frequencies wi(t + 1) and wi(t), the minimum
value of G and the minimum frequency gap d are shown in
FIGURE 4. It is easy to check that W is an optimal general
WG FH sequence set (650, 4, 135, 2, 5) according to the
bound (5).

We design single WG FH sequence y0 [20] with parame-
ter (653,653,4,1) and single WG FH sequence y1 [23] with
parameter (653,653,317,1). When the measuring window
length equates 3, the Fuzzy Entropy [27] of y0, y1 and
w0 are shown in FIGURE 7, basing on which, one can check
that w has better complexity even though the minimum fre-
quency gap of which is less than that of y0 and y1.

IV. CONCLUSION
In this paper, we first made clear the relationships between
the WG FH sequence theoretical bounds [27], and according
to which, presented five generalized methods to construct
new classes of WG FH sequence sets with optimal maximum
periodic HC. All designed WG FH sequence sets have new
parameters, as shown in Table 1. All these designs can provide
more optimal WG FH sequences for secure and reliable FH
communication system.
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