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ABSTRACT The identification of patient-specific cancer driver genes plays a crucial role in the development
of personalized cancer treatment and drug development. Several computational methods have been proposed
for identifying patient-specific cancer driver genes, most of which rank driver genes ac-cording to scores
calculated from various gene or protein network information. In this paper, we propose a machine learning
model for more accurate identification of patient-specific cancer driver genes. The training data for the
proposed model is composed of the gene vectors, which indicate the impacts that one gene can have on
or receive from all the genes. The gene vector is patient-specific, in other words, one gene can have many
gene vectors from many cancer patients. To make gene vectors, first a patient-specific gene network is built
using the gene expression data of each cancer patient and gene regulatory network, then modified PageRank
is applied to the patient-specific gene network to make the impact matrix, from which gene vectors can be
extracted.We used the Random Forest model to train gene vectors to find and discriminate patterns that show
how known driver genes affect, or are affected by, other genes. The proposed model was tested through cross
validations and independent tests using different sets of known cancer driver genes and six cancer types from
The Cancer Genome Atlas (TCGA) data, and showed higher F-scores than existing patient-specific driver
gene identification algorithms. The majority of predicted driver genes were rare, and F-scores calculated
with these rare genes are higher than or comparable to those of frequently identified driver genes.

INDEX TERMS Patient-specific driver gene prediction, pagerank, machine learning, patient-specific gene
network.

I. INTRODUCTION
Identification of cancer driver genes is important because
it enables us to have a deeper understanding of cancer,
leading to development of superior anti-cancer drugs or
therapies. With accumulation of high-throughput genomic
and transcriptomic data, many computational methods have
been proposed to identify cancer driver genes or mutations,
which can be roughly divided into three categories. The
first group of methods identifies driver genes or mutations
by their frequency [1], [2]. The main disadvantage of these
methods is that they cannot find rare driver genes or muta-
tions unless massive amount of data is provided. The second
group is based on machine learning models, which learn
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genetic or transcriptomic patterns of known driver mutations
or genes [3]–[6]. While machine learning based approaches
have shown to exhibit high accuracy from recent studies, they
are limited by their small number of available training data
due to a limited number of known cancer driver mutations
or genes. The third group adopts various network searching
algorithms to the network of genes, such as gene regulatory
network or protein-protein interaction network, to identify
cancer driver genes [7], [8].

A majority of the above mentioned methods are focused
on identifying drivers from cancer cohort studies. However,
it is highly likely that individual cancer patients with the
same cancer type have heterogeneous cancer drivers [9],
[10]. A small fraction of these heterogeneous drivers have
high them are well studied, however, most of them are rare
and hard to identify [11], [12]. Several methods have been
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FIGURE 1. Workflow of MPD.

developed to find rare and patient-specific drivers from an
individual cancer patient data, and most of the methods
are based on network search (third group). DawnRank [13]
modified PageRank [14] to apply variable damping factor
which is calculated based on the number of incoming edges.
Genes are scored using modified PageRank and individual
somatic mutation information, and highly ranked genes with
somatic mutations are selected as driver genes. Personalized
Network Control (PNC) [15] applies Maximum Matching
Set algorithm to a patient-specific gene network to find the
minimum number of driver genes that affect whole net-
work. The paired Single Sample Network (SSN) constructs a
patient-specific gene network whose edges show significant
changes in correlation of gene expression between normal
and tumor states. Single-sample Controller Strategy (SCS)
[16] identifies the minimum number of mutated genes needed
to control differentially expressed genes using a method
named CTC (Constrained Target Control), which results in
several gene modules composed of one driver gene and other
downregulated genes. PRODIGY [17] ranks driver genes
by calculating the impact of mutated genes on deregulated
pathways. These mutated genes are significantly enriched in
differentially expressed genes when performing a hypergeo-
metric test.

