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ABSTRACT Emerging Artificial Intelligence (AI) systems are revolutionizing computing and data process-
ing approaches with their strong impact on society. Data is processed with automated labelling pipelines
rather than providing it as input to the system. The innovative nature increases the overall performance
of monitoring/detection/reaction mechanisms for efficient system resource management. However, due to
hardware-driven design limitations, networking and trust mechanisms are not flexible and adaptive enough to
be able to interact and control the resources dynamically. Novel adaptive software-driven design approaches
can enable us to build growing intelligent mechanisms with software-defined networking (SDN) features
by virtualizing network functionalities with maximized features. These challenges and critical feature sets
have been identified and introduced into this survey with their scientific background for AI systems and
growing intelligent mechanisms. Furthermore, obstacles and research challenges between 1950-2021 are
explored and discussed with a focus on recent years. The challenges are categorized according to three
defined architectural perspectives (central, decentral/autonomous, distributed/hybrid) for emerging trusted
distributed AI mechanisms. Therefore, resiliency and robustness can be assured in a dynamic context with
an end-to-end Trusted Execution Environment (TEE) for growing intelligent mechanisms and systems. Fur-
thermore, as presented in the paper, the trust measurement, quantification, and justification methodologies
on top of Trusted Distributed AI (TDAI) can be applied in emerging distributed systems and their underlying
diverse application domains, which will be explored and experimented in our future related works.

INDEX TERMS Trusted AI, distributed systems, software defined networking (SDN), trusted execution
environment (TEE).
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I. INTRODUCTION
Intelligent systems are able to adapt to change dynami-
cally in varying contexts by keeping the trustworthiness of
a system within the limits of available resources. However,
increasing computational and storage capacities require the
decentralization of resources and algorithms. Trusted scala-
bility of analytical functions and resources is still an open
issue. Large-scale matrices generated by the novel meth-
ods, which are used to formally state the data and context,
have to be merged and dynamically fused to be able to
scale/train [1] the decentralizing algorithms. Furthermore,
an increasing number of nodes in the system cause swarm
behavior [2]–[4] due to the use of complex computational
systems for co-operative missions of autonomous system
units. The components utilized to interact with these units
are called edge devices, and have densified storage and
computational facilities, which enable them to cover broader
additional contexts and a wider spectrum. This is a key
enhancement for running novel machine-learning algorithms
at the edge by ensuring trust and security [5]. Nevertheless,
the dynamic context exponentially triggers data/transaction
flows in the system. The flows lead recent challenges for
intelligence valorization in a dynamic context.

Valorizing the swarm intelligence and keeping the system
resilient require real-time updates and predictions in different
system layers [6], [7]. Ledger-based chain structures and
big-data technologies can accomplish transaction scalability
and memory-speed analytic performance to a certain extent.
Despite this, mission/safety/operation-critical applications,
such as tracking a moving object, monitored by a swarm,
require trust to be verified at the critical checkpoints while
maintaining the performance of the overall system. Extending
data locality to the edge in a trusted scalable manner with
holistic views can help to manage the complexity of the
data/transaction-flow and maintain the memory speed per-
formance of the total system and analytical transactions [5].
Furthermore, holistic abstraction can maximize the trust fac-
tor of the system while enabling trusted scalability of the
transactions and keeping the memory speed of large-scale
trusted analytics on massive-systems.

Co-operation between these units can be maximized
with micro-service architectures, which have innovative
approaches for layer-wise structures. Thereby, trust can be
verified at critical checkpoints to maximize the targeted
throughputs of these units. The approaches can help to
dynamically define user feature sets and the management of
these features can be enabled at run-time to maximize the
performance of the co-operative mission, and the trust factor
of a resilient system. Therefore, the system can consider the
trust indicators that can give confidence concerning the pre-
dictions processed by the distributed AI/ML algorithms at a
massive scale by ensuring trusted scalability with the justified
features. Thereby, resiliency and robustness can be assured
in a dynamic context with an end-to-end Trusted Execution
Environment (TEE) for the growing intelligent mechanisms
and systems. These critical feature sets are explored in the rest

TABLE 1. Keyword definitions.

of the paper as components of a distributed computing system
with novel trusted distributed AI-driven approaches with a
comprehensive scientific background definition. In this way,
the trust justification features can be explored and identified
for the emerging intelligent systems and mechanisms.

As a main target in this survey, we introduced the concept
of Trusted Distributed AI (TDAI), which is the ability to
make the right decision in a mathematically well-defined
context within the critical, distributed, autonomous system
constraints [15]. Main contribution of such benchmarking
is to help to understand the new concept of TDAI, with a
comprehensive review of the major related contributions in
the current literature. So that, we can obtain comprehen-
sive view on emerging AI systems concepts and its’ critical
components like SDN, TEE etc. Table 1 introduces selected
keyword definitions that will be used in the rest of the paper.
Section. II introduces the general scientific background and
definitions of AI vs Distributed AI and intelligent systems,
Section. III introduces related use-case specifications and
descriptions, Section. IV includes a comparative analysis of
the literature and gives details about the security, privacy, and
trust metrics considered in this study, Section. V includes the
discussion, current challenges, and a comparative analysis of
the literature. Section. VI concludes the paper and introduces
future directions.

II. BACKGROUND AND DEFINITIONS
A. DISTRIBUTED SYSTEMS VS TRUSTED DISTRIBUTED
SYSTEMS
In order to characterize a distributed system, it is useful to
use the logical functional distribution of the processing
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FIGURE 1. Parallel and distributed systems.

capabilities of a given system composed of a set of comput-
ers. The logical distribution of such capabilities is based on
the following criteria like: Multiple processes, Inter-process
communication, Shared memory and Collective goals. Some
examples of distributed systems can be related to Peer-to-peer
networks, Process control systems, Sensor networks and Grid
computing.

The computers in these systems are identified as sys-
tem units, which are generic components called nodes.
A distributed system is a system with set of nodes Ni :
{No,N1,N2, . . . ,Nn,, which can operate coherently as a sin-
gle system. Depending on the memory system design, it is
called (1) a parallel system with shared memory resources
or (2) a distributed system with decentralized/distributed
memory resources in each system node Ni, as illustrated in
Figure 1.

The systems can be designed for specific purposes or
as generic mechanisms for multi-purpose implementa-
tions. Examples of this are: (1) Distributed computing
system, which can be a cluster computing system or a
grid computing system; (2) Distributed information sys-
tem for a transaction-processing system (mainly database
applications) or enterprise applications; and (3) Distributed
pervasive systems with mobile and embedded comput-
ing devices. This category can include wireless nodes as
networking devices for low latency communication, such
as emerging 1/2/3/4/5/6G communication and networking
technologies [14].

Features for networking and communication technolo-
gies and current research challenges for distributed sys-
tems will be discussed in Section. IV, but we can already
say that emerging communication and networking technolo-
gies together with system abstraction approaches enable us
to categorize that as a fog layer with novel holistic view
approaches [5], with a feedback controller mechanism. Some
examples of emerging wireless communication technologies
such as 5/6G can be defined as a network component for
distributed pervasive systems with a set of interacting nodes
Ni . . . n, which have very low latencies for real/near real time
critical systems. It is a core mechanism for emerging Soft-
ware Defined Networking (SDN) and virtualized network
functionalities (NFV), as well as for the growing intelligent
systems.

