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ABSTRACT Recently, deep convolutional neural networks (CNNs) have provided outstanding performance
in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency
information in the recovered images remains a core problem. Moreover, as the networks increase in depth
and width, deep CNN-based SR methods are faced with the challenge of computational complexity in
practice. A promising and under-explored solution is to adapt the amount of compute based on the different
frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB)
which explicitly enhances the information of high frequencies while forwarding low-frequencies to the
output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns
more computation to high-frequency ones. Thus, it can help the network generate more discriminative
representations by explicitly recovering finer details. Our FEB design is simple and generic and can be
used as a direct replacement of commonly used SR blocks with no need to change network architectures.
We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction
error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR
model — Frequency-based Enhancement Network (FENet) — based on FEB that matches the performance
of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-
of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is
available at https://github.com/pbehjatii/FENet

INDEX TERMS Deep learning, frequency-based methods, lightweight architectures, single image
super-resolution.

I. INTRODUCTION

Single image super-resolution (SISR) has recently received
a considerable amount of attention from both academia and
industry. The purpose of SISR is to reconstruct a high-
resolution (HR) image from its low-resolution observation
(LR). This offers an opportunity for overcoming resolution
limitations in various computer vision applications such as
medical imaging [50], security and surveillance [47]. In gen-
eral, SISR is an inverse ill-posed problem since multiple HR
images can map to the same LR input. To tackle such an
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inverse problem, numerous image SR methods have been
proposed [16] based on deep neural architectures [9], [34],
[36], [61] and shown prominent performance.

Convolutional Neural Networks (CNNs) have recently
achieved unprecedented success in various problems
[18], [57]. The powerful feature representation and end-to-
end training paradigm of CNNs make them a promising
approach to SISR. Recently, most CNN-based SR methods
focus on elaborate architecture designs such as residual
learning [2], [5], [31], [32] and dense connections [25], [67].
Although significant progress has been made, as discussed
in [21], [46], texture details of the LR images often tend to
be smoothed in the super-resolved results since most existing
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FIGURE 1. The visual comparison of SR results by the networks with
different building modules for scale factor x4. The residual block is used
as building module for EDSR. In EDSR-FEB, we replace residual block with
proposed FEB.

CNN-based SR methods do not pay enough attention to the
limited high-frequency information in the LR images. In nat-
ural images, information is conveyed at different frequencies.
The output feature maps of a convolutional layer can also
be seen as a mixture of information at lower and higher
frequencies. The lower frequency information is composed of
global structures and textures that can directly be forwarded
to the final HR output without substantial computations.
The higher frequency information consists of fine details
where more complex restoring functions are expected. At this
point, leading CNN-based methods such as EDSR [37] and
RDN [67] overlook the fact that most of the low-frequency
information is already contained in the input. As a result,
these models spend the same amount of computation treating
low- and high-frequency information and lack flexible mod-
ulation ability in dealing with them, which ends up the rep-
resentational ability of the network. Please note that, in this
paper, the term frequency refers to low- and high-frequency
features, and is not related to the frequency domain.

Previous works address this problem by incorporating
attention mechanisms [9], [61], [66] into the networks to
model interdependencies among spatial locations, channels,
or both. The common idea behind attention-based SR meth-
ods is to adjust network architectures so that they produce
rich feature representations. However, as SR networks are
so diverse, the attention module is usually designed solely
for a specific network structure [55]. Recently, various SR
methods such as multi-branch networks [33], [60] and pro-
gressive reconstruction methods [35], [69] mainly focus on
refining the high-frequency texture details. Although these
methods delivered impressive results, they demand substan-
tial memory and computational resources. Therefore, the effi-
cient reconstruction of high-frequency details in SISR is still
a challenge today.

In this paper, we address the aforementioned problems
from a different perspective. Instead of designing deep and
complex networks or adding various shortcut connections
to strengthen feature representations, we introduce a novel
Frequency-based Enhancement Block (FEB) which is able to
separate features into low and high frequencies while also
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enabling efficient communication among them. Since low
frequencies are preserved by downsampling operations and
thus can be recovered directly from the input, FEB assigns
more computational capacity to high frequencies. The pro-
posed FEB gradually and iteratively enhances high-frequency
feature maps during training while preserving low-frequency
information, resulting in more accurate features that improve
reconstruction quality.

The proposed FEB offers the following advantages. First,
it is generic and can be easily applied to existing SR mod-
els without the need of modifying network architectures
or requiring hyper-parameters tuning. Second, FEB reduces
model parameters in the baseline SR models while simul-
taneously obtaining better SR performance. In Figure 1,
we provide an example of visual quality of EDSR [37], which
uses residual blocks [18] as its building module. It can be
observed that, when we replace residual blocks with our
blocks (EDSR-FEB), the network obtains better visual qual-
ity while reducing the number of parameters.

Based on FEB, we build a lightweight SR network named
Frequency-based Enhancement Network (FENet), illustrated
in Fig 2. Our network leads to significant improvements for
single image SR, surpassing SR networks with complicated
skip connections and concatenations. In summary, these are
the main contributions of the paper:

o« We propose a novel Frequency-based Enhancement
Block (FEB) to perform frequency-based computation.
Such a mechanism allocates more computation to high-
frequency bands, allowing the network to focus on
more informative features and improve its discriminative
capabilities.

o The proposed block leads to the reduction of parameters
by half in the baseline SR models while achieving better
SR performance.

« We propose a lightweight Frequency-based Enhance-
ment Network (FENet) for fast and accurate image
super-resolution. Extensive experiments on a variety of
public datasets demonstrate the superiority of the pro-
posed architecture over state-of-the-art models, in terms
of both quantitative and visual quality.

Il. RELATED WORK

In recent years, the field of image SR has been dominated by
CNNs, which achieve state-of-the-art performance [5], [36],
[42], [43], [54], [61]. Here, we focus our discussion on the
approaches that are most related to our work.