In this paper, we propose a novel machine learning model
named MPD (Machine learning model for Patient-specific
Driver gene identification) for identifying patient-specific
cancer driver genes. The training data for MPD is composed
of the gene vectors. The gene vector of gene G represents
the impacts that G can have on, or receives from, all the
genes. Gene vectors are patient-specific, which means that
the vectors for each gene are made for all cancer patients,
and gene vectors of the same gene can be different.

Tomake the gene vectors, we first construct a gene network
for each cancer patient, i.e., a patient-specific gene network.

Weights of the patient-specific gene network are calculated
using DNA mutations and gene expressions. Then we apply
modified PageRank for each gene of the network to make an
impact matrix, of which element eij implies an impact from
genej to genei. A gene vector is a concatenation of a column
and transpose of a row of a gene in the impact matrix.

Gene vectors for all the patients comprise the training
and test data. Because gene vectors are patient-specific, gene
vectors of the same gene can be divided into training and
test data. This means that known driver genes can also be
predicted as cancer driver genes, even if they were already
used for training.

Gene vectors of known cancer driver genes with somatic
mutation (SM), copy number alteration (CNA) or DNA
methylation (DNAm) are assumed to be patient-specific
driver genes, and labeled as T . The same number of gene
vectors not known to be cancer drivers that do not feature
SM, CNA, or DNAm are randomly selected and labeled as
F . We used CNA and DNAm in addition to SM data, because
they are often associated with cancer driver genes [18], [19].
The machine learning models are trained to classify the gene
vectors into T and F . The unlabeled gene vector of gene G
is classified by the trained model, and G is predicted to be
a patient-specific cancer driver gene if it is classified as T .
Because a gene vector is the impacts that a gene gives to
and receives from all the genes, classification modeling can
find and discriminate patterns that show how a known patient-
specific driver affects other genes.

We performed five-fold cross validation and independent
tests using known driver genes from Intogen [20], Cancer
Gene Census (CGC) [21] and The Network of Cancer Genes
(NCG) [22], and SM, CNA and DNAm data of six cancer
types (breast, colon, liver, pancreatic, and stomach cancer) in
TCGA [23]. Through cross validation, we found that Ran-
dom Forest (RF) [24] was effective for our purpose, and
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that all omics data types showed best results for colon and
liver cancer, while the rest of the cancer types were shown
best by SM and DNAm data. Through independent tests,
we confirmed that MPD shows higher F1 and F0.5 scores
than existing methods for identifying patient-specific cancer
driver genes. Themajority of predicted driver genes are found
to be rare, and F1 and F0.5 scores calculated with these rare
genes are higher than or comparable to those of frequently
identified driver genes.

II. METHODS
A. OVERVIEW
To describe how the proposed model, MPD, works, we first
explain how to obtain gene vectors in Section 2.2, and explain
how to train gene vectors using the machine learning methods
and how to predict patient-specific cancer driver genes in
Section 2.3. Fig.1 shows the workflow of MPD.

B. GENERATION GENE VECTORS
1) BUILDING THE PATIENT-SPECIFIC GENE NETWORK
The first step to make a gene vector is to construct the patient-
specific gene network. It is built using gene expression data
and integrated gene networks made with directed edges of
FI networks from Reactom [25] and the gene regulatory
networks from the RegNetwork [26] and TRRUST [27].
The patient specific gene network can be represented as a
weighted adjacency matrix W for each patient. W is calcu-
lated using the product of two matrices, 9 and 8 as in (1).

W = (I −9)8+9 (1)

In (1), I is an identity matrix, and 9 is a diagonal matrix.
Each element of 9 represents differences in gene expression
between a tumor sample and a group of normal samples,
which is calculated as t-statistics using one sample t-test.
T-statistics are then normalized to a range from 0.1 to
0.9 by the min-max scaling method. The value should nei-
ther be 0 nor 1 because a value of 0 means that the node
had no effect on itself while a value of 1 means that the
node was not affected by the gene network. The elements
of 9 are weights of self-loops of a patient-specific gene
network.