The concept of trust is very subjective, having been used
by many researchers in many domains for different purposes.
The generic definition of trust is as follows:

‘‘trust (or, symmetrically, distrust) is a particular level of
the subjective probability with which an agent will perform
a particular action, both before [we] can monitor such action
(or independently of his capacity of ever to be able to monitor
it) and in a context in which it affects [our] own action’’.

Trust can then be defined as the belief that a rational entity
will resist malicious manipulation or that a passionate entity
will behave without malicious intent [40].

If we look at the distributed systems from a service
point of view, the emerging digital environments and infras-
tructures, such as distributed security and computing ser-
vices, have together generated newmeans of communication,
information-sharing, and resource utilization. However, using
these distributed services results in the challenge of how to
trust service providers to not violate security requirements,
whether in isolation or jointly. Answering this question is
crucial for designing trusted distributed systems and selecting
trusted service providers [41].

When designing distributed systems, trust has to be consid-
ered as a major factor in all development stages. Therefore,
the trust-based design and development would need a frame-
work to guide system developers towards identifying a set of
comprehensive requirements and simultaneously preventing
any possible conflicts [42]. These conflicts are observed via
layering and logical operations with a multi-layer design
principle and paradigm approach, as illustrated in Figure 2,
which interacts via data between the layers. Thereby, data
can be the key components to track the states and critical
knowledge regarding the required framework.

In [5], authors propose the Markov chain Monte Carlo
(MCMC) method, which can be analytically considered as an
inference problem, i.e. computing the posterior distribution
via prior distribution information. Given a dataset D =

{x1, x2, . . . , xN }, the posterior probability of P (x∗ |D) for
the excess state x∗ can be calculated using the Bayesian
Rule with a probabilistic distribution. Knowing the proba-
bility distribution of the initial state P(x0) and the transition
kernels T (x∗ ← x), the marginal probability of the Markov
chain at the specific state x∗ is computed dynamically. If the
prior states are likely to link to the posterior states, then, the
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FIGURE 2. Layering and logical operations of a distributed system [14].

Markovian chain is ergodic and converges to an invariant
distribution. So that, trust can be transferred between the
contexts. This approach can be considered for a dynamic
context with a rational agent function to obtain a well-defined
context to elaborate on the challenges.

In order to formulate interactions with the environment
within the well-defined dynamic context, the behavior of a
given node can be described as a dynamic system node in the
environment E, which produces a sequence of states or snap-
shots of that environment. A performance measurement U ()
evaluates this sequence. Let V (f ,E,U ) denote the expected
utility according to U () of the agent function f() operating
in E{}. Each Environment has a set of nodes, NE{N1, N2,
N3, . . . ,Nn} and can bemonitored with a set of trusted agents
or nodes. Each node can be defined as a trusted agent, which
can be defined as system nodes depending on their context.
We can identify the rational agent with a function as follows:

fopt = argmax
f
V (f ,E,U ). (1)

Throughput of each Node X(N) is monitored via trusted
Agent A{} as well as via other nodes N{}. A trusted Agent
is formulated as follows:

A{} = {iN i and with activation function ai}. (2)

The goal of the set of agents A{} and nodes N{} is to maxi-
mize the expected utility V() of the set of environments E{}
by monitoring behaviors with fopt () function via trusted chan-
nels. The interactions with the environment and identified
trust justification features can be observed dynamically with
(1) centralized, (2) decentralized and (3) distributed system
design paradigms within an architectural design perspective.
Thereby, the trust factor of the system, P (x∗) ∝ t with the
set of nodes; NE:{N1, N2, N3, . . . , Nn} can be aggregated
in order to maximize the throughput in the well-defined
dynamic context.

The dynamic context and environment in which the set
of nodes NE interacts, require an optimal level of trust in
the context in order to be able to ensure the interactivity of
the nodes and system components. Depending on this level
of trust, the system can be identified as a trusted distributed
system with the hard constraints of a critical system in real
time. This set of features can be mainly identified and mea-
sured with dynamic metrics such as the latency, throughput,

and power values of the nodes. The values have to be set up
accurately for the context dependencies and adapted dynam-
ically to the changing context. Next chapter introduces the
background of these AI principles and paradigms with a com-
parative analysis on centralized and distributed perspectives.

B. CENTRALIZED AI VS DISTRIBUTED AI
Artificial/computational intelligence has been described from
many aspects in literature. The main challenge is finding the
abstract and numeric definitions of thinking, learning, and
intelligence. In this chapter, we will provide the major def-
initions of machine intelligence, computing, and AI, in order
to emphasize the roots of our conceptual and abstract basic
definition for trusted AI mechanisms available in the liter-
ature. This section articulates and discusses state-of-the-art
conceptual definitions of artificial intelligence.

In spite of not having a standard definition for artifi-
cial intelligence, most accepted definitions can be catego-
rized into four main groups. (1) behavior, acting humanly;
(2) thought processes and reasoning, thinking humanly,
cognitive modeling; (3) success measurement respective to
human performance, thinking rationally; and (4) the ideal
performance measure, rationality; acting rationally is a com-
bination of mathematics and engineering [13]. The remain-
der of the section briefs on the four main categories and
introduces the state-of-the-art definitions. Current challenges
will be addressed with a comparative analysis of the state of
the art.

The first category is behavior, acting humanly and is initi-
ated by the Turing test approach. Natural language process-
ing methods enable computers to communicate with other
computers like humans. A computer passes the test if a
human interrogator cannot differentiate whether the sender of
the message is a human or machine. Knowledge representa-
tion stores heard or known data. Automated reasoning uses
stored information to answer questions and inference new
conclusions.

Machine learning adapts a system to new contexts and
detects/extrapolates patterns. There is no direct physical inter-
action between the computer and the interrogator, since the
physical simulation of a person is unnecessary for intelli-
gence. A video signal is included to test the subject’s per-
ceptual abilities and pass physical objects through a hatch.
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Computers need computer vision to perceive objects and
robotics that manipulate/move objects in order to be able
to pass the test. AI researchers prefer studying the underly-
ing principles of intelligence rather than duplicating exem-
plary scenarios. Therefore, little effort is needed to pass the
Turing test.

The second category is the thought processes and
reasoning, thinking humanly, cognitive modeling approach.
Cognitive science merges computer models from AI and
experimental methods from psychology to imitate the human
mind. Each field is growing rapidly and fertilizing the other.
One of the most popular definitions of intelligence is the
ability to adapt to change (Hawking, 1992), which has
inspired most AI systems. Neuropsychological evidence sup-
ports computer vision to develop innovative computational
models. However, the systems used in real life have mis-
sion/safety/operational critical system constraints. Rational
and formally provenmethods are preferred by AI researchers.

The third category is rational thinking, success measure-
ment with respect to human performance. Logicians develop
precise notations for statements about all kinds of objects in
the world and relationships among them. Logic-based com-
putational reasoning systems are applicable to some extent.
However, formalizing and stating informal knowledge in for-
mal terms with uncertainty factors is not an approach that
is fully applicable. Furthermore, an insufficient number of
facts make the use of problem-solving methods impossible
and would exhaust computational resources. Reasoning steps
can be added to increase the performance of a computational
reasoning system, but it would remain limited due to uncer-
tainty and informal knowledge resources.

