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ABSTRACT Bitcoin introduced a cryptocurrency as a form of public ledger consequently that turned into
a most popular security technology, Blockchain. Its integrated mining technology lies the key security
mechanism. The system allows forming a pool mining group to solve a particular job and share their revenues
to their CPU usage while one of them successfully mines a block. To mine a block, a cryptographic puzzle
should be solved, which requires significant compute resources that cause huge energy consumption. On the
other hand, recent statistics show that low computational energy-restricted Internet of Things (IoT) devices
are increasing exponentially. Although it has low energy and limited computation power, it is large in quantity
when it is integrated. So we focus on a stochastic geometry theory, which resolves the issue of block mining
computation via utilizing multiple mobile IoT devices, given that these IoT devices are Computation Capable
Nodes (CCNs). To further normalize this issue, we propose an efficient mathematical solution that uses smart
coordination of Virtual Network Functions (VNFs) for IoT devices to enable their CPU usage efficiently.
At the same time, the work and credit point distribution policy is smartly handled through virtual pool mining.
The proposal renders Network Function Virtualization technology to configure VNF, and Service Function
Chain technology is utilized to enable the network flow of such VNFs. New algorithms are presented to solve
multiple issues like node discovery, computation offloading, and work credit point distribution. Our goal is to
minimize energy consumption within the given time constraint. Implementation results show that although
virtual functions for block mining require extensive computations in IoT devices, dividing computation work
into small fractions called tasks embedded with VNF, and offloading them to nearby CCNs, tend to minimize
the cost and energy consumption of individual shared miners. The overall mining process is proved efficient
and faster.

INDEX TERMS Internet of Things, network function virtualization, virtual network function, service
function chain, blockchain, bitcoin, pool mining.

I. INTRODUCTION
The term consensus refers to a mechanism where by a group
of nodes in a Peer-to-Peer (P2P) network dynamically reach
to a pre-defined agreement among themselves to solve a
cryptographic solution. The first node to find this solution
successfully forms a block using a valid algorithm called
Proof of Work. Series of such blocks hold valid transaction
records in a ledger distributed across all peers in a P2P
network called Blockchain (BC). There are different kinds of
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consensus mechanisms such as Proof-of-Work (PoW), Proof-
of-Stake (PoS), Delegated Proof-of-Stake (DPoS), Proof-
of-Authority (PoA), Proof-of-Weight (PoWeight), Byzantine
Fault Tolerance (BFT), etc. Unique fault-tolerant consensus
algorithms solvemany challenging issues, such as the double-
spending problem in a decentralized network. Consensus
participants follow different strategies to eventually come to
a single opinion to approve a block. The strategy is well-
known and introduced as mining through Bitcoin [1], and
the participants are recognized as miners. More than two
thousand cryptocurrencies [2] are present in the market after
the revolution of the Bitcoin economy. Due to the public
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FIGURE 1. Comparison of TPS in different blockchain.

nature and scalability of public blockchain (i.e., cryptocur-
rency), recent technology has gone beyond cryptocurrency,
also called distributed private BC. It has various application
domains, such as IoT, E-healthcare, education, banking, etc.

Although the nature of BC varies in different use cases,
there remain some standard features like a consensus, dis-
tributed ledger, etc. Every BC is primarily different based
upon their nature and core technical features of consensus
algorithms whose ultimate goal is to improve TPS without
compromising security. Figure 1 refers to comparisons of
different types of BC concerning TPS. The blue, green, and
yellow bar denotes the official release of TPS, tested average
TPS, and tested peak TPS, respectively. This indicates a
contradiction in the Quality of Service (QoS) assured for
users.

In a BC network, a block is added to the ledger in every
certain time interval (e.g., 10min/block in bitcoin) against
valid PoW [3]. A valid PoW is an integral part of a cryp-
tocurrency network that solves some cryptography problem
(i.e., mathematical puzzle). As a result, it allows a block
of pending transactions to be added to the BC (i.e., records
of all transactions ever). The integral part must be trivial
to verify whether data satisfies the said requirements, e.g.,
difficulty value must start with a certain number of zeros to
make the puzzle complex and resource-intensive for miners
called hashing. Every round, a new hash is generated from the
incremented nonce. This process assures that the number of
blocks found each day remains steady, and more computing
power is needed to mine the next block. It indicates that it
is practically impossible to mine anything significant with-
out having specialized hardware. At the same time, we are
surrounded by billions of mobile IoT devices that could
replace the utility derived from specialized hardware. Users
of Mobile IoT devices like laptops, android phones, iPhones,
iPads, etc., would reach 75.44 billion users worldwide, and
each person is expected to be connected to 6 such IoT devices
by 2025 [4]. Owners of vast businesses tend to be users of
IoT devices to make their business automated and highly
dependent on it. So more business transactions are becoming

associated with IoT devices. A new sensing era lies in Mobile
crowdsensing (MCS), which explores the advantage of exten-
sive use of mobile IoT devices to collect data efficiently
and enable several significant applications. It uses sensing
and wireless communication potentials to provide services to
billions of mobile IoT devices. The use of such IoT devices
can be extended for BC applications too. BC mining requires
computation-intensive tasks for miners, i.e., solving the PoW
puzzle, which demands high computational capability and
storage facilities from miners’ perspective. Instead of buying
new expensive server machines, it is possible to minimize
computation costs and optimize resource usage by utilizing
these idle IoT devices for BC mining purposes. Since IoT
devices tend to be low-power resource-constrained devices,
a single IoT device cannot replace the utility of a high-
end server machine. One efficient technique to mitigate this
issue is to divide the computation work into a fraction of
small tasks and offload them to multiple available mobile IoT
devices. Only specific IoT devices are preferred to be utilized
for mining purposes based on their computational capability,
and we call them CCNs. But finding optimal mining policy
while Computation Offloading (CO) in wireless mobile BC
networks is more challenging compared to BC mining in
the wired network because of extensive computation mining
process [5]. On the other end, function Virtualization (FV)
addresses this issue by dividing the computation extensive
mining process of a single miner in wireless mobile BC
networks by sharing partial mining work via FV with nearby
mobile users where FV exploits the virtualization paradigm.