The matrix 8 is used for calculate weights of non-self-
loops, and defined as the elementwise multiplication (⊗)
of four matrices, an adjacency matrix A, WC , WD and WP,
as in (2).

8 = A⊗WC ⊗WD ⊗WP (2)

A is an adjacency matrix where Aij=2 or 1 if i-th and j-th
genes are connected in the integrated gene networks, and
Aij = 0 otherwise. Aij = 2 if i-th gene has SM, CNA or
DNAm, and Aij = 1 otherwise.
WC and WD are matrices of which elements are calcu-

lated using Pearson’s Correlation Coefficient (PCC) as in (3)
and (4),respectively.

WC [i, j] = |PCC (Xc [i] ,Xc [j])| (3)

WD [i, j]= 0.5× |PCC (Xc [i] ,Xc [j])− PCC (Xn [i] ,Xn [j])|

(4)

where Xc, and Xn are matrices of gene expression data of can-
cer and normal samples, respectively. The value ofWD[i, j] is
close to zero if there are similar patterns between cancer and
normal samples, and otherwise its value increases up to the
maximum of 1.
WP shows which interactions are particularly crucial in a

patient, compared to the other patients. A value ofWP[i, j] is
derived from calculation of PCC and gets close to 1 if a patient
has similar linear correlation pattern between the i-th and j-th
genes compared to PCC of the cancer sample group. (5), as
shown at the bottom of the next page. In (5), XC [i, k] is the
value of the i-th gene expression level of the k-th patient; µi
and σi are the mean and standard deviation of the expression
level of the i-th gene in the cancer samples, respectively; sgn
is a function that returns the sign of an input value, 1 or
-1. The sigmoid function is used to give weight of zero to
edge (i, j) (i.e. to remove edge), if i-th and j-th genes are not
correlated in a specific sample, compared to cancer sample
group.

2) GENERATION OF IMPACT MATRIX
Once the patient-specific gene networks are made, we apply
modified PageRank to the network to make the impact matrix
for each patient. The impact matrix, or IM, is composed
of n feature vectors that correspond to the dimension and
the number of genes. A feature vector of a specific gene
implies the impacts that it has on all the genes, and element
eij of IM implies an impact from genej to genei. Feature
vectors calculated by the modified PageRank are used to
make gene vectors, which act as the input to the machine
learning methods.

To apply the modified PageRank algorithm, a stochas-
tic matrix W̃ of the patient-specific gene weight matrix W
is first calculated as (6).

W̃ = W×D−1 (6)

In (6), D is a diagonal matrix where the i-th diagonal entry is
equal to the sum of elements on the i-th column inW , andD−1

is the inverse matrix of D. One of the properties of stochastic
matrix W̃ is that the sum of elements on each column is 1 and
an element W̃ [i, j] can be interpreted as the probability with
which we proceed to j-th gene from i-th gene.
The modified PageRank algorithm computes feature vec-

tors iteratively using the patient-specific stochastic matrices,
as illustrated in Fig.2. An initial feature vector of the i-th gene
IM0 [i] is a one-hot vector of which the dimension is equal
to the number of genes. At the initial time, the i-th entry
of the feature vector has value 1 and the other entries have
zero, which means that the initial impact matrix IM0 is an
identitymatrix. By iterativelymultiplying the patient-specific
stochastic matrix by the feature vector (7), the positive value
of i-th entry spreads to other entries and this process repeats
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FIGURE 2. Example for generation.

until the feature vector reaches the steady state.

IM t+1 [i] = W̃ × IM t [i] , ∀t ≥ 0 (7)

Equation (7) takes a different approach compared to stan-
dard PageRank. First, while the damping factor of PageRank
has a fixed value, MPD has a dynamic damping factor –
weights of self-loops (9 in (1)) can be seen as (1-damping
factor). The weights of self-loops are correlated with gene
expression differences between cancer samples and normal
samples, assuming that genes which have a greater expression
difference tend to be affected more by other genes. This
suggests that nodes with greater self-loop weights should
have smaller impacts on neighboring genes, corresponding
to a smaller damping factor.