The fourth category is the acting rationally, rational agent
approach, a combination of mathematics and engineering,
based on an ideal performance measure known as rationality.
A computer agent operates autonomously, perceives the envi-
ronment, persists in a defined time period, adapts to change,
reasons logically, and generates and pursues goals. A rational
agent operates/acts under uncertain conditions to achieve the
best expected outcome. All skills are required for the Turing
test enable agent to act rationally. Knowledge representation
and reasoning skills enable agents to reach good decisions.
Comprehensible sentences in natural language need to be
generated to communicate with the environment. Continuous
learning is needed to improve the ability to generate effective
behavior with the agent function fopt (). This category of AI
can enable us to obtain a mathematically well-defined context
to interact with the environment. In this way, we can extend
a definition for trust to AI systems as illustrated in Figure 3,
where we have a dynamic context and where we see the AI
based categories and trust impact. For instance, in IV part of
the figure we can have mathematically well-defined context,
where we can extend, quantify and qualify the trust with
precise definitions of rationality principles.

Based on the comprehensive view of AI system method-
ologies, we can see that the rational agent approach is
preferred by AI researchers. The standard of rationality is

mathematically well-defined and completely general. It can
enable an agent to be generated for any well-defined context.
Achieving perfect rationality and always doing the right thing
is not feasible with the uncertainty factors intensive envi-
ronments. Computational requirements cannot be satisfied in
the context. A computer system that has (1) storage, (2) an
executive unit, (3) control units does not have to be a cen-
tral mechanism. Decentralized and distributed system design
approaches can enable us to get closer to achieving perfect
rationality.

Architectural views and perspectives can be used to differ-
entiate and categorize the features of emerging AI systems.
The categories can be named as (1) centralized AI (2) decen-
tralized AI (2) and (3) distributed/hybrid AI.

The centralized approach is not considered feasible with
the current state-of-the-art approaches, since the emerging
intelligent environments are data-intensive and they have
limited agent cooperation interactivity features due to the
bandwidth limits of interaction channels. Thereby, the num-
ber of nodes in the limited context inflates exponentially. The
agent functions fopt () also grow exponentially and the systems
exceed the limits of computational scalability [5].

As the second alternative, decentralized design features
can help to control the independent nodes with limited
capabilities of the autonomous agents, mainly with limited
knowledge storing and processing features to make the right
decision in uncertainty-intensive contexts and environments.
However, decentralized design is also limited due to the
capacities of the independent node, which is only feasible for
a well-defined limited context.

Fortunately, distributed design paradigms can help to
merge critical feature sets of centralized and decentralized
design paradigms within a hybrid design approach for coop-
eration and interaction with the agent function fopt () under
uncertainty-intensive conditions. Thereby, we can define the
distributed AI as the ability to make the right decision in
a mathematically well-defined context within the critical,
distributed, autonomous system constraints [15]. The main
difference between centralized and distributed approaches is
the dynamic data-driven cooperation with a set of nodes;
NE:{N1, N2, N3, . . . , Nn} in a set of dynamic environments
E{} to achieve the expected utility V

As cooperation between the nodes increases, system level
trust becomes a more critical requirement to ensure the
behavioral integrity of a system. The distributed design
approach can enable us to maximize the critical feature sets
(memory, storage, processing capacities etc.) of distributed
AI/ML algorithms for the intelligent systems and mecha-
nisms targeted. The following chapter discusses these feature
sets in a dynamic context, where we introduce the need and
increasing interest for Trusted Distributed AI in the litera-
ture as the core generic mechanism of the emerging trusted
distributed systems. In this way, the agent function fopt ()
can dynamically control distributed resources to maximize
the performance of the expected utility V By this means,
the system can cover wider contexts and spectrums with the
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FIGURE 3. Main categories of artificial intelligence.

TABLE 2. Artificial intelligence system state-of-the-art targeted feature summary (X: Yes, X: No).

distributed features of trusted distributed AI, as explained in
the next chapter.

C. TRUSTED AI VS TRUSTED DISTRIBUTED AI
In a broader context, Trusted Distributed AI (TDAI) can
be defined as the ability to make the right decision in a
mathematically well-defined context within the critical, dis-
tributed, autonomous system constraints. The constraints can
be observed with agent function fopt () to reach ultimate
rationality in uncertainty-intensive environments. In order
to identify these features, the rest of the section introduces
basic definitions of (1) distributed systems, (2) security, pri-
vacy, and trust, (3) distributed AI and multi-agent systems,
(4) end-to-end paradigms, and swarm mechanisms to maxi-
mize cooperation between the agents and thus maximize the
performance measure U () in a set of environments E {}.

Table 2 introduces selected critical feature set compar-
isons between trusted AI and Trusted Distributed AI with the

architectural perspectives. The rest of the section explains the
key features of TDAI and its advantages with decentral and
hybrid design approaches, which enables us to maximize the
performance of the agent function fopt () and overall system.

1) SECURITY, PRIVACY, AND TRUST FEATURES
Security, privacy, and trust are the key elements of grow-
ing intelligent distributed systems. The scientific princi-
ples and paradigms are investigated in all design lifecycles
with hardware/software co-design approaches. These fea-
tures can make systems more flexible and undertake the
necessary configurations to tackle the challenges of hardware
dependencies.

Scientific views and challenges can be categorized into
many perspectives, such as the authors [14] roughly divide
the issues of security in a distributed system into two
parts. (1) concerns the communication between users or pro-
cesses, possibly residing on different machines that have
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secure communication channel mechanisms. The mecha-
nisms are more specifically designed for authentication, mes-
sage integrity, and confidentiality. (2) concerns authorization,
which deals with ensuring access rights to the resources with
an access control mechanism. The mechanism can manage
the user access level, system node confidentiality classifica-
tion, and data protection policies with cryptographic keys and
certificates.

In a broader context, the security of a computer system
is strongly related to the notion of dependability, which
means that the computer system must have justifiable trust
to deliver its services. Dependability includes availability,
reliability/liability, safety, maintainability, and robustness.
Furthermore, recently emerging concepts like anti-fragility
can also be a notion of the resilience and dependence of the
system. The authors include the confidentiality and integrity
of the computer system as a prerequisite of trust.

Confidentiality feature can be ensured by the security
mechanisms in some manner with a layered logical and
security mechanism. However, the integrity and coherency of
the system require holistic views and end-to-end transaction
monitoring approaches within the limits of critical system
constraints [15]. In this way, alterations and state changes can
be detected and rectified in real or near real time at massive
scale. By this means, Alice can trust the computer system
and interact with Bob via trusted channels in real or near real
time. Trust features, metrics, andmeasurement/quantification
approaches will be discussed in detail in Section. IV after
the brief background definitions of end-to-end paradigms and
swarm mechanism feature sets in the next chapter.