A. EVOLUTION OF ARCHITECTURES FOR SR

Recently, CNN-based methods have dramatically boosted
the performance of image SR, due to their strong nonlinear
representational power. They learn mappings between LR
and HR images from large-scale paired datasets. Since the
advent of SRCNN [13], a three layer CNN, a great number of
CNN-based methods have been proposed to improve model
representation ability by using more elaborate neural network
architecture designs. Kim et al. [26] first pushed the depth
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of SR networks to 20 with the help of residual learning,
outperforming SRCNN by a large margin. Ledig et al. [31]
employed residual blocks proposed in [18] to construct
deeper network (SRResNet) for image SR, which was fur-
ther improved by EDSR [37] and MDSR [37] by removing
unnecessary modules (e.g., batch normalization) from the
residual blocks. By using effective building modules, image
SR networks became deeper and yielded better performance.
Later, in order to employ hierarchical features from all the
convolutional layers in deep networks, dense blocks started
being employed in SR architectures [3], [22], [25], [53], [63].
More recently, Zhang et al. [67] and Liu et al. [39] also used
dense and residual connections in RDN and RFANet to utilize
information from the whole feature hierarchy. In addition to
residual and dense blocks, Li et al. [32] and Lan et al. [30]
proposed a multi-scale block to explore the multi-scale infor-
mation of LR images. Although these existing CNN-based
SR approaches have provided outstanding performance, they
devoted to designing deeper and wider network to enhance
their representational learning capacity. Increase in depth and
width has also raised computational demands and memory
consumption. This makes modern architectures less applica-
ble in practice.

Numerous lightweight models have been proposed to alle-
viate the aforementioned computational burden. For example,
DRCN [27] was the first to apply recursive algorithm to SISR
to reduce the number of parameters by reusing them multiple
times. Tai et al. [51] and Ahn et al. [2] improved DRCN by
combining the recursive and residual network schemes in
order to achieve better performance with even fewer param-
eters. Likewise, Behjati er al. [S] and Jiang et al. [25] also
joined residual connections and recursive layers to reduce
the computational cost. On the other hand, LapSRN [28]
employed a pyramidal framework to increase the image
size gradually. By doing so, LapSRN effectively performed
SISR on extremely low-resolution cases. Chu et al. [11] and
Ahn and Cho [1] introduced neural architecture search
strategies to automatically build an SR model given certain
constraints. Meanwhile, Hui et al. [24] proposed an infor-
mation multi-distillation block (IMDB) that extracted fea-
tures at a granular level with the channel splitting strategy.
More recently, Luo et al. [40] proposed lattice blocks that
applied so-called butterfly structures to combine residual
blocks. Later, Xuehui Wang and Chen. Reference [58] pro-
posed an attentive feature block to utilize auxiliary features
of previous layers for facilitating features learning of the
current layer. Li et al. [34] proposed a linearly-assembled
pixel-adaptive regression network, which casts the direct LR
to HR mapping learning into a linear coefficient regression
task. Recently, to simplify the challenges of directly super-
resolving details, some authors adopted the progressive struc-
ture to reconstruct HR images in a stage-by-stage upscaling
manner [36], [38], [69].

By considering that there are different types of information
within and across feature maps which have a different con-
tribution for image SR, the aforementioned SR approaches
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cannot capture low- and high-frequency feature representa-
tions separately in the process of feature embedding, thus
hindering their representational ability [21], [46], [66].

B. FREQUENCY BASED SR METHODS

It is well known that high-frequency information (e.g. texture,
edges) is significant for SISR. Li et al. [35] proposed a super-
resolution feedback network (SRFBN) based on a recurrent
architecture design. The network is based on a feedback block
that consists of several projection groups. Each projection
group first finds high-resolution features (via deconvolution)
and then generates low-resolution features (via convolution).
As a result, this network is able to gradually recover high-
frequency components. Later, Haris er al. [17] proposed
a method to refine high-frequency texture details with a
series of up and downsampling layers that are densely con-
nected with each other to combine HR images from multiple
depths in the network. More recently, Qiu et al. [46] and
Yang and Lu [60] proposed multi-branch architectures.
In these methods, one branch is responsible for capturing
high-frequency features such as texture and edge, and another
is to learn low-frequency features such as image outline
and contour. Similarly, Li et al. [33] introduced the octave
convolution to image SR which uses two branches to perform
information update and frequency communication between
low- and high-frequency features.

Although these existing SR approaches have made good
efforts to improve SR performance, they tend to increase
the amount of compute on high-frequency information by
increasing the overall number of operations of the model,
without paying attention to model complexity. The increase
in complexity due to the independent treatment of multiple
frequencies is a key issue that limits the performance of these
deep CNN-based methods.

C. ATTENTION BASED SR METHODS

Attention mechanism has demonstrated great superiority in
improving performance of CNNs for various computer vision
tasks [20], [57]. Hu et al. [20] introduced squeeze-and-
excitation (SE) block that models channel-wise relationships
in a computationally efficient manner and enhances the rep-
resentational ability of the network, showing its effective-
ness on image classification. CBAM [57] modified the SE
block to exploit both spatial and channel-wise attention.
Zhang et al. [66] first incorporated SE [20] with SR and
pushed the state-of-the-art performance of SISR. More recent
works, such as [9], [21], [29], [43], [44], [58], [59], [61],
extend this idea by adopting different spatial attention mech-
anisms or designing advanced attention blocks.

All above-mentioned approaches improve CNNs for image
SR by either refining architectural designs or adding com-
plexity to hand-designed blocks. Conversely, our proposal is
able to efficiently restore textures at different frequencies.
Such mechanism helps the network to explicitly allocate
computation to high-frequency features, thus improving the
discriminative capabilities of the network.
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FIGURE 2. Proposed Frequency-based Enhancement Network (FENet) for SISR, which consists of non-linear mapping and reconstruction modules.

lIl. FREQUENCY-BASED ENHANCEMENT NETWORK

In this section, We first describe the overall network architec-
ture. Next, we detail the proposed Frequency-based Enhance-
ment Block (FEB). Finally, we discuss the differences
between the proposed method and similar related works.

A. NETWORK OVERVIEW
As shown in Fig 2, the overall network architecture of
Frequency-based Enhancement Network (FENet) consists of
a non-linear mapping module and a reconstruction module.
Let’s denote as I and Igg the input and output of FENet,
respectively. Following [2], [5], [40], [58], [68], we apply
only one 3 x 3 convolutional layer (#) to extract the initial
features Hp from the LR input image:

Ho = H(LR). ey
It is worth noting that only one convolutional layer is used
here for lightweight design.

Then, we use the non-linear mapping module, which con-
sists of several stacked FEBs to generate new powerful
representations, which can be formulated as

Hy = By(Hy—1), k=1,...,M, )
where Bj denotes mapping function of the k-th FEB.
Hj._1 represents the features from the previous adjacent FEB,
and M is the total number of FEBs.