Second, while initial node values are multiplied by
(1-damping factor) for every time point in PageRank, node
values at time point t are multiplied by (1-damping factor) to
calculate node values of time point t+1 in MPD. The reason
for this modification is that the initial node values are the
same at time 0 in MPD, and we assumed that node’s impact
from other nodes in the network is accumulated as time flows.

In the steady state, the feature vector IM∞ [i] shows how
much each gene is affected by the i-th gene. The final impact

matrix is composed of these feature vectors, and IM∞[i, ]
and IM∞[, i] can be interpreted as impacts that the i-th gene
receives and the i-th gene gives, respectively.
The gene vector of the i-th gene is defined as the concate-

nation of IM∞[i, ]T and IM∞[, i]. The reason why we used
both row and column of the impact matrix is because driver
genes are not necessarily associated with upstream genes in
the whole gene network. The example for generation of a
gene vector is illustrated in Fig.2.

C. PREDICTION OF PATIENT-SPECIFIC CANCER
DRIVER GENE
The gene vector of gene G indicates the impacts that G can
have on, or receive from, all the genes, and all the cancer
patients have a different gene vector for gene G. In this
section, we explain how a machine learning model learns
latent information about cancer drivers from gene vectors and
determines which gene acts as a cancer driver.

We first get positive and negative gene vectors. The gene
vectors are labeled as positive if a gene is known driver in
Intogen, CGC, and NCG, and has SM, CNA, or DNAm for
each patient. A positive set comprises the positively labeled
gene vectors for all the patients.

WP [i, j] = sigmoid

(
(Xc [i, k]− µi)

(
Xc [j, k]− µj

)
σiσj

× sgn (PCC (Xc [i] ,Xc [j]))

)
(5)
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FIGURE 3. Training and test data used for the experiments.

TABLE 1. Detailed description of data downloaded from TCGA and number of driver gene by cancer type.

For each patient, we randomly select gene vectors from
genes that are not known to be driver gene and do not have
SM, CNA, and DNAm, and label them as negative. Nega-
tively labeled gene vectors for all the patients compose the
negative set.

To build a classification model, we performed five-fold
cross validation and two independent tests as in Fig.3. The
goal of cross validation is to select a machine learning algo-
rithm, patient-specific gene network construction method,
and type of omics data, that will give the best results. The
goal of independent tests is to compare the performance
of patient-specific driver gene identification with those of
existing methods.

For the cross validation, a positive set of each fold con-
sists of gene vectors of one-fifth of the known driver genes.
A negative set of each fold consists of gene vectors that are
randomly selected genes not known to be drivers. Note that
we used only positive set I for cross validation, because driver
genes in NCG are not cancer type specific.

For independent tests, all the positive gene vectors not used
for training are tested – if positive set I is used for training,
positive set II is used for test, and vice versa. Because ran-
domly selected negative set can affect training performance,
we made five negative sets and averaged recall and precision.

For both cross validation and independent tests, the same
number of gene vectors for the negative and positive set were
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TABLE 2. Detailed description of the network data.

selected for training. We used RF, Naïve Bayesian classifier
(NB) [28] and Deep Neural Networks (DNNs) to train a
classification model.

Note that known driver genes can also be predicted as
cancer driver genes, even if they were already used for train-
ing. This is because gene vectors of known driver genes are
patient-specific, which means gene vectors of the same gene
are different for different cancer patients. So, even if gene
vectors of same genes are used for both training and test, they
do not overlap as long as they are not from the same cancer
patients.