Virtualization [6] is the logical abstraction of the
underlying hardware devices within a network through
software implementation. The abstraction decouples the con-
trol from hardware and makes it easier to modify, manage,
and upgrade. In recent times, the abstraction has not been
limited to hardware only. Still, rather software embedded
into hardware has also been virtualized as independent ele-
ments, which is referred to as Function Virtualization [7], [8].
To this end, FV is implemented through VNF, which ren-
ders Network Function Virtualization (NFV) [9] technology.
NFV flexibly utilizes network and computation resources
[10]–[12]. It reduces mining expenses (e.g., capital and
operational expenditures, CAPEX, OPEX [13]), computa-
tion delay. It also minimizes energy usage for any mobile
operators via configuring software instances (i.e., VNFs)
into assigned server/edge nodes rather than configuring Net-
work Functions (NFs) on dedicated hardware [14]. Series of
VNFs are interlinked via virtual links (VLs), forming a chain
called Service Function Chain (SFC) [8]. NFV rendering SFC
alleviates the overall traffic burden both in core and edge
network because mobile users’ CO tasks can be randomly
configured into series of VNFs [9] and distributed to multiple
CCNs. Each executes one fraction of the entire work in par-
allel, eventually saving time. CCNs have higher computation
capability than resource-constrained IoT devices like head-
phones, smart shoes, smartwatches, etc. They can execute
multiple computational tasks in parallel, eventually serving
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the purpose of FV for miners. Nowadays, people regularly
use too many CCNs, which are multitasking capable. It is
highly possible to share mining tasks through FV to those
capable devices and interested in participating in the mining
process. This will allow a huge number of participants to
strengthen the effectiveness of the overall consensus process.
This process can also cut energy consumption due to reduced
computation usage in every mobile user. The entire work is
now jointly solved via multiple mobile devices rather than
executing it in one single node. Hence, the entire process
will become faster and more efficient than the traditional
process/block mining strategy because of the dedicated vir-
tual function for each offloading task. There are no BC-
based papers focusing on the virtualization technique for
CO to nearby devices. So we are only able to study papers
focusing on mining policy management for BC networks and
CO schemes for Mobile Edge Computing (MEC). Houy [15]
presents a non-cooperative game among multiple miners,
where each miner can choose to include the number of
transactions in a block. Fisch and Shelat [16] focuses on
the propagation of mined block using both sequential and
stochastic game theory. Reference [17] optimizes the pool
mining mechanism via cooperative game-based BC mining.
Luu et al. [18] presents a unique game for computational
power split while BC mining, where miners can earn rewards
by solving the PoW puzzle. Optimization of offloading ratio,
speed of computation, and rate of transmission are jointly
scrutinized in [19]. Mao et al. [20] focuses on optimiz-
ing offloading schemes, Yu et al. [21] focuses on optimal
CPU time allocation, and Bi and Zhang [22] optimizes the
trade-off between local computing and offloading. While
Kang et al. [23] exploiting virtualization technique investi-
gates a trade-off between device-to-device (D2D) reliability
and computation load for every server through collabo-
rative design of SFC and forwarding graph embedding.
Kwak et al. [24] focuses on minimizing CPU and network
energy of mobile devices considering a given delay threshold
while mobile cloud offloading. In contrast to FV for CO
while block mining, we strongly believe there is still scope
to contribute to this field. The contributions of this paper
summarizes in the following points.
• We have proposed a novel block mining framework
for public blockchain network where lightweight IoT
devices play a miner role. IoT devices utilize NFV and
SFC technology to address extensive computation for
PoW mining mechanisms.

• It introduces joint mining computation modes to avoid
the overload of a single miner.

• CO schemes rendering NFV framework are jointly
derived as an optimization problem. Our goal is to
minimize latency, cost, bandwidth consumption while
optimizing resource allocation within a given time
constraint.

• We propose virtual mining, which allows task sharing
among registered capable miners via executing corre-
sponding VNFs for each task. This part utilizes NFV

technology to configure VNF for task execution and
further link them using SFC technology to accumulate
the execution result of various VNFs, eventually finding
the full PoW of a given work.

• Stochastic geometry theory is used theoretically to
derive the related performance metrics that include
energy consumption and delay.

• We further explain the complexity of computation
offloading using a dependency graph.

• Finally, we show that FV can reduce computation cost,
minimize energy consumption, maximize net revenue,
and make faster mining.

II. LITERATURE REVIEW AND MOTIVATION
Because of security concerns, BC is becoming more popular
day by day, and users are increasing numerously.Many indus-
tries have already started to do their business transactions via
BC like systems, and many more are thinking of adopting a
digital currency system for doing business transactions. The
high cost of mining and scalability are significant constraints
of the rapid expansion of the technology. Due to compu-
tational limitations, not all IoT devices can be considered
directly as BC nodes [25]. Typical miner should have a
large computation capacity and require a massive amount of
energy for PoW. Both technical features are constraints for
IoT being a minor. IoT devices are increasing in an unprece-
dented way. Although they have limited computation power,
successful resource sharing of these large quantity devices
can put the power in balance. This issue arises by targeting
the optimum solution. Primary research already shows that
orchestration of VNF can minimize power consumption [26]
for CO. At the same time, the mining work is distributed
within short coverage tomultiplemobile devices (i.e., CCNs).
This means less computation usage in a single node, as it
only requires executing a fraction of the entire work. Since
multiple fractions of the whole mining work can concurrently
run in numerous CCNs, it would need less time to complete
the entire work than a single node executing the same work
alone. Hence computation is more efficiently managed by the
NFV framework. Eventually, it will scale among all business
BC nodes and help the BC transactions to execute efficiently
without forgoing security. As more BC nodes can participate
in the voting process, it can strengthen the weight of the
consensus formation. Below are some of the existing solu-
tions that pertain to BC mining and FV strategies for CO,
separately.

A. BLOCKCHAIN MINING STRATEGIES
The articles [27]–[31] elaborate different aspects of BC
mining where Kano and Nakajima investigates the mining
work concentration issue in [27], and proposes an incentive-
based solution considers psychological factors via gamifica-
tion instead of offering economic incentives. The solution
also uses virtual currency service for users, which is only
limited to gaming purposes. Lin et al. [28] proposes a sustain-
able rewarding mechanism for block mining in a BC-based
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transaction system. A secure transaction fee collection algo-
rithm is proposed to enhance the reward distribution mech-
anism after successful mining, which can be considered as
the key benefit of the solution. Simulation output shows
that the proposed protocol implementation can steady block
mining and reward distribution, but does not consider
multi-pool scenario while block mining (i.e., limitation).
Kiayias et al. [29] studies and formulate the stochastic game
theory to decide a miner which blocks to mine and when to
release blocks so that other miners cannot continue mining
from it. One limitation is that it requires considerable com-
putational power for mining rigs. Bae and Lim [30] validates
the security aspect of a miner while mining rigs by proposing
amathematical randommining group selectionmechanism to
reduce the probability of successful double-spending attacks.
Abe et al. [31] describes that mining power is relavent on
the network and price of tokens that can be taken securely
on a BC. Users exchange tokens on the PoW, while BC
should monitor mining power and allow exchange tokens
cheaper than the attack cost so that profit and cost of the
attacker are not in equilibrium. Many recent contributions
suggested consensus mechanism avoiding the complexity
of mining [32], [33]. However, these contributions focused
on private Blockchain and can not be applied to public
Blockchain, making this contribution different.

B. FV STRATEGIES FOR OFFLOADING
Virtualization techniques regarding CO has been discussed
in [9], [34], [36] where they focus on decoupling the con-
trol from the hardware to edge server by offloading net-
work functions into software. Taking advantage of virtual
Mobile Edge Computing (MEC), Chen et al. [34] considers
the slicing mechanism of Radio Access Network (RAN).
A network consisting of multiple base stations (BSs), where
certain available BSs are selected to optimize computing
tasks using Markov Chain [38] theory for offloading pro-
cess between a mobile user (MU) and BSs. The solution
renders a deep Q-network (DQN) strategy to learn optimal
policies in dynamic networks. The Q-function [39] of the
utility function is further combined with double DQN to
propose a novel learning algorithm for resolving stochas-
tic CO. Although numerical results show that the proposed
solution performs better in delay and queue optimization,
the exploitation of virtualization is limited to virtual network
slicing only. Similarly, Sun et al. [40] places virtual com-
puting resources to optimize storage resources for MEC in
the mobile edge network (MEN). The solution uses Genetic
Algorithm [41] for offloading decisions and an Openstack
controller for configuring virtual instances. It also focuses on
minimizing service delay while offloading tasks. Although
simulation results show significant efficiency in utilizing
storage resources by deploying virtual machines (VMs) in
edge servers, the effort is limited to cost and delay opti-
mization. However, Cheng et al. [35] uses virtualization in