Inspired by [24], [32], [58], [67], we apply a feature fusion
strategy to integrate the features from all the FEBs. This strat-
egy helps to extract more hierarchical contextual information.
The fusion operation is formulated as

H = F([H,H, ..

- Hu) 3)

where [Hi, Hy, ..., Hy] refers to the concatenation of fea-
ture maps produced by FEBs and F is a 1 x 1 convolutional
operation.

Finally, we utilize the reconstruction module that contains
convolutional layers and pixelshuffle layers [49] to upsample
the features to the HR size. In addition, we incorporate a
global connection path (green line in the Fig 2) to grant
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access to the original LR information and facilitate the back-
propagation of the gradients, in which only a bicubic interpo-
lation is applied to the input I . Therefore, we obtain:

Isg = R(H) + Bicubic (/.z) )

where R is the reconstruction module, and Isg is the final
output of the network.

To optimize the network parameters, we adopt L; loss as a
cost function for training. Given a training set with N pairs of
LR images and HR counterparts, denoted by {/ iR, 1 LR }fy: 1
the network is optimized to minimize the L loss function:

N
1
Li(0) = N E lIsg — Iurlly )
i=1

where 6 denotes the parameter set.

B. FREQUENCY-BASED ENHANCEMENT BLOCK (FEB)

A natural image can be decomposed into a low frequency
component that describes smoothly changing structures and a
high-frequency component that describes the rapidly chang-
ing fine details [8], [48]. Similarly, we argue that the output
feature maps of a convolutional layer can also be decomposed
into features of different frequencies, and propose an effi-
cient Frequency-based Enhancement Block (FEB) which nat-
urally decomposes low and high frequencies at feature level.
The high-frequency information part is processed by higher-
complexity operations (in number of parameters and non-
linearities), whereas the lower-frequency part is processed by
lower-complexity operations to compensate for the increase
of computation. As a result, the proposed approach learns
discriminative representations in order to efficiently achieve
more accurate reconstructions.

As demonstrated in Fig 3, the proposed FEB contains
two pathways, each of which is responsible for a different
functionality. Each pathway has a 1 x 1 convolutional layer
at the beginning. Given the input X € RE**W  where
C denotes the number of channels and H x W the spatial
dimensions, we have

(6)
(N

Xp = Fopir(X)
X = F i (X)

VOLUME 10, 2022
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FIGURE 3. Schematic illustration of the proposed Frequency-based Enhancement Block (FEB). As it can be seen, the original filters are
separated into two processing lines, each of which is in charge of a different functionality. More details in Section III-B.

where {X{, X»} only have half of the channel number of X.
]—'S’pm and ‘F;;lit are two 1 x 1 convolutional operations,
respectively.

Then, the described operations are separately sent into
a dedicated pathway for collecting different types of infor-
mation (i.e. low- and high-frequency information). The
first pathway targets at retaining the original information
(low-frequency). To save computation, we perform only a
simple 3 x 3 convolutional operation to capture the global

layout and coarse details as follows:
Y = FAiXy), (3)

where Y is the output of the 3 x 3 convolutional layer (Fi).
In the second pathway, we first apply an average pooling
layer upon X», yielding T

T; = AvgPool¥(Xa, k), )

where k denotes the kernel size of the pooling layer and the
size of the intermediate feature map T is % X % X % Each
value in T can be viewed as the average intensity of each
specified small area of X;. After that, T} is upsampled via a
bicubic interpolation operator to produce a new tensor T, of

the same size as X,
T, = Bicubic'(Ty, k), (10)

where T, contains averaged information and it can be
regarded as a smoother version of the original X5. Then,
in order to obtain the high-frequency information, Ty is
element-wise subtracted from X5:

T; =Xy — Ty, (11)

The visual activation maps of X5, T, and high-frequency
information (T3) are also shown in Fig 4. It can be observed
that T> is smoother than X, as it is the average information
of X;. Meanwhile, T3 retains the details and edges. Now, the
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Ty

FIGURE 4. Visual activation feature maps of input X,, T,, and obtained
high-frequency information (T5).

high-frequency enhancement operation can be formulated as
follows

Y, = 0(Fo(T3) + X2) - F3(X2), (12)

where ¢ is the sigmoid function, and />, and JF3 are two
3 x 3 convolutional layers, respectively. As shown in (12),
we use X as residuals to form the weights, which is found
beneficial. Then the output of the second pathway can be
written as

Ya = Fu(Y)), (13)

where F4 is a 3 x 3 convolutional operation. Finally,
both intermediate outputs of the first and second path-
ways {Y1, Yy} are concatenated together as the output
Y € RE*HXW 6 obtain a rich feature representation.

Compared to other works such as [33], [60], which require
a considerably large amount of computations for decom-
posing features of different frequencies, FEB can separate
the low- and high-frequency feature representations in an
efficient way and focus on reconstructing the high-frequency
ones.

C. DISCUSSION

1) DIFFERENCE TO PROMINENT SR BLOCKS

Prominent SR blocks such as residual blocks [37] or dense
blocks [53] process low- and high-frequency information
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simultaneously by the same convolution operations and do
not discriminate the computation of features by their fre-
quencial components. Therefore, some local details of LR
images cannot be effectively utilized for HR reconstruction,
leading to blurry super-resolved results [33]. In contrast, our
proposal treats different frequencies in a heterogeneous way
and also models inter-channel dependencies, which conse-
quently enrich the output feature. Moreover, FEB benefits
SR approaches by reducing the number of parameters while
achieving superior SR performance.

2) DIFFERENCE TO ATTENTION-BASED METHODS

Our work is quite different from existing methods such
as [12], [21], [43], [66] which rely on supplementary atten-
tion blocks and require additional learnable parameters.
In contrast our approach internally changes the way of
exploiting convolutional filters of convolutional layers, and
hence require no additional learnable parameters. In the
following experiment section, we will demonstrate with-
out any extra learnable parameters, FEB can yield signifi-
cant improvements over baselines and other attention-based
SR approaches. Moreover, it is complementary to attention
mechanisms, and also benefit from their inclusion into the
pipeline.

IV. EXPERIMENTAL RESULTS

In this section, we first conduct an ablation study to validate
the effectiveness of the proposed FEB. Then, we systemat-
ically compare FENet with state-of-the-art SISR algorithms
on five commonly used benchmark datasets.