2) END-TO-END PARADIGM AND SWARM MECHANISMS
The data-intensive nature of emerging AI systems and
context-dependent programs makes the problem much more
complicated due to the increasing complexities of the trans-
actions. Nevertheless, a generalization approach is possi-
ble. Distributed caching policies and system abstractions
have recently been tested. Performance improvements are
observed with distributed file systems and different con-
figurations for memory bottlenecks and congestions as an
improvement to the Turing and McCarthy abstraction mod-
els [3], [29]. The studies prove that the end-to-end imple-
mentations of machine-learning pipelines with modern cloud
systems, which have browser-based interface architectures,
can be implemented in real time or near real-time. The authors
define the diversity of emerging data growth as big data
concept. It is 3V (Volume, Variety, Velocity) data, which
cannot be processed with classical database systems.

A proof-of-concept study was experimented with basic
machine-learning use cases for an opinion-mining appli-
cation to understand social polarization and convergence
features. The proposed distributed file system-based design
enables us to overcome the memory bottleneck with a
90% true clustering performance [29] for designed scoring
algorithms.

System-level innovations and new conceptual definitions
and abstractions have enabled us to develop advanced
computational systems to automate many manual pro-
cesses. Thereby, trusted distributed AI methodologies can
be implemented with end-to-end machine learning pipelines
and trusted execution of transactions with holistic views
to the total system. Baydin et al. [1] propose automatic
differentiation for machine-learning applications to build
end-to-end pipelines. The approach can enable end-to-end
machine-learning models/knowledge bases to be merged
and trained in different contexts. Emerging AI systems and
computational/storage resources can support the end-to-end
design of AI systems. Data can be managed and fused with
knowledge bases within reasonable latency thresholds for
many applications to keep the rationality of the agents in a
well-defined dynamic context [30].

Machine learning and statistical techniques can help to
transform big data into actionable knowledge with a sim-
ple user-interface via an efficient distributed system design
approach [2]. End-to-end differentiable pipelining frame-
works can support the automatic composition of a learn-
ing framework within acceptable latency thresholds [3]. The
innovations enable cooperation between diverse contexts
for the tasks, and trigger novel trust modeling approaches.
Cohen et al. [4] propose a multi-agent-based trust model
to be able to ensure the expected behaviors of system
units. In order to increase cooperation between system-level
transactions, swarm-based coherence is proposed as a collec-
tive adaptation for swarm intelligence with artificial neural
networks [31].

The emerging technologies associated with swarm mech-
anisms enable trusted distributed AI to be developed, with
an increase in processing capacity together with the distribu-
tion/decentralization of resources (data units, AI processes,
etc.). Real-time management/exploitation of such systems
and consideration of them from a holistic point of view
becomes much more critical. [5] is an example of holistic
system abstraction proposed for end-to-end transaction flow
monitoring of trusted AI systems. In addition to this, some
research work focuses on transaction management consider-
ing the X-AI concepts together with the lineage aspects (data
locality and tracking) [32]–[35]. In terms of the development
and engineering of AI-based systems, cloud-based lifecycle-
based trust modeling and monitoring approaches are also
proposed by the authors [8], [9].

As a brief overview to the explored background, the
challenges can be categorized into three main architectural
design views with a system level perspective. (1) Decentral-
ized (Autonomous/ Embedded/Local) (2) Centralized/ Fully
connected (3) Distributed (Edge/Hybrid/Hierarchical/Multi-
layer). Within these, the interactivity and cooperation
of the agents and dynamic system components can be
observed in the dynamic context within a holistic point
of view.

The features in the literature targeting trustworthy mech-
anisms for either centralized AI or Distributed AI can be
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summarized as illustrated in Table. 2. These categories and
main feature sets can be listed as follows:

- trust measurement, quantification, and justification
- trusted scalability
- trust assurance
- swarm manipulation
- system and user/agent behavior monitoring
From this initial literature survey, we can see that there is

little researchwork that is related to the field of TDAI. Indeed,
this research field requires all five key features dedicated to
pure distributed AI-driven systems, as mentioned above, to be
considered. The next chapter describes the novel feature sets
of TDAI with a use-case focus for the growing intelligent
systems. Section. IV analyses the literature comparatively
with comprehensive tables.

III. USE-CASE SPECIFICATIONS AND DESCRIPTIONS
The scenario targeted in this work is related to mobility use-
cases and considers a mix of connected autonomous (SAE
level 5) and non- or semi-autonomous vehicles. Each vehicle
is deployed with a sensing unit as system node that has a
processing and reasoning capability – to process the raw
data collected from a vehicle’s sensors and subsequently
interpret them into useful outcomes of emerging AI systems.
In this context, we can imagine a given number of vehicles
on the road moving from a starting point to a destination
with all vehicles connected to each other and sharing some
data measured and/or interpreted locally, using their sensing
capabilities, or collaboratively, using each other’s knowledge.
In such a situation, each node could implement its own AI
module to estimate/predict or learn, not only from what has
happened in the past, but also from what the other nodes are
sharing with it (using its reasoning capability).

We can also assume that for some tasks, a given node
might rely on the processing power offered (vs allowed) by a
remote node due to the lack of processing power or learning
capability of the original node. In other words, vehicles that
are not equipped with this AI feature or with a too weak
computing capability can potentially rely on other vehicles’
modules by using low-latency communication capabilities
provided by P2P or cellular communication networks. This
can be achieved via a collaboration feature that a distributed
system can offer to give all mechanisms for the ability to run
in real time. This heterogeneity (in the nature and capacities
of vehicles) makes this collaborative approach particularly
efficient, allowing a single node to benefit from the overall
knowledge and processing capabilities. In such a scenario,
we see a double (win/win) benefit, where a local node can
profit from neighboring nodes to help make decisions locally
and anticipate decisions for the next steps.

The resulting distributed architecture can become com-
plex and may involve self-organizing techniques with mul-
tiple hierarchical layers to better manage the decisions
between several nodes. A node which might play the role
of master would benefit from an overall view for global
decision-making. Many applications might be related to this,

especially those related to mobile, edge and ubiquitous com-
puting where vehicles are equipped with context-aware and
user-centric technologies.

Applications that cover this could be related to driver
behavior profiling, with different possible outcomes, like
low-emission driving where the user or the car (if fully
autonomous) would need to follow precise instructions
depending on the way that is driving and, on the environment,
(i.e. other vehicles).

One challenge of particular interest is when a mix of
fully autonomous and semi-autonomous vehicles are collab-
orating. This specific scenario involves different behaviors
and ways of sending, processing, and reacting to a given
situation. This might of course lead to conflicting decisions,
with semi-autonomous vehicles, still operated by a driver,
sending requests or information that might be badly inter-
preted by the other vehicles. This type of scenario, when
coupled with the complexity of the underlying distributed
architecture, can lead to trust issues. This is even more true
when AI algorithms are distributed over several disparate
entities, since one of them may misinterpret an outcome
interpreted by another vehicle. Another possible scenario is
a complementary mobility application being related to an
emergency where an ambulance can process data (related
to early medical diagnosis) of the patient being transported,
to be transmitted in real time before arriving at the hospital.
In such a case, a patient’s mobile device (e.g., smartphone
or smartwatch) could be used for such a transmission via a
roadside unit node (like a 5G edge node), which is utilized
for transmitting the packets to the destination.