wireless networks that abstract multiple MEC nodes are
providing efficient application service to both mobile users
and MEC nodes. The solution exploits virtualization tech-
niques to minimize delay and energy consumption cost and
uses a heuristic algorithm [42] for CO decisions. The simu-
lation results show that the heuristic approach outperforms
fixed offloading while maintaining effective latency con-
trol. Cheng et al. Further using similar MEC technology,
In [36], [37] proposed a solution on green computing in a
small cell, and another on efficient power allocation that
renders virtualization technology and distributed CO strat-
egy, respectively. The solution adopts probabilistic Service
Function Chain (SFC) and NFV for providing virtualization
service and interlinks between them via virtual links and
Management and Network Orchestration (MANO). To min-
imize the cost of CO in heterogeneous RAN, the solution
also adopts integer linear programming to reduce the latency
constraint, enhance resource allocation, and allow flexible
use of applications for mobile users. The use case differs
from our proposal because we consider CO for BC mining
while they consider CO for gaming purposes only. They do
not consider the BC network Performance evaluation, shows
cost minimization between memory and computation usage
andmobile users using the application. This solution provides
optimal output with low complexity and a suitable environ-
ment for a large-scale network, which can be considered
key benefits. Deployment of the proposed framework in het-
erogeneous RAN is challenging, and policy implementation
to manage interference in such network considering end-to-
end small BS communication is not considered and can be
regarded as future work.

In light of the literature review in this section, we believe
there are still gaps in optimizing the use of physical storage
resources reducing latency and cost for resource-constrained
mobile IoT devices. So BC mining becomes challenging
for such IoT devices. Motivated from these issues, we pro-
pose smart coordination of VNF for CO, while compu-
tation work and reward distribution policy are smartly
handled through virtual pool mining. The effort is included
in Section III.

III. SYSTEM ARCHITECTURE
NFV based system model for block mining is illustrated
in Figure 2. The variables used to formulate mathematical
equations are given in Table 1.
This section have been categorized into six subsections

where systemmodel presents how a lot of CCN devices can be
a part of BCmining network; device-2-device communication
(D2D) describes how devices interact with each other in a
heterogeneous environment, system components illustrates
the features of various components of system model, vir-
tual functionalities describes how MANO orchestrates VNF,
computation offloading describes the offloading decisions,
preliminary metrics formulates the elementary metrics of

VOLUME 10, 2022 59865



J. Wang et al.: Function Virtualization Can Play Great Role in Blockchain Consensus

TABLE 1. Variables used to formulate equations.

CO, and problem formulation with constraints elaborates the
optimization objectives of CO scheduling.

A. SYSTEM MODEL
The system model supports BC technology based upon AP
network with multiple mobile nodes within its network cov-
erage. A peer node, in our context, is a device capable of

FIGURE 2. Virtual BC mining System model for extensive CO.

performing computation required for mining, also referred to
as CCN. Every node in the BC network carries a unique iden-
tity id and can perform an individual task. A node performs
a task for a specific period, and the node that performs such
a task is a miner. Successful task execution is followed by
both Partial Proof-of-Work (pPoW ) and Full Proof-of-Work
(f PoW ). f PoW occurs when a single miner successfully solves
the mathematical puzzle of the entire work. At the same time,
pPoW occurs when a single miner divides complete work into
a series of tasks to be solved by other individual registered
miners concurrently. Every task contains a mathematical puz-
zle that a selected CCNmust solve. Collective aggregation of
pPoW from such miners comprises of f PoW signifies that a
block is added to the BC network successfully, and reward
is obtained. We presume that all CCNs can execute certain
tasks assigned to them, as their computational capability is
already weighted. At the same time, they agree to join the
BC network. We presume that the list of available miners is
obtained through the neighbor discovery process elaborated
in section III-E, and such that the mining power of a single
miner can be split and transmitted to multiple CCNs without
computational constraints. Lets take there are A access points
(APs), and n miners participating in a pool following two
independent homogeneous Poisson point processes φa =
{AP1, . . . ,APA} and φu = {m1, . . . ,mn} with density ϑa and
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ϑu, respectively, shown in Figure 2.We denote that one partic-
ipant is considered an edge AP having enough capabilities to
orchestrate MANO. Multiple pools may exist within a small
network, but we consider only one pool in this network.

So associated miners with the nearest edge AP APm is
denoted as φu = {mn}, where {mn} ∈ φu,M = {m1, . . . ,mn}.
A work, initially, is evoked by a mining leader ml , consist
of a set of T tasks, where T = ti|{i = 0, 1, . . . , n}, which
it tries to compute by itself. Every associated miner is tak-
ing part in the shared mining process which needs to input
data with data size Dn (regarded in bits), have completion
deadline time τn (regarded in second), and need computation
capability Gn (regarded in CPU cycles per second). The
decision to or not to offload computation is based upon the
computation capability of ml miner. We run a unique algo-
rithm to compare the computation capability of the miner
and the computation required to complete the work. While
the algorithm determines ml’s computation capability is not
enough to complete the work alone, we presume it is able to
compute certain amount of T̄ tasks as T̄ = {t0, t2}, T̄ ⊂ T ,
and the rest is offloaded to associated miners participating
in the computation process. t0 must reside on ml locally
validating the f PoW found inM , and t2 is an extra task that it
may also compute locally without computational constraints.
We denote the computation capability of ml and APm as f m

l

and f APm . In case of CO, we presume ml offloads T ′ tasks to
M ′ such that T ′ = {t1, t3, . . . , tx}, M ′ = {m1,m3, . . . ,mx},
and T ′ ⊂ T , M ′ ⊂ M . The offloading is efficiently managed
by configuring VNF for every offloading tasks, such that
V = vi|{i = 0, 1, 3, . . . , n, n + 1} represents a set of VNFs
corresponding to T ′, except 0 and n+ 1 denotes the first and
last VNF residing on ml validating the pPoW found in M ′.
E.g. ml offloads t1 task to m1 miner and assigns v1 VNF that
should be downloaded from APm in order to compute t1 task
locally by m1 miner, and the same process applies for the
rest of the miners taking part in the shared task computation
process, shown in Figure 2. Else, we consider no function
virtualization while the solo minerml solely hashes theH (T )
full work while associated miners (i.e mi) only vote to form a
consensus.

B. DEVICE-2-DEVICE COMMUNICATION
CO for block mining consists of various VNFs, and a user
(i.e., ml) of the BC network requests a set of VNFs to
the orchestrator via application proxy, based on the amount
of mining work. The network flow of VNFs is formed
as SFC. SFC renders SDN and NFV capabilities to cre-
ate a service chain of connected network services among
firewalls, network address translation (NAT), intrusion pro-
tection, etc., eventually creating a virtual chain. SFC can
configure many VNFs connected in an NFV environment,
while its programmable interface allows customizing pol-
icy implementation via softwarization. Softwarization allows
flexible software instances in virtual circuits that can easily
set connections up or torn down as needed with the service
chain provisioning through the NFV orchestration layer.