A. SETTINGS

1) DATASETS AND METRICS

Following [67], we use 800 high-quality images from the
DIV2K dataset [52] for training. We evaluate our model on
several benchmark datasets: Set5 [6], Setl4 [62], B100 [4],
Urban100 [23], and Mangal09 [41], each with diverse char-
acteristics. To keep the consistency with previous works [11],
[25], [29], [33], [34], [36], [58], [61], we use Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) [56] as the assessment methods to evaluate image
reconstruction accuracy. PSNR evaluates the image by statis-
tically measuring distortion values between the reconstructed
image and the ground-truth image. The higher the PSNR,
the better the quality of the reconstructed image. SSIM mea-
sures the structural similarity between two images based on
luminance, contrast, and structure. The SSIM values range
between O to 1, 1 means perfect matching the reconstructed
image with the original one. All results are evaluated on
the luminance channel (Y). In addition to PSNR and SSIM,
we adopt Perceptual Index (PI) [7] to evaluate reconstructed
image perceptual quality accurately. PI has a high correlation
with human-opinion scores and can avoid the situation where
over-smoothed images may present a higher PSNR and SSIM
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when the performances of the two methods are similar. The
lower PI value denotes the better perceptual quality.

2) DEGRADATION MODELS

To fairly compare against existing works, we adopt bicubic
downsampling (denoted as BI) as our standard degradation
model for generating LR images from ground truth HR
images, at x2, x3, and x4 scales. Moreover, to comprehen-
sively illustrate the efficacy of the proposed FEB, we fur-
ther adopt two other multi-degradation models as in [67].
We define BD as a degradation model that performs bicubic
downsampling on HR images at x3 scale, and then blurs
them with a Gaussian kernel of size 7 x 7 and standard
deviation 1.6. Additionally, we further produce LR images
in a more challenging way: we first bicubic downsample HR
images with scaling factor x3 and then add Gaussian noise
with noise level 30 (denoted as DN).

3) IMPLEMENTATION DETAILS

During training, data augmentation is carried out by means
of random horizontal flips and 90° rotation. At each training
mini-batch, 64 LR RGB patches of size 64 x 64 are provided
as inputs. We train FENet using an ADAM optimizer with
learning rate 1073, The learning rate is halved every 2 x 10°
iterations. We set the number of FEB to 12 in our FENet. Our
network has been implemented using PyTorch, and trained on
a NVIDIA RTX 3090 GPU.

TABLE 1. Average PSNR obtained when either low- or high-frequency
path is deactivated inside the FEB on five benchmark datasets with scale
factor x4.

Configurations 1 2 3
Low-frequency path v X v
High-frequency path X v v
Params 706K 771K 675K
Set5 32.02 32.06 32.24
Set14 28.46 28.43 28.61
B100 27.42 27.44 27.63
Urban100 25.84 25.86 26.20
Mangal09 30.12 30.20 30.46

B. ABLATION STUDY

1) THE IMPORTANCE OF FEB

In this section, we conduct ablation experiments to explore
the influence of each pathway (low- and high-frequency
paths) inside the proposed FEB on the reconstruction perfor-
mance. Therefore, we use FENet as the basic network and run
the following experiments: (1) deactivating low-frequency
path (Y1) in FEB; (2) deactivating high-frequency path (Y>)
in FEB, and (3) activating both low- and high-frequency
paths. To keep the number of parameters similar, we use
8 and 6 FEBs in the first two experiments respectively without
channel reduction.

VOLUME 10, 2022



P. Behjati et al.: Frequency-Based Enhancement Network for Efficient Super-Resolution

IEEE Access

FEB-4 (Y1)

FEB-1 (Y1)
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FEB-4 (Y2)

FIGURE 5. Average feature maps of low-frequency (Y; in (8)) and
high-frequency (Y, in (13)) paths.

As reported in Table 1, we observe a significant per-
formance drop when either low- or high-frequency path is
deactivated in FEB. This is mainly because: 1) when low-
frequency path (Y1) is deactivated in FEB the high-frequency
path (Y>) focuses too strongly on high-frequency details,
smoothing other important aspects of the input that should be
preserved by the low-frequency path; 2) the network without
high-frequency path (¥>) processes low- and high-frequency
information simultaneously by the same convolution opera-
tions, and do not explicitly extrude the high frequencies from
image features. Thus, some local details of the LR image
cannot be effectively utilized for HR reconstruction.

InFig 5, we additionally visualize the average feature maps
of low-frequency (Y] in (8)) and high-frequency (¥> in (13))
paths within the first four FEBs. It can be observed that low-
frequency feature maps describe the overall outline of the
butterfly, while high-frequency ones represent the edges and
textures of the butterfly. This visualization shows how FEB
is able to efficiently restore textures at different frequencies
and can potentially improve performance.

2) THE EFFECTIVENESS OF FEB

To demonstrate the effectiveness of our proposed FEB
scheme, we use FENet as the basic network. To keep the
number of parameters similar, we replace the 12 FEBs with
8 residual blocks (RB) [37], 5 dense blocks (DB) [53], 6 infor-
mation multi-distillation blocks (IMDB) [24], or 4 multi-
scale residual blocks (MSRB) [32]. In Table 2, we compare
the number of parameters and the performance in PSNR for
all methods for scale factor x4.

As reported in Table 2, the method with FEB outperforms
all the methods with different SR blocks with fewer num-
ber of parameters. The reason is the proposed block treats
different frequencies in a heterogeneous way and thus it
improves the performance of super-resolution. This exper-
iments justify that the proposed FEB results more helpful
for image SR. We additionally provide visual comparisons
(Fig 6) of FENet using different SR blocks for scale fac-
tor x4. It can be observed that the network using FEB obtains
better visual quality and represents more diverse structure
patterns.
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TABLE 2. Average PSNR obtained with FENet when using different SR
blocks on five benchmark datasets (scale factor x4).

Name RB DB IMDB  MSRB  FEB
Params 707K 714K 727K 739K 675K
Set5 3202 3206 3207 3210 32.24
Set14 2846 2853 2853 2857 2861
B100 2742 2151 2754 2155 2763
Urbanl00 2584 2587 2589 2597 2620
Mangal09 ~ 30.12 3020 3021 3017 3046
= \\\\ \ \\
2 '“ m’ ra——
Wil NMH\
-".M\I.I.QL L| \
Hm : &\\\\ \ \ AN \ \
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FIGURE 6. Visual comparisons of SR results using FENet with different SR
blocks (scale factor x4).