This process involves low latency and a high quality of
service, as well as cooperation. Sometimes, it might indeed
occur that we rely on such a node to request ad hoc compu-
tation if an edge node (hospital edge node) is not available or
not trusted anymore. In such a scenario, the main challenge
is ensuring that the actors in the value chain trust the services
at the top of such a distributed system since they mainly
rely on AI systems capabilities: sensing, processing and
reasoning features. In other words, what are the measurable
trust indicators that can be considered to gauge confidence
and correlate with trust in the overall services offered by such
a distributed system?

Looking at the trusted conceptual background provided by
the literature, we can already specify the following key trust
indicators that are specific to the distributed nature of a given
intelligent and growing system:

- AI and the underlying distribution/architecture (versus
organization) of its analytics functions: local learning
(like in centralized systems), federated learning (like in
distributed systems), etc.

- Processing over the nodes: processing power and orga-
nization within the distributed system

- Reputation of the distributed nodes, meaning how can
we exclude any of the nodes if the overall reputation is
degraded and how can we detect such a failure?
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FIGURE 4. Intelligent system intelligence flow mechanism.

- Impact assessment of the overall trust value at both the
node and global level.

- Measure/quantify/justify the trust factor coefficient of
each node and the context dynamically in different time
spans by observing the throughput levels expected for
them.

All these indicators may require simulation tasks to under-
stand and measure the ability of a distributed system solu-
tion to solve complex (near) real-time mobility problems
compared to conventional centralized approaches. Figure 4
illustrates an intelligence flow mechanism in this dynamic
context, in which the learning and growth is correlated with
an end-to-end trust mechanism. Thereby, the high-level mon-
itoring dashboards of intelligent systems can have a holistic
view of the growing mechanisms in a dynamic context. The
next chapter comparatively analyses the state of the art for
the identified principles and paradigms and introduces the
emerging challenges and potentials in detail.

IV. COMPARATIVE ANALYSIS OF LITERATURE
A. AI SYSTEM CATEGORIZATION
Continuously growing intelligent systems can enable
massive-scale AI support for many critical systems. However,
challenges also increase, mainly in terms of complexity,
inflation of size/volume, reaching limits of resource central-
ization, and an increased need for decentralized/distributed
mechanisms due to non-deterministic alterations and
uncertainties in system components. In this chapter, we will
discuss related studies, which categorize the challenges and
introduce the main features to be targeted for a trusted
distributed AI methodology as a core mechanism of growing
intelligent systems.

Data is the most valuable digital dynamic asset of the
intelligent systems. Since computing machines have existed,
the most interesting challenge has been to tackle the

computational complexities in a timely manner and access
the system resources with the right credentials. [42] Proper
identifies the current state of the data as fuel for the digital
age. Business analytics, statistics-based AI, digital twins, etc.
are defined as ‘‘data-hungry’’ applications, which are com-
ponents of complex systems, and which can be thought of as
data ecosystems. The research challenges below are defined
as the main categories:

- Data as a key resource
- Trust at the core
- Regulation of data ecosystems
- Data need semantics
- From data to information

The challenges within the identified categories can help
define the role of data in the current context of smart sys-
tems. However, data is not fully separated concern from
computation, it has to be mapped to computation. Trust
has to be measured and quantified. Novel holistic system
abstractions are required to track the transaction flow at
the system level and to assign trust values to each cate-
gory. Furthermore, semantic web-based ontology modeling
approaches with RDF (Resource Description Framework,
Subject-Predicate-Object) [43], [44], scenario-based strategy
planning tools [45], or any other system design tools can
help to model a lifecycle with a conceptual modeling per-
spective to better interact with intelligent system components
at run time or (near) real time. Thereby, explainability and
justifiability features with socio-dynamical perspectives can
also be tracked more coherently to contribute to the continu-
ous growth of the emerging intelligent mechanisms.

Within the digital-dynamics perspective, system-level end-
to-end transaction monitoring can be succeeded by a holistic
view [5], which enables data-state and lineage tracking in a
trusted manner with a robust core mechanism. System-level
trust features, metrics, and measurement approaches will be
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discussed later in this chapter to indicate the justification
of trust prerequisites, such as robustness, reliability/liability,
resiliency, and integrity.

The digitization of everyday life, cause the amount of
data to grow exponentially, and the challenges emerging
from this have made the need for system reconfigurabil-
ity more critical. Hardware-dependent designs are replaced
with software-driven mechanism and hardware/software co-
design approaches are utilized when necessary. The software-
driven approaches also adapted the software challenges
to the current intelligent system context with software-
intensive mechanisms. Aksit [46] has summarized these chal-
lenges/research directions into six categories with a focus on
smart-city systems and presents them in a single list as briefed
below;
1. Developing models for smart cities;
2. Designing a framework for managing and optimizing the

configurations of clusters;
3. Designing models, methods and tools for critical infras-

tructures;
4. Optimizing the necessary quality attributes through sys-

tem adaptation at run-time;
5. Integrating software systems;
6. Designing a smart infrastructure with a high degree

of interoperability, configurability, adaptability, and
evolvability.
The challenges can help to synchronize coherency between

the related research studies. However, new software and
hardware co-design principles are emerging. System-level
hardware/software integrated views, which can interact with
all verticals at run-times, are required for emerging smart
city systems. Trust is not only required for dependability,
which already ensures the security, robustness, resilience,
integrity, and coherency of a system [46], but must be
measured and quantified for smart systems, in order to
inspire confidence in system architectural level disruptive
innovations.

The next chapters will identify these architectural design
differences to emphasize the need for distributed design
and the potential benefits of hybrid mechanisms. Thereby,
we will be able to introduce the methodology to be used
for the concept of SDN to ensure the interactivity of
trusted agents in near/real-time for smart systems. Hybrid
approaches also define a core mechanism for emerging
networking/communicationmethodologies for close-to-long-
range systems as the generic IT core, which can be imple-
mented in emerging software intensive systems, such as 5/6G.
In order to be able to focus the identified features on the
TDAI, these system-level paradigms can be categorized as
architectural (1) and (2) networking/communication perspec-
tives. Thereby, we can obtain the trust justification features
of novel computing systems with a focus on distributed com-
puting concerns for the targeted trust frameworks. Rest of the
section introduces these identified system-level features and
explains them as the trust-justification features of emerging
AI systems.

1) ARCHITECTURE
Architectural modeling and the models are the basic method-
ology and critical feature for system-design paradigms.
These are mainly considered with hardware and software-
level design concerns. The approaches can be limited to
board-level architecture-design paradigms for computing and
intelligent system mechanisms [47]. Chip-level designs can
enable us to implement computing facilities on any system
components as an integrated unit, such as edge devices and
mobile units. However, increasing amounts of the datamanip-
ulated by the systems require major updates of the hardware
and software abstraction principles.

Existing approaches can enable us to process and
manipulate data with virtualization and caching policies [48].
Chip-level interconnection [49] mechanisms can enable us
to transfer the data between the processes with available
scheduling policies [50]. These design approaches are lim-
ited with 3D-Stack board/memory design principles [51]
and network interconnection issues [52], such as scalability,
performance, energy consumptions, and most of all, with
bandwidths of the transmission and buffering channels.