From the perspective of heterogeneous BC network for
resource constrained IoT devices, distributed miners (i.e.M ′)
are located within the coverage area of ml . mj is denoted as
each CCN selected for CO, a set of mj and an ml together
provide computation and storage facilities, i.e., mj ∈ M ′ are
providing resources for virtual mining, and VNF components
are deployed in the virtualization layer. Wireless virtual links
are deployed between ml and individual mj of set M ′ for
communication. ml provisions application proxy to process
service requested from M ′, a set of distributed miners. The
application proxy is responsible for generating SFC by ana-
lyzing the information request of ml for CO. The orches-
trator, located in the edge network, is called Access Point
(AP). It is responsible for deciding the optimal placement of
VNFs forming SFC. The decision is updated to the proxy,
and the orchestrator requests to initiate VNFs to each mj.
mj provides computation resources for processing VNFs and
communicates through wireless links during block mining.
The wireless connections among associated miners of M ′,
and between M ′ & ml are mapped as virtual links (VLs) on
the virtualization layer.

C. SYSTEM COMPONENTS
There are four different kinds of nodes in the system scenario
serving other purposes in forming a BC network. They are
leader miner (ml), distributed miner (mj), access point (APm),
and cloud server.

1) LEADER MINER
All miners in the BC network may form a network of mn,
where individual mi miners compete to hash T work success-
fully and try to find f PoW . The first mi to solve the f PoW

is referred to as ml while others vote to form consensus,
eventually ml adds the new block in the ledger and earns the
reward. It is called solo execution. It occurs only when ml

is capable of processing the full work based on its computa-
tional capability, and else it decides to offload task computa-
tion. Since it cannot hash T work by itself, it may decide to
compute T̄ tasks locally, as it is capable of, and distribute the
rest of the T ′ tasks to nearby miners forming a virtual pool,
where it remains the mining leader. The CO task distribution
process renders SFC & NFV technologies efficient resource
optimization service to mobile users (i.e., CCNs). With the
help of the MANO component, which orchestrates VNFs, ml

transmits a series of offloading tasks to nearby CCN miners
(i.e.,M ′) in the pool along with state information of VNFs via
VLs. Every offloading task has a corresponding VNF, which
should be processed by individual mj locally.

2) DISTRIBUTED MINER
Every mj miner in M ′ is referred as a distributed miner. But
it competes to solve a single off loadable task transmitted
by ml , and else solo execution occurs, which only requires
voting from a set of mi miners to form consensus, followed
by successful hashing of T full work. Whether mj miner may
agree upon processing task computation, its work interest
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depends on its computing capabilities. And hence successful
hashing of each task represents f PoW formj miner, but for the
same corresponding task, ml receives a pPoW , considered as
part of the full work processed.

3) ACCESS POINT (AP)
At the edge of the BC network, AP is considered when solo
mining takes place, but it also participates in the mining
process where needed. The only fact that differentiates AP
from other miners is that it is the only node capable of
orchestrating VNFs via MANO component, exploiting SFC
with NFV principles. SFC provides services to store a series
of VNFs and interconnects them. This allows an easy way of
aggregating the result of multiple pPoW found in M ′, eventu-
ally enabling anml to find f PoW . Bothml & mj nodes render
MANO’s functionalities to obtain VNFs, while mi doesn’t.

4) CLOUD SERVER
A cloud server may provide backup storage services. Nodes
in M are following common consensus as they compete to
find f PoW , while nodes in M ′ are following precise consen-
sus with extended virtual functionalities, as they compete
to find pPoW . The replicated ledgers are stored in the cloud
server once a block is successfully formed, as it is also part
of the same BC network.

D. VIRTUAL FUNCTIONALITIES
CO and successful block mining is aided via SFC, as pre-
sented in Figure 3. The detailed process is divided into two
parts: VNF placement section and mining related CO section.

In the VNF placement section, communication occurs
between ml & mj, mj ∈ M ′. Let’s presume GSFC is the
directed graph of SFC, which has a vertex set V . Loading
all these VNFs consume energy & cost. We derive VNF load
CPU usage in Section IV-B2. Initially, the proxy located in
ml receives service requests to generate an SFC for BC-based
CO as per information provided by ml . Given that ml already
has the list of available registered neighboring CCNs elabo-
rated in Section III-E, where φu ∼= pm

l

τ . This process defines
the strategy of node discovery of nearby CCNs. Then the
proxy generates the requested GSFC and forwards it to the
orchestrator (i.e., APm) to generate VNFs. The respective
CCN downloads the associated VNF as per its computation
capability. VNF placement algorithm is proposed in Algo-
rithm 3. The VNF placement is based upon the objectives of
CO and its resource information of M ′. With the produced
result, the orchestrator forwards the decisions tomj to initiate
VNF downloaded from APm. Individual mj executes one
corresponding VNF, assigned for hashing one single task,
and the orchestrator updates the decision placement to the
proxy, shown in the VNF placement section of Figure 3. Then
the proxy updates the decision response to ml , the VNFs are
initiated as per the service requested.

In the second section of Figure 3, it is noticed that ml

initially generates v0 to provision the call sequence of the rest
of the VNFs (i.e. v1, v3 . . . , vn, vn+1), then starts forwarding

FIGURE 3. CO provision process for BC mining embedded with SFC.

it to APm. The call sequence VSFC is presumed to have VNFs
ranging from v0, . . . , vn+1.m1 downloads associated v1 VNF
with its input argument, executes v1 locally, then returns the
state information to ml . This process is carried on until vn
is completed, where n is the n(th) term of the VNF to be
processed inM ′. Finally,ml aggregates all the pPoW via vn+1,
corresponding to the state information of each VNF from
v1, v3, . . . , vn which were executed in M ′. While ml eventu-
ally finds the f PoW , shown in the above figure, corresponding
to vn+1 state information, such that the objectives of the
input/output arguments of v0 matches with vn+1 (i.e. v0 ∼=
vn+1). Given that v0 & vn+1 is the first and last term VNFs
generated, to manage the placement of v1, v3, . . . , vn residing
onm1,m3, . . . ,mx , respectively, and that the outcome of each
VNF successfully hashes every individual task from t1, t3
to tn with one task executing in every individual mj miner.
It is presumed that all mjs have equal computation capability,
and can compute minimum one task assigned at a time. It is
noticed that placement of VNFs are based on the application
mining decisions, and the modeling of mining decisions are
presented in Section IV-A.

E. NODE DISCOVERY AND REGISTRATION
This section introduces a Neighbour Discovery process of
CCNs in a large-scale network. Communication may be well
distributed when multiple nodes try to connect simultane-
ously, and transmission may fail due to interference. So we
adopt a simple protocol model (derived from [21], [22]) to
elaborate the process. We initially presume a node ml can
receive mi’s message signal successfully only if mi is one
of the transmitters within theml’s single-hop communication
range. As the CCNs are energy- and computation-constrained
nodes, they can turn on or off their radio signals when needed
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to save energy [17], [24]. Recalling from System Model
(i.e., III-A), a set of nearby nodes are denoted as M =

{m1, . . . ,mn}, where there exists a set consisting of n number
of nearby nodes at the edge network distributed in a large area
community via a fixedwireless channel.We presume a node’s
radio signal range has 10 meters ≤ 1 ≤ 100 meters. As the
task is distributed sequentially, we consider the transmission
of one task at a time. Lets presume there are two neighboring
ml , mi nodes lying within a suitable distance d(ml,mi) ≤ 1.
Node ml is well aware of its position (x l, yl) and computing
local density using decision vectors:

f (x l, yl) =

{
ϑ(x l, yl), where (x l, yl) ∈ D

0, where (x l, yl) /∈ D

}
(1)

where ϑ(x l, yl) ∈ ϑu,D refers to network coverage area when
ml’s distance from mi is denoted as:

(x l − xi)2 + (yl − yi)2 ≤ 12

given that12 must remain within the network coverage ofml .
ml’s expected number of nearby neighbors are derived as:

n̄ml = mxπ12ϑ(x l, yl)

Node ml can discover its neighbor node mi within τN time
slot, and mx is the number of CCNs available for task com-
putation, as already mentioned in system model, and that mi
being one of the selected neighbor of ml to transmit, given
that ml is listening in the slot. A pre-defined sequence Sm

l
=

sm
l
(τ ), 0 ≤ τ ≤ N of period N is scheduled for node ml ,

in which:

sτml =


sleep ml in time τ slot radio signal turned off
transmit ml in time τ slot transmitting
listen ml in time τ slot listening

(2)

Duty cycle (θ ) is the fraction of time that a node keep its
radio signal turned on, formulated as:

θml =
|τ : 0 ≤ τ ≤ N , sτml ∈ transmit, listen|

n
= 1 (3)

for any ml and mi nodes, because we presume they have
the same duty cycle at all times (i.e. θml = θmi = 1).
So they are referred as symmetric node. Hence, for any
two nodes like ml and mi following uniform distribution,
we can say the transmitting or listening state probability
of a miner pm

l

τ = pmiτ = pτ = 1
N̄+1

, where expected

number of nearby CCNs N̄ml = N̄mi = N̄ , since the task
of each miner is uniformly distributed. These preliminaries
are used to derive the optimal transmitting or listening state
probability of ml while discovering nearby nodes, which is
precisely generated in Algorithm 1, Line 1. N is referred as
the time threshold/latency bound, stated in Line 2. Line 3
models the decision vector whether to transmit or listen.
In line 4, when ε < pτ , the node discovery application
decides to transmit message including ml’s information & id
through the communication channel. Else, in line 7, ε ≮ pτ ,
the node discovery application decides to listen through the

Algorithm 1Optimal Nearby Node Discovery Algorithm
for ml

1 Set transmission probability of ml ,
pm

l

τ : =
1

N̄ml+1
, τ : = 0;

2 while τ ≤ N do
3 Generate number randomly, ε ∈ (0, 1) ;
4 if ε < pτ then
5 Transmission request containing ml’s id and

associated information via communication
channel;

6 else
7 Listen through the channel. Successful reception

is followed by message decoding & saving mi’s
id ;

8 end
9 τ : = τ + 1
10 end

communication channel, decode the message, and save id .
Line 9 updates timetreshold or latency, every time a new mi
is enlisted for task offloading.

Proof: See [43].
We presume that the number of available miners is enough

to share task computation. The mining power can be split
based upon the nearby miner’s computation capability for
a given computation task. Since traditional pool mining
requires miners to register into the pool (network), miners
need to meet a certain standard set by the pool. In our case,
we compare the computational capability of a miner and the
computation energy required to execute a certain task for
that miner to meet the standard. This is further presented in
Algorithm 2 and elaborated in Section IV-D.

IV. COMPUTATIONAL COMPLEXITY
Overall computation complexity depends on amount of task
(T ) required to be computation. Complexity is proportional
to the amount of task. In this experiment, if T is larger than
the computational capacity of leader miners, then the ti ∈ T |
i = 1, 2, 3, . . . n where n number of virtual miners joined
the computation. In case of virtual mining, complexity is cal-
culated in terms of communication, computation, offloading
(ol), miner selection, etc.

C = T olc + T
Computation
c

T olc =
n∑
i=0

toli

TComc =

n∑
i=0

tminingi

following sections presents details of complexity dependen-
cies and calculations.
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A. COMPUTATION OFFLOADING
Although mining work varies from application to applica-
tion, mining involves the execution of numerous tasks that is
common, which certainly cannot be completed by any single
CCN device. CO plays a significant role in completing the
entire work. Thus, the decision to or not to offload computa-
tion may result in solo execution or offloading, expressed as
σ (ml) = {0, 1}.

1) SOLO EXECUTION (Mode 0)
As shown in Figure 2, the entire computation of a given T
work is done locally at ml , given that ml node became the
first one to successfully solve the mathematical puzzle, and
publish f PoW in the pool, while other mi miners in M join
to form a voting consensus. We denote σ (ml) = {0} when
ml decides to execute solo execution process. The offloading
to M ′ is not performed either due to unavailability of CCNs
or the offloading tasks can be simply handled by themselves.
In this case, FV is not required too.

2) FV FOR COMPUTATION OFFLOADING (Mode 1)
CO is a very complex process of pool mining-affected by
various factors, such as mobile users’ preferences and capa-
bilities, AP availability, connection quality to transmit VNF,
and cloud capabilities. We denote offloading mode, which
represents σ (ml) = {1}, when ml decides to offload T ′ tasks
to M ′. CO is required when the fraction of the T̄ tasks are
computed locally by ml , derived from the solo execution
part. The rest is offloaded to APm for individual mj miners
to download associated VNF recommended by ml and to
compute locally, given that mj ∈ M ′.

B. PRELIMINARY METRICS
This section will formulate the elementary metrics, including
processing delay time, VNF loading cost, and energy con-
sumption in mode 0 and mode 1.

1) SOLO COMPUTATION
We only formulate the delay time and energy consumption
(CPU used) in this section. Since there is no FV in solo
execution, VNF loading cost will not be considered here.
• Processing Delay: It is the sum of time (τ ) needed to
execute(e) and queue(q) while processing ti task by ml ,
as τD = τ (m

l ,e)
+τ (m

l ,q), and execution delay in eq 4, and
queuing delay in eq 5 are derived separately as follows:

τ (m
l ,e)
=

Dn × Gn
f ml

(4)

τ (m
l ,q)
=

Qn
f ml

(5)

where Qn, is the number of CPU cycles to be executed
in the task buffer at ml such that q = {1, . . . , n}.

• Energy Consumption: Although ml tries to complete
full work here, it may be available to complete partial
work only. In this case, the rest of the work will be

offloaded in mode 1. Total energy consumption to pro-
cess T full work and CPU usage:

Em
l
=

ti∑
i=0,...,n

T
{
κm

l
(f m

l
)3 τ (m

l ,e)
+ Psτ (m

l ,q)
}

(6)

where κm
l
is the computational energy coefficient of the

processor’s chip of miner ml [22], [44], and Ps is the static
circuit power.

2) REMOTE COMPUTATION
It includes task CO to a group of D2Dminers atmode1. Since
offloading requires data transmission to configure VNF, total
cost is formulated by energy consumption (CPU usage), VNF
loading cost, and the processing delay.
• Processing Delay: It is different from self computation
at mode 0, where every tasks are implemented with
corresponding VNF and transmitted among individual
pool miners (i.e. mj) for mining. Every pool miner is
competing to complete individual task. But this some-
times cause to delay the aggregated time to complete the
offloading tasks. Considering the full work T divided
into tn tasks, of which T ′ tasks are offloaded to multiple
mj miners, until completed at mode 1. Since offloading
is done simultaneously, the total delay to process T ′

parts are:

τD1 = max
VSFC=v0,...,vn+1

ρ[ml]× [VNFD1
trans

+VNFD1
exec + l

D1
VNF ] (7)

where VNFD1
trans denotes delay to transmit VSFC to M ′,

while lD1
VNF denotes delay (i.e. queue) in task buffer of

APm, and VNF
D1
exec denotes delay to execute VSFC inM ′,

all in respect to process T ′ parts implemented with VSFC
VNFs for all miner.