TABLE 3. Average PSNR obtained with FENet when using different
attention mechanisms on five benchmark datasets (scale factor x4).

Methods Params Setl4 B100 Urban100
ResNet 707K 28.46 27.42 25.84
ResNet-CA 733K 28.50 27.46 25.89
ResNet-CSAR 782K 28.53 27.50 25.93
FENet 675K 28.61 27.63 26.20
FENet-CA 701K 28.68 27.70 26.27
FENet-CSAR 750K 28.70 27.73 26.30

CSAR

FIGURE 7. Average feature maps of the output Y' in (12), the outputs of
CA and CSAR in residual blocks, respectively.

3) ATTENTION MECHANISMS VS FEB

To further verify the effectiveness of FEB, we use a ResNet
architecture, i.e., a regular architecture composed of 8 stacked
residual blocks. Then, we integrate two commonly used
attention mechanism namely channel attention (CA) [66]
(ResNet-CA) and channel-wise and spatial attention resid-
ual [21] (ResNet-CSAR) into residual blocks as done in [66],
respectively. Furthermore, we replace 8 residual blocks with
12 FEBs (FENet) and integrated the two mentioned attention
mechanisms into FEBs and named them as FENet-CA and
FENet-CSAR.
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As reported in Table 3, ResNet-CSAR and ResNet-CA
obtain better performance than ResNet but they require
additional learnable parameters. Quite differently, FENet
does not rely on any extra learnable parameters since it
heterogeneously exploits the convolutional filters and thus
achieves better performance than ResNet-CSAR and ResNet-
CA. It should also be mentioned that the proposed FEB is also
compatible with the above mentioned attention mechanisms.
For example, when adding CA blocks to each FEB of FENet
(FENet-CA), we can further gain another 0.07dB in average.
This also indicates that our approach is orthogonal to this kind
of supplementary attention modules.

To dig deeper into difference between the proposed block
and attention-based approaches, we visualize the average
feature map of the output of Y} in (12), the outputs of
CA, and CSAR attentions in the residual blocks in Fig 7.
Our network should focus on high-frequency components
(i.e. edges and contours) and suppress the smooth area of
the original input image. Compared with the CA and CSAR,
feature maps acquired from Y in (12) contain more negative
values, showing a stronger effect of suppressing the smooth
area of the input image as well as directing computations
towards edges and details. This visualization indicates that
the network with FEB can generate richer and more dis-
criminative feature representations than the different attention
mechanisms.

4) GENERALIZATION ABILITY

To demonstrate the generalization ability of the proposed
structure, we select two state-of-the-art SR networks with
different model sizes, called EDSR [37] and RCAN [66].
The EDSR contains 32 stacked residual blocks with
256 x 256 filters. The RCAN consists of 200 residual
channel attention blocks with 64 x 64 filter sizes. We replace
their building blocks with FEBs. The corresponding networks
with FEB are named as EDSR-FEB and RCAN-FEB, respec-
tively. For fair comparison, all networks are trained on their
default settings.

As shown in Table 4, EDSR-FEB has an improvement of
0.08dB in average with almost x2 fewer number of param-
eters (parameters: 28M) compared to the original EDSR
(parameters: 43M). Moreover, the improvement by RCAN-
FEB is also higher than RCAN with approximately half
amount of parameters. From these comparisons, we can eas-
ily find that (1) the proposed FEB perform much better than
channel attention, (2) for deeper networks, a similar phe-
nomenon can also be observed, (3) FEB reduces the number
of parameters by half while achieving better performance.

Fig 1 and 8 additionally show visual comparisons for
scale factor x4. It can be observed that EDSR-FEB and
RCAN-FEB can reconstruct sharper and more natural-
looking images. This is mainly because FEB can extract high-
frequency features and use them for reconstruction.
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TABLE 4. Average PSNR obtained with state-of-the-art SR methods when
using FEB on five benchmark datasets (scale factor x4).

Name EDSR EDSR-FEB RCAN RCAN-FEB
Params 43M 28M 16M M

Set5 32.50 32.58(+0.08dB) 32.63 32.70(+0.07dB)
Set14 28.72 28.80(+0.08dB) 28.87 28.96(+0.06dB)
B100 27.72 27.81(+0.09dB) 27.77 27.85(+0.08dB)
Urban100 26.67 26.76(+0.09dB) 26.82 26.89(+0.07dB)
Mangal09 31.02 31.09(+0.07dB) 31.22 31.30(+0.08dB)

Img_054 Urban100 RCAN-FEB
FIGURE 8. The visual comparison of SR results by the networks with
different building modules for x4 scale factor. The residual blocks
followed by channel attentions are used as building modules for RCAN.
In RCAN-FEB, we replace its blocks with proposed FEBs.

TABLE 5. Average PSNR obtained when FEB using different pooling
methods on five benchmark datasets (scale factor x4). The best
performance is shown highlighted and the second best underlined.

Configurations 1 2 3
Max-Bicubic v

Avg-Bicubic v

Conv-Deconv v
Params 675K 675K 2325K

Set5 32.17 32.24(+0.07dB) 32.35 (+0.11dB)
Setl4 28.53 28.61(+0.08dB) 28.72 (+0.11dB)
B100 27.54 27.63(+0.09dB) 27.74 (+0.11dB)
Urban100 26.12 26.20(+0.08dB) 26.30 (+0.10dB)
Mangal09 30.38 30.46(+0.08dB) 30.56 (+0.10dB)

5) COMPARING POOLING METHODS

In this section, we investigate the influence of different pool-
ing types on the performance. The proposed block adopts
average pooling for downsampling and bicubic interpolation
for upsampling. In our experiments, we use FENet as the
basic network and then replace average pooling operators
in all FEBs with maximum pooling operators. As shown in
Table 5, using the average pooling operator while keeping
the rest of configurations unchanged yields a performance
increase of about 0.08dB in average. We argue that this may
be due to the fact that, unlike maximum pooling, average
pooling builds connections among locations within the whole
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TABLE 6. Average PSNR to show the effect of downsampling rate on the
performance on Set5 dataset. We record the results in 10 x 10? iterations.

Downsampling Scales
Rate x2 x3 x4
2 37.89 34.22 32.08
3 37.91 34.24 32.10
4 37.94 34.29 32.14
5 37.95 34.31 32.15

pooling window, which can better capture local contextual
information.