Emerging intelligent computing architectures [53] can
enable us to process and manipulate data with more intel-
ligent approaches. For instance, caching performances [54]
can be optimized and streaming buffers can be designed
more coherently and adaptively [55] to interact more effi-
ciently with the system components. The interactions can
be designed with online approaches with an event-based
trigger mechanism [55] with data-center networking [56]
protocols. The architectural concerns can be modeled as
generic core mechanisms with the holistic abstraction and
end-to-end system design paradigms with throughput max-
imization approaches [5].

Interactions with the environment and the dynamic state
changes of the components also trigger behavioral com-
plexities. These require the dynamic modeling of system
view points and snapshots of the states, and can be suc-
ceeded by available system engineering architectural frame-
works [57] up to the specific requirements of the dynamic
context changes. In addition, business processes can also
be modeled conceptually [58] to interact more efficiently
with the environment. Therefore, system resource mod-
eling and management paradigms can be improved with
novel learning heuristics [59]. Furthermore, system resource-
management knowledge bases can be trained for continuous
growth and the heuristics can be improved with holistic
abstraction [5] paradigms. These architectural features can
be categorized into three main groups with centralized (fully
connected), decentralized (autonomous/embedded/local),
and distributed (edge/hybrid/hierarchical/multi-layer) system
design approaches.

• Centralized/(Fully connected): Processing andmemory
resources are fully centralized

Centralized architecture can enable to build smart sys-
tems with intelligent mechanisms, which have centralized
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processing and memory/storage components. Furthermore,
robust networking/communication channel-based abilities
are supported with strong back-end units, such as quan-
tum computing mechanism, to interact with the environment
and dynamic context efficiently. However, these architec-
tural design paradigms are limited by system integration
and performance issues [60]. Fortunately, parallelizable por-
tions of these issues can be identified with trust factor max-
imization principles, and integrity concerns can be mini-
mized with holistic interfaces [61], and holistic total system
throughput maximization methodologies [5]. Nevertheless,
the design/manufacturing costs and physical limits of these
designs require decentralized and distributed approaches,
which are explained briefly in the next chapters.

• Decentral/(Autonomous/Embedded/Local): Processing
and memory resources are fully de-centralized

The decentralization of the mechanisms requires trusted
computing units [37] on edge devices and secure channels
for trusted interactions with the environment. The trust con-
straints can be ensured to a certain extent, but the edge/mobile
components are limited by digital design paradigms and
require novel holistic interfaces [61]. 3D-stack digital design
technologies can help to improve edge/mobile units as den-
sified system components [15], [62]. These features can
dynamically adapt to the context changes with the holistic
interface’s digital design approaches [61] and end-to-end
holistic abstraction and views [5], [14]. Thereby, the avail-
able features of edge/mobile devices can be maximized with
densified design paradigms, and the overall system perfor-
mance can be improved with a distributed design approach.
Next chapter introduces the basics of distributed design and
details are discussed in a comparative matrix in Section. IV C.

• Distributed/(Edge/Hybrid/Hierarchical/Multi-layer):
Processing and memory resources are distributed

Distributed system design issues can be grouped into
(1) algorithm-level and (2) system-level concernswith a focus
on distributed computing [14] principles and paradigms.
Algorithm-level challenges include learning paradigms with
statistical and AI/ML optimization approaches, such as learn-
ing cardinality estimator performance maximization [63]
with a flow loss model, a source code compiler to minimize
algorithmic complexities [64], and other AI/ML challenges to
automate the data pipelines of training and test data-sets [65].
One of the most critical concerns of these challenges, estima-
tor performance maximization, can be improved with holistic
abstraction paradigms, which can enable the dynamic training
of multi-layer data models [5].

However, increasing complexities and uncertainties of the
algorithms trigger more system-level concerns and require
computational tractability of the processes and transactions.
For instance, critical database ACID (Atomicity, Consis-
tency, Integrity, Durability) features need to be extended
to edge devices in a trusted, scalable manner [5]. These
challenges require updates in logic design and hardware
level updates within the polynomial time threshold values

FIGURE 5. Networking and communication systems range-based
categorization.

to minimize latency concerns [66]. Holistic interfaces can
help to design reconfigurable hardware with a dynamic end-
to-end logic structure [61]. However, middleware design
paradigms are also critical for software/hardware co-design
issues [5], [62]. Fortunately, rational verification methods in
polynomial time [66] can help to improve the transaction flow
to enable the computational tractability of the processes.

Behavioral strategies of these mechanisms can also be
dynamically configured [67] to improve the intelligence
mechanism of the intelligent systems. Therefore, AI systems
can be improved with novel methodologies, so that we are
able to mention trust on these systems, which have more
opportunities and challenges than ML features [68], due to
their behavioral integrity constraints [5], [62]. Intelligent
agents [69] are key components for these intelligently behav-
ing smart systems, and trust measurement and maximization
with swarming approaches are promising indicators and fea-
tures of these paradigms [15]. Comparative analysis matrix in
Section. IV B summarizes potential research directions. Dis-
cussions in the next chapter will be limited to networking and
communication perspectives in order to observe the method-
ologies that can maximize critical features of an intelligent
system with the set of nodes Ni : {No,N1,N2, . . . ,Nn,, such
as connectivity and interactivity paradigms.

2) NETWORKING AND COMMUNICATION
As the emerging technologies grow faster, intersections
between the fields are also increasing and multi-disciplinary
fields are converging with AI systems-driven design
paradigms. For example, networking and communication
technologies are improved, with the critical features of
emerging AI systems and novel functionalities are being
enabled with software-driven design paradigms, such as
NFV (Network Function Virtualization) and SDN (Software
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FIGURE 6. Advance wireless communication systems emerging features [72].

Defined Networking). In this way, emerging networking
and communication technologies like 5/6G technologies can
enable massive-scale AI System deployments to be imple-
mented with novel hardware/software codesign paradigms,
and the challenges can be explored with AI systems perspec-
tives. The rest of the section explores these critical features
with a range-based categorization approach as illustrated in
Figure 5.

Networking and communication features, which trigger
growth acceleration in the computing paradigms and the
densified computing/storage system units, can enable dis-
tributed massive data to be processed in real time and help
to ensure the connectivity and interactivity of the compo-
nents within the critical system constraints. These features,
which are the key enablers for the SDN mechanisms with
virtualized network functionalities, are called NFV. Thereby,
the connectedmechanisms can help to design software-driven
dynamic systems rather than hardware-dependent designs to
make the networking and communication systems flexible
and adaptive to dynamic context changes. In doing this,
the critical networking and communication components of
emerging technologies can enable us to ensure the interac-
tivity of the agents within hybrid-cloud mechanisms [49] and
Radio-Network technologies, which have multi-layer design
with network slicing features [56].