• Transmission delay: It is the time taken by ml to trans-
mit the data packets to APm.

VNFD1
trans =

Data size
transmission rate

• VNF load delay: It is the waiting time of the task buffer
in the processor chip of APm while uploading VNFs.

lD1
VNF =

Qn
f APm

(8)

where Qn is the number of CPU cycles to be executed in
the task buffer at APm to transmit v1, v3, . . . , vn intoM ′.

• VNF Execution time: The execution (e) time forM ′ to
compute v1, v3, . . . , vn VNFs corresponding to T ′ tasks
until completed in mode 1:

VNFD1
exec =

Dn × GT ′ × T ′

f mx
(9)

where GT ′ denotes the computational capability to
execute T ′ task.
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• Energy Consumption: Sum of the energy consumption
of remote processing (i.e. Emx ) required to hash T ′ tasks
(i.e. t1, t3, . . . , tx) are as follows:

Emx =
T ′∑

ti|i=1,3,...,x

σ
[
ml
]
×

1
T ′

×

(
Pu × VNF

D1
trans + PAP × l

D1
VNF

)
+ σ

[
ml
] [
κmx (f mx )3VNFD1

exec

]
(10)

where κmx is the aggregated computational energy coef-
ficient of the processor’s chips of a set of miners M ′

[22], [44]. Pu and PAP is the transmit power of ml &
APm, respectively.

C. PROBLEM FORMULATION WITH CONSTRAINTS
This section studies the optimization of CO scheduling in
order to maximize the total net revenue via FV.

1) TOTAL COST OPTIMIZATION
This section elaborates the optimization objectives of CO
scheduling:
• Offloading decision: Lets presume the net revenue for
mining offloadable and non-offloadable tasks be9 (mx)
and3(ml), respectively. Recalling again that offloadable
and non-offloadable parts need to hash T ′ and T̄ tasks,
respectively.

9 (mx) =
[
1− σ (ml)

] [
ϒmx − λeEmx

]
3(ml) =

[
σ (ml)

] [
ϒml
− λeEm

l
]

• Total Net Revenue: The total net revenue for mining the
entire work T is:

4 =

mx∑
mi|i=1,3...,x

ml∑
mi|i=1

[
9(mx)+3(ml)

]

2) PROBLEM FORMULATION
Considering the offloading scheduling with decision
vectors σ , we in this subsection draw formula for the total
optimization problem:

Problem 1: max
(σ )

mi∑
i=1,3,...,x

ml∑
i=1

[
9 (mx)+3(ml)

]
s.t. C1:

{
[1− σ (ml)]+ σ (ml)

} ti∑
i=1,...,n

T = 1.

C2:[1− σ (ml)]
vi∑

i=1,...,n
VD1
trans × PAP ≤ �AP.

C3:[1− σ (ml)]
mx∑

mi|i=1,3,...,x
Emx ≤ f mx .

C4:σ (ml)τD +
[
1− σ (ml)

]
τD1 ≤ τn.

C5: Dn

T̄+T ′
≤ LVNF .

C6:Xn

(
Em

l
+ Emx

)
≤ Cstore.

There are constraints formulated from C1-C6. C1 validates
the non-offloading and offloading decision. C2 ensure that the
sum data rate of all the miners associated with APm doesn’t
exceed its backhaul capacity �AP. C3 confirms that the sum
computational capability of all the miners associated withM ′

does not exceed the sum computational capacity required to
execute T ′ parts. C4 ensures that the task delay does not cross
the limit of task deadline τn. C5 means that the data size of
each offloaded part via D2D link does not cross the limit of
the link capacity LVNF . Also, we formulated constraint C6 to
ensure that the total size of the data processed in ml does not
exceed its storage capability Cstore. And Xn refers to the size
of the cryptographic hashes of blocks w.r.t. tn parts, are set at
1 for convenience.

D. TASK OFFLOADING SOLUTION
Overall task offloading processes are executed in two steps,
such as 1) Solo mining (Mode 0) and 2) Virtual mining
(Mode 1). Virtual mining process is executed only when solo
miner/leader is incapable to execute the etire task.

1) EXECUTION IN LEADER MINER (Mode 0)
First function of Algorithm 2 implements solomining defined
as doMining function. While, ml also an mi, compares it’s
own computation capability f m

l
(stored in I ) with the compu-

tation energy required GT (stored in J ), in order to complete
full work H (T ). If its capacity matches then proceed task
execution else decide to offload tasks. To implement task
execution, the system initially takes input of target value
H (T ) derived from T , and verifies through while loop in
doMining function, whether evoked T is already added to BC
or not. If not, ml randomly takes a corresponding input of T
value, and keeps in num, stated in line 6. In line 8, it adds
combination of nonce constantly until rehashing matches the
target value H (T ), and stores in H́T . Line , as now H́T and
input target value H (T ) already matched, the if condition
further calculates credit point (CP) of ml , and returns f PoW

stated in line 10. Else, the loop is repeated in case of not ful-
filling the requirements, stated in line 13. Figure 4 (a) reflects
the solo execution showing full work H (T ) consists of series
of tasks, say, t1, . . . , t5 which are locally executed because
ml is available and capable. There is no need to offload
computation, and share reward. Entire reward is taken by
itself only.

2) VIRTUAL MINING (Mode 1)
Mode 1 signifies the CO decision. An important aspect in
the CO and reward (or credit point) calculation depends in
application model/type, since it determines which fraction of
the full work to be processed locally and which are to be
processed remotely, what could be offloaded, and how. With
the help of Mobile Edge Server Computing station (MESC)/
MANO m1,m3,m4 process offloadable tasks t1, t3, t4 with
corresponding v1, v3, v4, respectively, and ml processes
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Algorithm 2 Execution in Leader (ml) Miner for T Task
in nth mine
Input : 〈H (T ),T 〉
Output: 〈H (T )〉

1 I = f m
l
F ml’s CPU cycles/sec;

2 J = GT , CPU cycles/sec required to reach H (T );

3 if J ≤ I then
4 Function doMining(!H (T )):
5 Initiate function doMining;
6 num← Random(number);
7 H́T ← H (num);
8 if H́T ∼= H (T ) then
9 Rewardm

l
+← CP;

10 return
Rewardm

l
, pPoW |f PoW ← (number, H́T );

11 end
12 else
13 Repeat Line 8;
14 end
15 return
16 end
17 Function TenderProcess(T ′,RewardT

′

):
18 Initiate function TenderProcess;
19 (mx ⊂ mn, f mx )← MinerSearch(T ′,RewardT

′

);
20 (t1, t3, . . . , tx)← parse.Task(T ′);
21 {(t1,m1), (t3,m3), . . . , (tx ,mx)} → {m1,m3, ..,mx};
22 return
23 Rewardm

l
+← CP;

24 Function RewardCalculator():
25 Initiate function RewardCalculator

k, pPoW ← VirtualMining(T ′,mj);
26 if pPoW then
27 Rewardmj+← k × CP;
28 end
29 return
30 Rewardmj+← CP;

non-offloadable t0, t2 tasks locally, as shown in Figure 4(b).
The application criteria of CO is summarized below.