In addition, we further investigate the behavior of the
proposed block (FEB), when the average pooling for down-
sampling in (9) and bicubic interpolation used for upsampling
in (10) are replaced with a convolutional layer and a decon-
volutional layer, respectively. As reported in Table 5, it can
be observed that the performance as well as the number of
parameters of the network increase, when we replace aver-
age pooling and bicubic interpolation with learnable opera-
tions. Although the performance of the network increases by
0.11dB on average, this leads to a more complex network with
more parameters. While weighing the network performance
and network complexity, we finally use average pooling and
bicubic interpolation for the rest of the experiments, the
results are close to the network with conv-deconv operations,
but the number of model parameters is only one fourth of it.

6) THE EFFECT OF DOWNSAMPLING RATE

We also investigate how the downsampling rate in FEB
influences the image SR performance. In Table 6, we show
the performance with different downsampling rates used in
FEB. It can be observed that as the downsampling rate
increases, slightly better performance is achieved. However,
we do not use larger downsampling rates due to two reasons:
(1) the resolution of the input features is already very small;
(2) higher downsampling rates lead to performance improve-
ments at the expense of more computations due to bicubic
operation. Therefore, for the rest of experiments, we set the
downsampling rate to 4 for all scale factors, as it still provides
significant improvements with a lower computational cost
than x35.

7) THE EFFECT OF INCREASING THE NUMBER OF FEB

As discussed in [37], increasing the depth of the network can
effectively improve the performance. In this work, adding
the number of FEBs is the simplest way to gain excellent
result. For better balancing the model size and performance,
we compare the proposed model with the different numbers
of FEBs, i.e., 6, 8, 10, and 12. As shown in Table 7, our FENet
performance improves rapidly with the growth in number
of FEBs. Although the performance of the network would
further improve by using more FEBs, we found it leads to
diminishing returns with respect to the number of parameters.
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TABLE 7. Average PSNR obtained with FENet when using different
number of FEBs on five benchmark datasets (scale factor x4).

Blocks 6 8 10 12 12

Global path v v v X v

Params 379K 477K 572K 675K 675K
Set5 31.98 32.15 32.19 32.21 32.24
Setl4 28.52 28.54 28.57 28.59 28.61
B100 27.51 27.53 27.55 27.58 27.63
Urban100 25.90 25.97 26.05 26.16 26.20
Mangal09 30.07 30.20 30.35 30.39 30.46

Therefore, we use 12 FEBs in our experiments. Furthermore,
we find by adding a global connection path (green line in
Fig 2) to grant the output access to the original LR input
is beneficial for reconstruction performance. Discarding this
connection decreases performance (-0.04dB on average).

C. COMPARISON WITH STATE-OF-THE-ART METHODS

1) RESULTS WITH BI DEGRADATION MODEL

In this section, we compare the proposed FENet with state-
of-the-art lightweight models: VDSR [26], DRCN [27],
SRDenseNet [53], SEINet [10], SRResNet [31], CARN [2],
IMDN [24], SRFBN-S [35], A2F-S [58], CBPN [69],
LAPAR-A [34], MADNet [29], FALSR-A [11], DPN [36],
HDRN [25], and OISR-RK2 [19]. We have also listed the
performance of state-of-the-art large SR methods including
EDSR [37], FSN [33], and CASGCN [61] for reference.

Table 8 shows quantitative results when evaluating PSNR
and SSIM on five benchmark dataset with different algo-
rithms for scale factors x2, x3, and x4. For a more infor-
mative comparison, the number of parameters is also given.
From Table 8, we find that FENet only has less than 0.7M
parameters but performs favorably against other compared
approaches on most datasets. For example, in comparison
with SRDenseNet [53] and OISR-RK2 [19], FENet achieves
better or competitive results, while only needing 30% and
40% of their parameters, respectively. On the other hand,
thanks to the FEB, FENet achieves competitive or better
results when compared to the large SR methods. Specifically,
FENet outperforms FSN [33] by a large margin at all scales
in all datasets with 18 x fewer parameters.

In Fig 9, we present some qualitative visual comparisons
for the x4 scale factor. It can be observed that SR images
reconstructed by FENet have more refined details, especially
in the edges and lines. This further validates the effectiveness
of the proposed FEB.