III. RESULT
A. DATASETS
Four types of omics data (mRNA expression, SM, CNA,
and DNAm data) from six cancer types (BRCA, COAD,
LIHC, LUAD, PAAD, and STAD) were downloaded from the
TCGA data portal. For DNAm data, the top 5% methylation
levels of each sample were replaced by 1 and the rest by
0. For gene expression data, genes with zero FPKM value
in more than 80% of samples were excluded. The known
driver gene information was downloaded from Intogen, CGC,
and NCG. Driver genes provided by CGC were divided into
two tiers, and only Tier 1 genes were used because driver
genes corresponding to Tier 1 had more evidence for cancer
occurrence than those in Tier 2. The described datasets are
summarized in the Table 1 and the IDs of the omics data
that was downloaded from the TCGA portal is provided in
supplementary Table 1 by cancer type.

We also downloaded the only directed edges of FI network
provided by the Reactom and the gene regulatory net-
works from the RegNetwork and TRRUST, and integrated
them. The details about the integrated network are given in
the Table 2.

B. FIVE-FOLD CROSS VALIDATION RESULTS
To choose the best 1) machine learning method, 2) patient-
specific gene network construction method, and 3) combina-
tion of omics data, we performed a five-fold cross validation
as shown in Fig.3.

1) COMPARISON ON DIFFERENT MACHINE
LEARNING METHODS
We compared three machine learning models, RF, NB, and
DNN in order to find the machine learning method that can
best learn the gene vectors we created. We found optimal

FIGURE 4. Comparison of different machine learning models.

FIGURE 5. Comparison on methods of patient-specific gene network
construction methods.

parameters for each method through iterative experiments,
and used the parameters with n_estimator of 50 for RF, and
four hidden layers with size 5,000, 1,000 and 100 were used
for DNN.

We calculated recall, precision, F1 score and F0.5 score
using the genes selected as driver genes in 0% to 99% of all
patient samples for each of six cancer type and averaged them
as shown in Fig.4. S1 Fig show F1 score, F0.5 score, precision
and recall for each cancer type. Note that 0% means that we
use the union of selected driver genes of all the samples, and
100% is not shown because no genes were selected as driver
gene in all the samples. We can see that RF shows much
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FIGURE 6. Comparison on different omics data types.

higher precision which leads to high F1 and F0.5 scores,
so RF was used for the rest of the experiments. The proposed
patient-specific gene network construction method was used
to build gene networks and all the omics data were used for
Fig.4 and S1 Fig.

2) COMPARISON ON METHODS FOR PATIENT-SPECIFIC
NETWORK CONSTRUCTION
The differences between patients are represented by patient-
specific networks, so accurately constructed patient-specific

FIGURE 7. Results of independent test I.

FIGURE 8. Results of independent test II.

net-works are very important for accurate identification of
the patient-specific driver genes. To show the performance of
the proposed patient-specific network construction method,
driver genes were found using the proposed network Single
Sample Network (SSN) [16], and a random weight network,
and F1 score, F0.5 score, precision and recall of each case
were compared. Fig.4 shows averaged results, and S2 Fig
shows F1 score, F0.5 score, precision and recall for each
cancer type. We can see in Fig.4 that the proposed patient-
specific network had higher precision than others except 99%
of samples, which lead to higher F0.5 score and higher F1
score for less than 70% of samples. All the omics data were
used for Fig.4 and S2 Fig.

3) COMPARISON ON METHODS OF DIFFERENT OMICS DATA
We compared the F1 score, F0.5 score, precision and recall
when used 1) only SM data, 2) SM and CNV data, 3) SM
and DNAm data, and 4) used all data types. F0.5 score
and precision for each cancer type are shown in Fig.5, and
F1 score, F0.5 score, precision and recall for each cancer type
are provided in S3 Fig. But for COAD and LIHC, because
using all the data together shows slightly better F0.5 score,
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FIGURE 9. Frequency of genes identified as drivers. Graphs show
fractions of genes identified as driver genes in less than 1%, 1-5%,
5-10%, 10-50%, and 50-100% of samples. The numbers at the top of each
graph indicate total number of genes identified as drivers.

we use all types of omics data for independent tests for COAD
and LIHC.