Standard definitions are still on progress of improving
signal transmission and edge/mobile processing latencies to
meet the critical system constraints [57]. In spite of making
good progress with these challenges, distributed computing
and system design paradigms [14], [15] still need to be inves-
tigated and tested with the critical feature sets of the emerg-
ing networking and communication systems. These features
are mainly categorized into two groups: (1) beamform-
ing and signal transmission and (2) edge/mobile processing

mechanism for networking mechanisms and systems. Fig-
ure 6 [72] illustrates the basic characteristics of wireless
features, with GHz frequencies and advanced emerging fea-
tures, which are mmWave and THz waveforms. These signal
transmission abilities can help to improve the interactivity of
system nodes and edge/mobile units within the limits of total
system throughput principles and paradigms [5]. Further-
more, available networking protocols and mechanisms can
enable the transmission and processing of [86] packages with
multi-layer connectivity paradigms, as illustrated in Figure 7.
Transmission latencies and edge/mobile package processing
features are promising for ensuring the interactivity and con-
nectivity of an intelligent system with a set of nodes Ni :
{No,N1,N2, . . . ,Nn,. Detailed features are discussed with a
focus on end-to-end trust mechanism justification features
and indicators. In this chapter, we will limit the discussion to
critical networking and communication features with a range-
based categorization approach as illustrated in Figure 5, con-
sist of (1) Close (2) short (3) mid (4) long ranges.
• Close-Range (PAN < 100m): Bluetooth, Wi-Fi,
802.11p/ITS G5 for V2X, low latency networks etc.

An increasing number of networking and communication
technologies can provide a wide variety of options for the
connectivity and interactivity maximization of the system
nodes and edge/mobile units. However, the growth and diver-
sity of options increase complexity and trigger behavioral
anomalies, which require (near)-real-time channel selection
mechanisms.

Fortunately, intelligent control mechanisms can enable us
to design vision-based control mechanisms [87] or hybrid
controllers with a wireless/visual sensor-based [5] control
structure inside the edge/mobile units. These challenges trig-
ger the requirement for novel synchronization and concur-
rency features [88] at the edge/mobile units. Networking and
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FIGURE 7. Networking protocols for package transmission [98].

communication services can also be adapted to the dynamic
internet/intranet [89] applications. Energy efficiency of these
nodes is also a critical feature for the available wireless/wired
communication channels and required wireless communi-
cation protocols [90], and wireless sensor network archi-
tectures [91] can be adapted to change dynamically. These
features can be designed as open-flow mechanisms [92] for a
selected region, and adaptive protocols [93] can help to pro-
cess packages and disseminate information in edge/mobile
units with a distributed design approach [93]. Multi-layer
topologies [94], such as MAC 802.11 ad hoc protocols, can
be maintained dynamically to adapt the physical layers at
run-time.

The resiliency of overlay networks [95] is also a criti-
cal concern for the edge/mobile device surface [96] signal
processing abilities within the critical system constraints.
Thereby, advances in edge/mobile device features and abil-
ities like ultrasonic ranging hardware [97], congestion con-
troller mechanisms [98], miniaturized beamforming devices
[99] can operate and help to ensure the interactivity and
connectivity of the components with ms-scale latency val-
ues [100]. On the other hand, these advanced features require
hardware-level code management challenges with context-
aware computing paradigms. Fortunately, this adaptiveness
can be improved with Machine Inferred Code Similar-
ity (MISIM) systems [101], which can be part of a future
research challenge in terms of the run-time reconfigurability
of the systems. In order to limit discussions on close-range
communication in terms of end-to-end trust mechanism and
justification features, the rest of the section will only mention
short-to-long range paradigms briefly and will focus on the
identified trusted computing feature sets.
• Short-Range (LAN < 10km): Cellular networks,
4G/LTE, 5G NR etc.

Short-range feature sets and end-to-end networking/ com-
munication mechanisms can maximize the connectivity and

interactivity of the system components and edge/mobile units
in real/near-real time. Figure 7 illustrates these protocol
categories, which include link-layer and end-to-end connec-
tivity features. These features need to be extended to short-
range cover, especially for smart-city use cases. For instance,
emerging mobility technologies like autonomous cars can
behave like a mobile computer device, which can help to
implement urban air transport with the cars having a dual
functionality as mobile computers.

Connectivity and interactivity of these mobile units can
be ensured with emerging systems and methods in order to
obtain [102] telematic data with wireless/wired sensor tags.
These protocols can be adapted dynamically to the dynamic
context changes as explained in the previous section. The
discussions can be limited to the V2X (vehicle to every-
thing) domain to explain the most promising feature sets.
For instance, ITS-G5 (IEEE 802.11p) and C-V2X (3GPP
Release 14) are promising technologies in terms of sam-
pling/transmission frequencies and power/energy efficien-
cies [103] with minimized congestion and latency values.
Nice progress is saved with 5G hybrid-mechanisms [85],
which are supported by hybrid clouds with maximized band-
width limits to exceed theoretical thresholds like Edholm’s
law of bandwidth [81]. Distributed computing paradigms
are still under investigation to maximize the total system
throughput values of the system [5] with novel AI/ML sup-
ported designs [6], [32]. These feature sets will be sum-
marized in Section. IV C. The rest of the section briefs
on mid/long-range challenges and potential future research
directions.
• Mid-Range (MAN < 100km): High Speed Wireless
Internet, cable TV systems

As the amount of data traffic increases to the peta/exa-
scale, controller mechanisms become more complicated and
require advanced intelligent controllers inside edge/mobile
devices with distributed mechanisms to be able to cover
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FIGURE 8. A distributed mobile sensor computing system [12].

wider ranges. The diversity of the components and interac-
tion require advanced package processing features and real-
time decision mechanisms. Fortunately, the state-of-the art
methodologies can enable distributed sensor computing sys-
tems, as illustrated in Figure 8. [12]. The detailed feature sets
of these mechanisms are explained in the next chapter with
a focus on the end-to-end trust features of computing prin-
ciples and paradigms. As a brief introduction, these features
can cover on-board computing units with mobile/edge query
processing mechanisms. Therefore, dynamic measurement
metrics can be collected to help to ensure the connectivity
and interactivity of mobile units with maximized trust values,
as explained in the next chapter, as advanced feature sets
of the trust mechanism to be able to extend networking and
communication features to mid-range.

• Long-Range (WAN > 1000 km): Space Networks,
Sat Com, Space Internet, Futuristic (Drones, Low-Orbit
Satellite etc.)

The growth in communication technologies and signal
transmission features can enable us to reach higher signal
frequency transmission features up to PHz scales. Futur-
istic components of the emerging smart systems, which
have higher bandwidths, can ensure the connectivity and
interactivity of the components at massive scale within
continental scope and low-mid-high orbit space systems.
These innovative space missions can cover space internet,
space aircrafts, and other advanced high-throughput connec-
tivity mechanisms like 6G and InfiniBand optical systems.
These advanced radio signals and mm-to-ultraviolet frequen-
cies are illustrated in Figure 9 [72].

Swarming and end-to-end trust mechanisms can help to
maximize the throughput of each node and the total sys-
tem within the critical system constraints [15] with novel
AI-supported distributed computing system designs as the
core mechanisms. Main characteristics of these features are
summarized in Section. V.B within the detailed comparative

features matrix. Figure 5 illustrates the categorization of these
emerging networking and communication technologies with
a range-based classification approach. Advanced communi-
cation and future networking systems will be considered in
future related works. In this survey, the focus is on distributed
computing paradigms and principles of emerging intelligent
systems.