2) RESULTS WITH BD AND DN DEGRADATION MODELS

Following [67], we also show the SR results with BD
degradation model and further introduce DN degradation
model. The proposed FENet is compared with state-of-the-
art methods including SPMSR [45], SRCNN [14], FSR-
CNN [15], VDSR [26], IRCNN_G [64], IRCNN_C [64], and
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TABLE 8. Average PSNR/SSIM values for models with the same order of magnitude of parameters. Performance is shown for scale factors x2, x3 and x4
with Bl degradation model. The best and second best results are highlighted in red and blue respectively.
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Set5 Set14 B100 Urban100 Mangal09
Scale Method Params
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
VDSR [26] 0.7M  37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
DRCN [27] 1.8M  37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
SEINet [10] M 37.89 0.9598 33.61 0.9160 32.08 0.8984 — - - -
CARN [2] 1.6M  37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
SRFBN-S [35] 0.3M  37.78 0.9597 33.35 0.9156 32.00 0.8970 31.41 0.9207 38.06 0.9757
A2F-S [58] 0.3M  37.79 0.9597 33.32 0.9152 31.99 0.8972 31.44 0.9211 38.11 0.9757
CBPN [69] M 37.90 0.9590 33.60 0.9171 32.17 0.8989 32.14 0.9279 - -
X2 MADNet [29] 0.9M  37.94 0.9604 33.46 09167 32.10 0.8988 31.74 0.9246 - -
FALSR-A[11] M 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 - -
HDRN [25] 0.9M  37.75 0.9590 33.49 0.9150 32.03 0.8980 31.87 0.9250 38.07 0.9770
DPN [36] 0.8M  37.52 0.9586 33.08 0.9129 31.89 0.8958 30.82 09144 - -
LAPAR-A [34] 0.5M  38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
IMDN [24] 0.7M  38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
OISR-RK2 [19] 1.4M  38.02 0.9605 33.62 0.9178 32.20 0.9000 32.21 0.9290 - -
FENet (Ours) 0.6M  38.08 0.9608 33.70 0.9184 32.20 0.9001 32.18 0.9287 38.89 0.9775
EDSR [37] 43M  38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
CASGCN [61] 14M  38.26 0.9615 34.02 0.9213 32.36 0.9020 33.17 0.9377 39.41 0.9785
FSN [33] 7.3M  37.68 0.9605 33.51 0.9180 32.09 0.9015 31.68 0.9248 - -
VDSR [26] 0.7M  33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 37.22 0.9750
DRCN [27] 1.7M  33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.24 0.9343
CARN [2] 1.6M  34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRFBN-S [35] 0.4M  34.20 0.9255 30.10 0.8372 28.96 0.8010 27.66 0.8415 33.02 0.9404
A2F-S [58] 0.3M  34.06 0.9241 30.08 0.8370 28.92 0.8006 27.57 0.8392 32.86 0.9394
X3 MADNet [29] 0.9M  34.26 0.9262 30.29 0.8410 29.04 0.8033 27.91 0.8464 - -
HDRN [25] 0.9M  34.24 0.9240 30.23 0.8400 28.96 0.8040 27.93 0.8490 33.17 0.9420
DPN [36] 0.8M  33.71 0.9222 29.80 0.8320 28.84 0.7981 27.17 0.8282 - -
LAPAR-A [34] 0.5M  34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
IMDN [24] 0.7M  34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
OISR-RK2 [19] 1.6M  34.39 0.9272 30.35 0.8420 29.11 0.8058 28.24 0.8544 — -
FENet (Ours) 0.6M  34.40 0.9273 30.36 0.8422 29.12 0.8060 28.17 0.8524 33.52 0.9444
EDSR [37] 43M  34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
CASGCN [61] 14M  34.75 0.9300 30.59 0.8476 29.33 0.8114 28.93 0.8671 34.36 0.9494
VDSR [26] 0.7M  31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRCN [27] 1.8M  31.54 0.8850 29.19 0.7720 27.32 0.7280 25.12 0.7560 29.09 0.8845
SEINet [10] 1.4M  32.05 0.8934 28.49 0.7783 27.44 0.7325 - - - -
SRDenseNet [53] 2M 32.00 0.8931 28.50 0.7782 27.53 0.7337 26.05 0.7819 30.41 0.9071
SRResNet [31] 1.5M  32.05 0.8910 28.53 0.7804 27.57 0.7354 26.07 0.7839 - -
CARN [2] 1.6M  32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
SRFBN-S [35] 0.5M  31.98 0.8923 28.45 0.7779 27.44 0.7313 25.71 0.7719 29.91 0.9008
A2F-S [58] 0.3M  31.87 0.8900 28.36 0.7760 27.41 0.7305 25.58 0.7685 29.77 0.8987
x4 CBPN [69] 1.2M  32.21 0.8944 28.63 0.7813 27.58 0.7356 26.14 0.7869 - -
MADNet [29] M 32.11 0.8939 28.52 0.7799 27.52 0.7340 25.89 0.7782 - -
HDRN [25] 09M  32.23 0.8960 28.58 0.7810 27.53 0.7370 26.09 0.7870 30.43 0.9080
DPN [36] 0.8M  31.42 0.8849 28.07 0.7688 27.30 0.7256 25.25 0.7546 - -
LAPAR-A [34] 0.7M  32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
IMDN [24] 0.7M  32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
OISR-RK2 [19] 1.5M  32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888 — -
FENet (Ours) 0.6M  32.24 0.8961 28.61 0.7818 27.63 0.7371 26.20 0.7890 30.46 0.9083
EDSR [37] 43M  32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
CASGCN [61] 14M  32.60 0.9002 28.88 0.7890 27.70 0.7416 26.79 0.8086 31.18 0.9169
FSN [33] 8SM 32.10 0.8959 28.57 0.7874 27.53 0.7438 25.76 0.7817 - -
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TABLE 9. Quantitative results with BD and DN degradation models. The best and second best results are highlighted in red and blue respectively.

Set5 Setl4 B100 Urban100 Mangal09
Methods Degrad.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SPMSR [45] g]; 32.21 0.9001 28.89 0.8105 28.13 0.7740 25.84 0.7856 29.64 0.9003
SRCNN [14] BD  32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924

DN  25.01 0.6950 23.78 0.5898 23.76 0.5538 21.19 0.5737 23.75 0.7148

BD  26.23 0.8124 24.44 0.7106 24.86 0.6832 22.04 0.6745 23.04 0.7927
DN  24.18 0.6932 32.02 0.5856 23.41 0.5556 21.15 0.5682 22.39 0.7111
BD  33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
DN 2520 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525
BD  33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
DN  25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765
BD  29.55 0.8246 27.33 0.7135 26.46 0.6572 24.89 0.7172 28.68 0.7701
DN  26.18 0.7430 24.68 0.6300 24.52 0.5850 22.63 0.6205 24.74 0.7701
BD  34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391
DN  27.74 0.8026 26.13 0.6924 25.64 0.6495 24.28 0.7092 26.72 0.8590
BD  34.60 0.9277 30.57 0.8433 29.22 0.8060 28.39 0.8539 34.03 0.9459
DN  28.57 0.8164 26.29 0.6945 26.01 0.6611 24.99 0.7369 28.26 0.8611
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FIGURE 9. Visual results of Bl degradation model (x4).

SRMDNF [65]. As shown in Table 9, FENet performs the
best on all datasets with BD and DN degradation models.
The significantly better results of our method indicate that
FENet adapts well to scenarios with multiple degradation
models.

In Fig 10, we show two sets of visual results with BD
and DN degradation models from the standard benchmark
datasets. For BD degradation model, the proposed FENet sup-
presses the blurring artifacts and recovers sharper edges. For
DN degradation model, FENet can not only handle the noise
efficiently, but also recover details more accurately. These
comparisons further showcase the robustness and effective-
ness of our method in handling BD and DN degradation
models.
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FIGURE 10. Visual results of BD and DN degradation models (x3).

3) MODEL COMPLEXITY ANALYSIS

In this section, we compare the trade-off between perfor-
mance, number of parameters and the number of multiplica-
tions and additions (Multi-Adds) for our method and existing
lightweight SR networks. The Multi-Adds are calculated cor-
responding to a 1280 x 720 HR image.

Fig 11 shows the PSNR performances of several exist-
ing lightweight models, namely VDSR [26], DRCN [27],
SRDenseNet [53], SEINet [10], SRResNet [31], CARN [2],
IMDN [24], SRFBN-S [35], A2F-S [58], CBPN [69],
LAPAR-A [34], MADNet [29], FALSR-A [11], DPN [36],
HDRN [25], and OISR-RK2 [19] versus the number
of parameters and Multi-Adds with results evaluated on
Urban100 for x4. As shown in Fig 11, FENet achieves
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FIGURE 11. Comparing capacity vs. performance for lightweight
state-of-the-art SISR models on Urban100 (x4). Circle sizes are set
proportional to the number of multiplications and additions (multi-adds).