3) TENDENCY OF APPLICATION OFFLOADABILITY
Offloading is based upon its enabling code, representing
how much task is locally processed and how much is off
loadable, given that offloading task must be processed in
parallel to form a consensus. Selected M ′ miners are only
allowed to process H (T ′) tasks offloadable by ml . Initially,
Algorithm 2, line 17-21 explains the function TenderProcess.
This function selects the computation offloadable tasks &
miners from the interested enlisted miners from Algorithm 1.
Algorithm 2, line 23 determines the portion of reward
achieved by ml while task sharing with f mx . Line 19 searches
for valid miners by verifying their computational capability.

Algorithm 3 Virtual Execution of T ′ in mj Miner

Input : H (T ′)
Output:

〈
H (T ′), τn

〉
1 Imx = f mx F sum of mj’s CPU cycles/sec;
2 Jmx = GT ′ , CPU cycles/sec required to reach H (T ′);
3 Function VirtualMining():
4 Initiate hashing with constant k ← 0;
5 while Jmx ≤ Imx , H́T ′ ∼= H (T ′) do
6 num← Random(number);
7 H́T ′ ← H (num);
8 if H́T ′ ∼= H (T ′), timedeadline ≤ τn then
9 k, pPoW ← (number, H́T ′ );
10 end
11 else
12 Repeat Line 8
13 end
14 end
15 return

FIGURE 4. Offloading parts in mx .

Lines 20 parses tasks to a set of selected mx miners and
embeds tasks to respective miners in line 21. Reward of
individual mj is calculated using RewardCalculator func-
tion, line 24-28. We denote mj as a virtual miner, shown
in Algorithm 2, line 25, as they are now part of the virtual
pool. Against every pPoW , there is a constant k value deter-
mined, retrieved fromAlgorithm 3. k represents the workload
done by individual mj through computing its embedded task.
Line 30 returns the individual reward of mj by multiplying k
with the credit point (CP).

Virtual execution of VNF in mj miner is shown in
Algorithm 3. Initially, it is presumed that the work done by
mj is zero. The VirtualMining function takes T ′ tasks as input,
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TABLE 2. Parameters used to formulate equations.

then compares the processing capacity ofmj miner. The while
loop verifies if the evoked T ′ tasks are already solved or
not. If not, mj randomly takes a corresponding input of T ′

value, and keeps in num, referred in line 6. Then it adds
combination of nonce constantly until rehashing matches
the target value H (T ′), and store in H́T ′ against a constant
k value, stated in line 7. This hashing process should be
completed within a given time threshold τn, else repeat line 8.
Whilst the target value matching occurs, Reward of mj in the
RewardCalculator function in Algorithm 2 is updated.

V. RESULTS ANALYSIS
This section presents the critical analysis & performance
evaluation of the proposed research. The objective is to enable
BC technology for IoT objects allowing secure, efficient
CO through FV. There are multiple existing efforts con-
sidering CO for IoT objects. Still, the proposed research
adds more contribution by utilizing BC to ensure transaction
security and enables virtualization to ensure the efficiency
of IoT objects. The simulation considers Python language
for emulating performance evaluation. PoW is considered for
transaction verification. The ml randomly takes value against
task computation (T ) targeting to reach H (T ) and then sorts
equal offloading tasks to nearby CCN devices and ml itself.
In the simulation, the random value against task computation
(i.e. H (T )) is taken from 100-200, where each fraction of
T task (i.e. ti) process 30MB of data. Delay threshold and
bandwidth are taken 15 seconds and 15 Mbps, respectively.
Transmit power (Pu), and static circuit power (PS ) of individ-
ual CCN are taken 0.1 W and 0.05 W, respectively.

Algorithm 2 refers to task selection (i.e. doMining func-
tion) and reward distribution process (i.e. RewardCalculator
function), and the nearby CCN devices are selected through
Algorithm 1. The algorithm is implemented through Python
language, presuming that all nearby CCN devices have equal
computation capability and the reward is evenly distributed.
The set of nearby CCN device selection is limited between
5-10 nodes at a time randomly. The best combination of node
selection is based on the collaborative approach of maximum
reward output. e.g., four nodes can compute 100 tasks with
a total reward of 10 points, or three nodes can compute

100 tasks with a total reward of 8 points, or two nodes can
compute 100 tasks with a total reward of 2 points on. The set
of 4 CCNs computing 100 tasks with the reward of 10 points
is selected. In this case, leader miner (ml), as one of the CCN
among four nodes, also receives the same reward as other mj
miners, as it computes an equal amount of tasks as others.
In this case, ml computes one-fourth of the computation,
such as generating v0, v(n+1), computing v2, and matching
v0 ∼= v(n+1), while individual m1,m3,m4 computes v1, v3, v4
VNFs respectively. It is presumed generating v0, v(n+1) and
matching v0 ∼= v(n+1) requires negligible amount of compu-
tation, and so reward for this work is ignored. Parameters and
symbols used to implement proposed algorithms are stated
in Table 2.

A. EVALUATION AND DISCUSSION
Function virtualization impact on mining has been evaluated
with state-of-art in Figure 5. Figure 5a shows comparison
between traditional centralized approach and decentralized
BC approach with or without FV for task computation.
It presents the execution time (milliseconds) of compute
tasks. IoT nodes are resource constrained devices that are
not capable of computing heavy tasks. In Figure 5a, the blue
line refers to a server node computing task via a centralized
approach that considers no FV or BC technology, the red line
refers to computing tasks by a CCN using BC platform, the
purple line refers to CO to nearby CCNs by aml via FV using
BC platform.

The time threshold (τn) is set as 15 seconds. For example,
to compute ten tasks, a server node consumes 1800 ms in a
centralized approach, a CCN consumes 1870 ms to compute
the same task in Mode 0, and an ml in Mode 1 consumes
2992 ms to share task computation with the selected nearby
CCN miners to complete the same tasks. It is noticeable that
the centralized approach consumes the least amount of time,
and Mode 1 takes the maximum amount of time to execute a
certain amount of tasks.Mode 0 ismoderately taking less time
than Mode 1 because the computation capability (i.e., f m

l
=

18000 CPU cycles/sec) of ml is just enough to compute the
given task by itself. As the task increases, the execution time
increases steadily in a centralized approach, while the decen-
tralized approach consumesmore time inMode 0 andMode 1.
Successful block creation consumes more time because the
difficulty for block transaction verification increases propor-
tionately as more CCNs participate in the mining process.

Figure 5b presents a computation time with the participa-
tion of miner devices for mining a specific task through FV.
It is observed that time is disproportionate to the number of
active participants. While the number of FV participants is
increased, computation time is decreased. It is assumed that
every device has a 1k to 50k T computation capacity. The
task is split randomly among devices. It can vary based on
the devices’ capacity.

This ensures the security of IoT nodes. Even though trans-
mission delay of CO is minimized through FV, internet
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FIGURE 5. Traditional centralized approach and BC based decentralized approach with and without FV for task computation.

bandwidth (B), presumed as 15Mbps, remains a crucial factor
in minimizing computation execution time. It is noticeable
that there is a trade-off between time and energy consumption
while incorporating a decentralized approach. The central-
ized approach consumes less time but is limited to provision-
ing security. In comparison, the decentralized BC approach
with FV collaboratively consumes a little more time but pro-
vides more security and resource optimization by employing
underutilized nearby CCNs. But individual CCN takes only a
couple of 100ms to execute each virtual functions, which is a
lot less than the centralized approach. The proposed research
considers FV to offload computation tasks to nearby CCNs
while ml is not computed for all tasks by itself due to its
limited computation capability. The transaction security of
CCNs are preserved by BC and FV ensures efficient CO to
nearby devices.