C. INDEPENDENT TEST RESULTS
We performed two independent tests as explained in Fig.2.
In independent tests, we compare the F1 score, F0.5 score,
precision and recall of MPD, and those of Dawnrank, PNC
and PRODIGY. Note that in one other recently published
method, SCS was not used in the comparison because we
were not able to get its code or executable file. For PNC
and PRODIGY, only paired samples were used, because
PNC showed better performance for paired samples, and
PRODIGY required too much time to get through all the
samples. As mentioned in section B, we used all the omics
data types for COAD and LIHC, and used SM and DNAm
for the rest of the cancer types.

Fig.7 show averaged results for independent test I, and
S4 Fig shows F1 score, F0.5 score, precision and recall for
each cancer type. We can see in Fig.7 that precision of MPD
is higher to or comparable to DawnRank but recall is higher,
which leads to highest F1 score when less than 20% of
samples are used, and always highest F0.5 score. PNC has
highest recall but low precision.

Fig.8 show averaged results for independent test II, and
S5 Fig shows F1 score, F0.5 score, precision and recall for
each cancer type. Fig.8 also shows that precision of MPD is
higher than or comparable to DawnRank, but recall is higher.

MPD showed the highest average F1 and F0.5 score when
percentage of samples exceeded 20 and 30, respectively.
In S5 Fig, we can see that MPD showed good performance
for BRCA, LIHC, LUAD and STAD, but has low F1 score,
F0.5 score and precision when smaller samples were used.
This was especially true for COAD and PAAD, which was
likely due to the small number of COAD and PAAD samples,
resulting in small number of training gene vectors.

Next, we counted the number of driver genes found for
each cancer type to calculate the ratio of rare driver genes.
Fig.9 shows the ratio of genes identified as driver genes in
less than 1%, 1% to 5%, 5% to 10%, 10% to 50%, and
50% to 100% of samples. We can see that about 20∼40%
of genes were identified in ∼1% of samples and 40-50% of
genes were identified in ∼5% of samples, which means the
majority of genes identified as drivers were rare. In Figu.6
we can see that MPD shows higher F1 and F0.5 scores as less
samples were used. In Fig.7, unlike Fig.6, F1 and F0.5 scores
increased as more samples were used, and MPD continued to
increase relative to others whenmore than 10%of samples are
used. Collectively, these results tell us that MPD successfully
identifies rare driver genes with strong accuracy.

IV. DISCUSSION
While existing methods of identifying patient-specific cancer
driver genes are usually based on various kinds of network
searching algorithms, we proposed a machine learning based
method named MPD to reveal patient-specific cancer driver
genes. We showed that MPD generally produced higher
F1 and F0.5 scores in comparison with existing meth-
ods. Compared to DawnRank which frequently shows good
performance among existing methods, MPD showed higher
or comparable precision but with higher recall.

Expected reasons for good performance of MPD are
1) accurately constructed patient-specific networks, 2) ability
of gene vectors to characterize the latent roles of genes in
cancer genome, and 3) intrinsic ability of machine learning
techniques to find hidden patterns. Machine learning based
search can be expected to show high performance in many
cases due to recent advances in machine learning methods,
but often times, the number of samples is too small. Our work
solves this problem of having too few samples by creating
a sufficient number of gene vectors for each known driver
gene.

Despite its strong results, MPD has some limitations and
additional work remains. The main disadvantage of MPD is
that it still requires a number of tumor and normal samples
to create accurate patient-specific gene networks. Research
to overcome this barrier could be the subject of a future
study. MPD has another limitation: it does not tell us why
a gene is identified as a driver gene because most machine
learning models (including Random Forest) are black box
models. Interpreting the trained model could be the subject
of another future study. In addition, as a classification model,
MPD requires negatively labeled samples that are hard to
optimize. Because good negative samples can be important

54252 VOLUME 10, 2022



H. Jung et al.: Novel Machine Learning Model for Identifying Patient-Specific Cancer Driver Genes

for better prediction performance, we are planning to develop
a better way to select negative samples.
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