TABLE 10. Average running time(s) and memory consumption (MB)
comparison on Urban100 for x4.

Methods Params Memory Rl:mnmg PSNR
Time(s)
CARN [2] 1.5M 1,116 0.032 26.07
SRFBN-S [35] 0.5M 2,154 0.031 25.71
SRDenseNet [53] 2.0M 5,531 0.221 26.05
IMDN [24] 0.7M 871 0.028 26.04
A2F-S [58] 0.3M 915 0.032 25.58
LAPAR-A [34] 0.7M 1,240 0.053 26.14
MSRN [32] 8.0M 2,731 0.070 26.04
RCAN [66] 16M 1,531 0.087 26.82
EDSR [37] 43M 2,731 0.035 26.64
FENet (Ours) 0.6M 850 0.018 26.20

state-of-the-art results with less parameters and Multi-Adds
operations. This demonstrates that our proposal achieves
a better trade-off between model size and reconstruction
performance.

4) MEMORY COMPLEXITY AND RUNNING TIME ANALYSIS
Table 10 illustrates the superiority of the proposed FENet in
terms of Inference Time (s) and Memory Consumption (MB),
when compared to recent light- and heavy-weight state-of-
the-art approaches on Urban100 with scale factor x4. For a
fair comparison, we use a single NVIDIA RTX 3090 GPU for
evaluation, and their official source code implementations.
It can be observed that our model achieves dominant per-
formance in terms of memory usage and time consumption,
reflecting its efficiency.

5) PERCEPTUAL METRICS

Perceptual metrics better reflect the human judgment of
image quality. In this paper, Perceptual Index (PI) [7] is
chosen as the perceptual metric. Table 11 shows the PI for
those works with publicly available source code, and the
same order of magnitude in terms of parameters. We observe
that our proposed model obtains better results than all the
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TABLE 11. Perceptual index comparison of the proposed method with
recent lightweight state-of-the-art methods on five datasets for x4. The
lower is better. All of the output SR images are provided officially.

Urban Manga

Methods Params  Set5 Setl4  B100 100 109
DRCN [27] 1.7M 6451 5945 5897 5791 5.563
CARN [2] 1.5M 6297 5775 5700 5540 5.132

SRFBN-S [26] 0.6M 6451 5775 5.702 5549 5.010
SRDenseNet [53] 2M 6.128 5.615 5.653 5526 4.762
IMDN [24] 07M  6.124 5.644 5.659 5531 4.810
LAPAR-A [34] 0.7M  6.084 5499 5532 5179 4771
FENet (Ours) 0.6M 5598 5495 5447 5175 4.761

compared baselines. This demonstrates the ability of the pro-
posed FENet for generating realistic images.

V. LIMITATIONS AND FUTURE WORK

Although our method is the fastest compared to other SR
approaches we have identified the bicubic interpolation oper-
ation in (10) as one of the main computational bottlenecks.
Thus, we hypothesize that substituting it for a more efficient
operation or implementation would effectively speed up our
model. Furthermore, the loss function adopted by our method
is the distortion-oriented rather than perception-oriented met-
ric, which also limits obtaining better perceptual quality HR
images.

In future work, we will explore the extensions of the
proposed framework on other image restoration applications,
such as deblocking, inpainting, and low-light image enhance-
ment. We also wish to further develop this work by applying
our technique to video data. Many streaming services require
a large storage to provide high-quality videos. In conjunction
with our approach, one may devise a service that stores low-
quality videos that go through our SR system to produce high-
quality videos on the fly.

VI. CONCLUSION

This paper presents a novel Frequency-based Enhancement
Block (FEB). This block is able to naturally decompose
features into low and high frequencies and explicitly allo-
cate more computational capacity to high-frequency ones
thus improving the discriminative capabilities of the network.
The proposed FEB can be easily replaced with commonly
used SR blocks. We proved that when replacing SR blocks
with FEB we consistently improve the reconstruction error
(PSNR: +0.08dB on average) while reducing the number of
parameters by half in the model. Furthermore, We showed
that the proposed block is orthogonal and complementary
to attention-based SR methods. Based on FEB, we pro-
posed a lightweight Frequency-based Enhancement Network
(FENet) for accurate image SR. Experimental results on sev-
eral benchmark datasets demonstrate that our method can
achieve superior performance at a moderate size. We hope
that the idea of decomposing low- and high-frequency infor-
mation at the feature level for adaptive computation can
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provide the computer vision community with a different per-
spective on network architecture design.

APPENDIX

A. ABBREVIATIONS

The abbreviations and acronyms used in this paper are first
introduced in the text, and for convenience, the list of abbre-
viation is summarized in Table 12.

TABLE 12. Summary of abbreviations.

List of abbreviations and their associated meanings

CNN Convolutional neural network

CA Channel attention

CSAR Channel-wise and spatial attention residual
DB Dense block

FEB Frequency-based enhancement block
FENet Frequency-based enhancement network

HR High-resolution

IMDB Information multi-distillation block
LR Low-resolution

MB Memory consumption

MSRB Multi-scale residual block

PI Perceptual index

PSNR Peak signal-to-noise ratio

RB Residual block

SISR Single image super-resolution

SR Super-resolution

SSIM Structural similarity index measure

B. DATA DESCRIPTION

In Table 13, we list a number of image datasets commonly
used by the SR community and this work. We specifically
indicate their amount of HR images, average resolution,
image formats, and category keywords.

TABLE 13. List of public image datasets for super-resolution benchmarks.

Dataset Amount Avg. Resolution Format Category Keywords

Sets 5 (313, 336) PNG Baby, bird, butterfly, head,
woman
Humans, animals, insects,

Setl4 14 (492, 446) PNG flowers, vegetables, comic,
slides, etc.

B100 100 (435, 367) PG Anm‘lal, building, food,
landscape, people, plant, etc.

Urban100 100 (984, 797) PNG Architecture, city, structure,
urban, etc.

Mangal09 109 (826, 1169) PNG Manga volume
Environment, flora, fauna,

DIV2K 1000 (1972, 1437)  PNG handmade object, people,
scenery, etc.
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