Figure 6 shows computation usage of participating miners
via FV using the BC platform. It presents the number of
tasks to be computed by nearby participated CCNs and their
average computation (CPU cycles/sec). The blue bars refer
to the number of CCNs participating in computation mining.
The orange bar refers to the average computation of each
set of CCN miners, e.g., four CCNs participates in com-
puting 100 tasks with an average computation of 6.89 CPU
cycles/sec, or 3 CCNs participates to compute 110 tasks with
an average computation of 6.62 CPU cycles/sec, and so on.
It is noticeable that the number of participating CCN miners
varies, affecting average computation to compute every set
of tasks. As the difficulty of block mining is connected to
the number of participating miners, some tasks require more
energy and time to compute. In comparison, others require
less energy and time to compute. Transmission delay of vir-
tual functions also affects CO, as tasks remain in the queue to
be offloaded to the nearby CCNs.

Figure 7 shows the average reward distribution for the
participating miners for task computation. The x-axis refers
to the number of tasks, and the y-axis refers to the average
reward points (CP) for each set of participating CCN miners
for a set of given tasks. For example, four CCNs participate

FIGURE 6. Computation usage of participating miners via function
virtualization.

FIGURE 7. Reward distribution for computation offloading.

in computing 100 tasks to earn an average reward point of 10,
or 2 CCNs participate in computing 130 tasks to earn an
average reward point of 8, and so on. It is noticeable that the
obtained CP is influenced by the number of miners participat-
ing in the computationmining and the related number of tasks
that need to be computed by each set of participating miners.
Among other factors, bandwidth tends to be very crucial.

Figure 8 shows individual reward (CP) and computation
usage of participating miners via FV using the BC platform.
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FIGURE 8. Individual reward & computation of participating miners via
function virtualization.

The x-axis refers to the number of tasks to be computed by
nearby CCNs, and the y-axis refers to individual rewards (CP)
of CCN participating in computation mining. The right of the
y-axis refers to the individual computation (CPU cycles/sec)
of the involved CCN for executing the single task. The blue
bars refer to individual rewards (CP), and the orange bar
refers to the individual computation of executing a single
task of participating miners. e.g., four CCNs participate in
computing 100 tasks to earn an individual reward point of
2.5, or three CCNs participate in computing 110 tasks to earn
an individual reward point of 4, and so on. It is presumed
participating CCN miners have equal computation capabil-
ities where f mj = 100-1000 CPU cycles/sec. So the shared
task computation is evenly distributed as it would take the
same time to execute a task embedded with a virtual function.
As a result, the rewards are also evenly distributed. Internet
bandwidth (B) remains 15 Mbps. And the time taken by
individual mj to execute each VF (vi) is also equal. It is
worth mentioning that FV enables efficient processing of
CO. Reward distribution for block mining is validated by
cryptographic hashing functions, where the difficulty starts
with ’0000’. It also creates a chain of linked blocks which
ensures data integrity and the immutability of the ledger.
• Insights: From the above discussion, it is predictable
that FV enables optimal resource usage and allows
heavy computation mining for resource-constrained IoT
devices utilizing the virtual task mining process. As the
underutilized IoT devices are used to compute mining
tasks, the cost of installing expensive server stations
is no longer required. The net revenue of individual
CCN is optimized as it can earn more CPs rather than
being underutilized. It is also noticed that hashing also
leverages the PoW to validate transactions encouraging
incentive miners to agree upon computation mining.

VI. COMPLEXITY OF COMPUTATION OFFLOADING
CO application may require individual miners to consider
several internal components to exercise to improve real-time
CO efficiency. They are (i) Program/code profiler component,
(ii) System profiler component, and (iii) Decision engine
component [45]. The first one is responsible for determining

FIGURE 9. Dependency graph of Offloadable tasks.

the offload table tasks based on application decision type and
selecting which tasks need to be processed inml and which to
be processed inmj. The second is responsible for configuring
available bandwidth validate miners, and CP distribution is
based on energy spent locally & remotely. Finally, the last
one decides to or not to offload computation. Moreover, some
critical discussions about CO are stated below.

• Knowledge based data processing: ml initially com-
pares between the amount of data that is required to
process the entire work and the amount of data it can
locally process, shown in Algorithm 2, line 3. This
comparison already shows how much data full work
consumes (stated in problem formulation C1). Based
on this assumption, it is also calculated how much time
the entire work requires to complete (stated in problem
formulation C4). Most importantly, what fraction of the
computation needs to be offloaded for continuous appli-
cation processing (stated in problem formulation C2).
We next explain the complexity of the inter-dependency
offloading issues through Figure 9.

• Inter-dependency of the offloadable tasks: The appli-
cation decision regarding CO is determined by the
dependency relationship of T ′ tasks to be processed.
However, offloading tasks may or may not be depen-
dent on each other. Independent tasks may be processed
locally in ml , based on application decision. In the case
of dependent tasks, the continuation of application exe-
cution may require the input of one task from the output
of another task (s), whom we say are mutually depen-
dent on each other. Hence, parallel offloading may not
always be possible. We further demonstrate this com-
plexity through a Component dependency Graph (CDG)
[46]–[49] shown in Figure 9. The entire applica-
tion is broken into two parts; (i) Offloadable tasks
(i.e. t1, t3, and t4), and (ii) Non-Offloadable tasks
(i.e. t0, and t2). Note that t1 and t3 are only offload-
able after processing t0, while t4 is only offloadable
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after processing t0, t1, t2, t3. This means that certain
tasks are only offloadable after completion of depen-
dent non-offloadable tasks, which are processed locally.
We intend to mitigate this issue in the future.

VII. CONCLUSION
This effort aimed to investigate existing challenges of tra-
ditional IoT ecosystems and find the optimal solutions
for challenges integrating SDN and NFV with BC tech-
nology to mitigate the storage and computation issue of
resource-constrained IoT devices. We have discussed signif-
icant research that exists regarding BC and FV. The litera-
ture review separately grouped existing efforts in two parts,
(i) existing BC mining strategies, (ii) FV strategies for CO.
Although the review section has separately addressed many
ways to mitigate resource-constrained IoT devices’ storage
and computation challenges, it was not possible to achieve
the desired goal. As most IoT devices are limited in computa-
tional capability and storage space, a single IoT device cannot
do extensive computation.We then further extended our effort
to produce a contribution focusing on BC mining designed
explicitly for resource-constrained IoT devices. Our goal to
this end was to render underutilized resource-constrained IoT
devices for task computation with minimal energy consump-
tion within the given time constraint. We have combined BC
and FV to mitigate the said issue. In light of this, we intro-
duced a novel BC framework for such mobile IoT devices
utilizing NFV and SFC technologies on top of SDN con-
trollers. The contribution adopts a virtual mining strategy that
adheres to the computation-intensive PoW puzzle performed
by the individual nearby mobile nodes (or CCNs). The CO
mechanism is performed by a lead miner, which coordinates
a series of VNFs linking them through SFC technology. The
leader miner eventually accumulated the execution result of
multiple VNFs to find the full PoW. We have shown that FV
can reduce computation cost, minimize energy consumption,
and make block mining more efficient than a centralized
approach.
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