3) TRUST: END-TO-END TRUST MECHANISM JUSTIFICATION
FEATURES AND INDICATORS
Trust paradigms are widely explored in technical and human
science disciplines. Since our focus is on technical concerns
with distributed computing scientific paradigms and com-
munities, the categorization and futures are selected from
the computing perspectives of a system with a set of nodes
Ni : {No,N1,N2, . . . ,Nn,. In this way, the continuous growth
acceleration of an intelligent system can be maximized with
dynamic feedback structures [5]. These justification features
can be categorized into four main groups: (1) Performance,
(2) Run-time monitoring, (3) Security, and (4) Test-based
features and indicators. This chapter will explain these justifi-
cation features by using a selection of the main related studies
in the literature.

a: PERFORMANCE
Performance elements are the key metrics for the justification
features and defined trust indicators. These can be measured,
quantified, and monitored from many perspectives. In order
to focus the indicators on distributed computing domains and
improve the feedback control structure of the generic mech-
anism, we can address and focus mainly on the scalability,
elasticity, connectivity, and energy efficiency features of the
nodes and total system.

Thereby, the rationality and performance features of
AI/ML methodologies can adapt to the dynamic context [13]
and (near) real-time threshold constraints, and ensure the
interactivity of mobile agents. This chapter explains the
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identified performance elements of these trust justification
features.
a. Scalability, Elasticity, and Connectivity Limits: Total

number of nodes and users in the system
The scalability, elasticity, and connectivity features of a

node can be identified as basic features of the performance-
measuring approaches in system sciences. These are mea-
sured with number of nodes, users, data volume, and other
system/algorithm level computational scalability limit met-
rics [5]. The approach has been widely applied with AI
methodologies, such as distributed AI and multi-agents in
many industries. For example, telecommunication systems
became data intensive and improved with scalable system
design paradigms [16]. Thanks to the advances in data-
processing technologies, these features can be queried in real
time and correlated with knowledge bases of the systems with
dynamic holistic views [15]. The challenges will be discussed
with a comparative feature analysis matrix in the next chapter.
b. Energy Efficiency: Average energy consumption of

nodes and critical transactions
Dynamic management of system resources and physical

capacity features requires both hardware and the physical
layer monitoring of the units in real time. Energy efficiency
average consumption value is the key capacity metric for the
interactivity features of the mobile agents for the required
power constraints. A novel system abstraction approach can
enable the physical layer parameter/metric monitoring to be
extended to ensure interactivity and adaptivity in near or near
real-time [5].
c. Energy Efficiency: Average EMF (v/m), SAR(w/kg),

Power(W) environment friendliness
Emerging networking/communication systems like 5/6G

can enable the implementation of novel features of the AI
methodologies, such as real-time massive scale analytics.
However, this triggers risks pertaining to human health,
include cancer, COVID-19, etc. [73], [74]. These challenges
can be mainly identified and are rooted in EMF, SAR, and the
power features of the nodes. In order to be able to justify trust
in a dynamic context, these features have to be monitored in
real time with the local/global regulative constraints. Thanks
to the holistic view [5] of innovations in emerging com-
putational ecosystems, this can also be achieved within the
regulative constraints and it is discussed in the next chapter.

b: RUN-TIME MONITORING
In order to be able to maintain overall performance;
dynamically justified trust features, the growth progress
of the systems, and other trust indicators have to be
monitored continuously. Active and passive systems have
different constraints and limits, which trigger diverse chal-
lenges in distributed computing paradigms. AI methodol-
ogy approaches can be improved to satisfy the need of
the active system constraints at run-time with dynamic
approaches. Trust features and indicators can be guaran-
teed for machine-learning systems [18] and distributed AI

techniques [8]. Programming approaches like probabilis-
tic/concurrent [20], dynamic/differential [1], [18] can enable
knowledge bases and data states to be updated at run-time
coherently. Therefore, the justification features can be trained
and updated dynamically for a continuously growing mech-
anism. We focus these challenges on distributed computing
and caching policies in the next chapter discussions. This
chapter is a brief on data-state tracking/transitions for an
efficient end-to-end feature embedding/manipulation mech-
anism of a running system.
a. Data-flow monitoring: Data state monitoring between

applications
Data is the fuel and most valuable asset for the emerging

intelligent systems [42]. It is the critical element of the justifi-
cation features to ensure the integrity of the mechanisms and
systems. Each state-change has to be tracked andmanipulated
during the whole lifecycle of the data. Emerging AI technolo-
gies can improve data challenges [30] with novel end-to-end
paradigms and scientific improvements in the field. Improved
ML systems can also help to improve knowledge bases and
are dynamically generated up to data-state dependencies [2].
However, the training process is not only required for data
states, it also has to be mapped to the pipelining [3] and
feedback mechanisms of system nodes with trust indicators
[4]. The features that can help to justify trust are discussed in
the comparative matrix table in Chapter 4. B.
b. Transaction-Flow Monitoring: Transaction lifecycle

monitoring
The diversity and heterogeneity of the emerging systems

require decentralized and distributed designs to be able
to ensure the growth of the mechanism [30]. Distributed
computing paradigms are core features for managing the
resources and mapping the data and computation where nec-
essary. Swarm intelligence techniques at the algorithm and
system levels can help to resolve the challenges and complex-
ities that trigger swarm behavior in emerging intelligent sys-
tems [2]. Novel designs for control structures and abstraction
hierarchies [5] can help to embed trust justification features
and ensure continuous growth with the necessary updates at
runtime with real-time threshold values. Thereby, transaction
life-cycle can be monitored dynamically and failures can be
recovered with minimum latency via the feedback controllers
and holistic views. These featureswill be discussed in the next
chapter.
c. Trust Monitoring: Periodical trust verification
Technical and human science concerns around trust mod-

eling are critical paradigms and features for the justification
mechanisms. Our focus will be on technical concerns of trust
with distributed computing principles and paradigm chal-
lenges. In order to improve the quality attributes with user-
level measurement metrics, we can consider the regulative
aspects of the trust issues. Emerging trends like explainability
features [32] can provide growth acceleration metrics, and
these can be improved with lineage-tracking features [15].
Furthermore, these features are strongly dependent on the
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secure execution of the monitored transactions. In [118],
authors explored and improved hardware-based SEE (Secure
Execution) with a Trusted Execution Environment (TEE)
concept. Storage and user interfaces are identified as critical
features and compared with some of the available technolo-
gies like ARM TrustZone-based TEEs.

However, these features have (near)real time interactivity
constraints with diverse system components. For this reason,
hardware isolation and separated kernels are far from achiev-
ing these latency, interactivity and scalability thresholds.
Fortunately, dynamic holistic views can help to maximize
the trusted scalability of the emerging AI Systems [28,29].
Additionally, holistic abstraction paradigms [5] can also help
to measure and quantify trust with a trust factor coefficient-
based throughput maximization approach as an extension
to Amdahl’s notation. Thereby, trust can also be verified
periodically with the identified trust justification features.
From a system-level perspective, the trustworthiness features
of AI/ML principles [6], [7], [8], [33], [34], [36] can be
interpreted as basic structures of feedback and other mechan-
ical/digital control loops for the growing mechanisms [5].
Furthermore, the uncertainty of the harsh conditions [75] can
also be measured and quantified at run-time as calibration
metrics [15].

In order to obtain measurable and quantifiable met-
rics for trust concerns, we will keep the focus on
regulative features, such as EMF/SAR/power values for
health-care limits, privacy of data etc. with local/global
perspectives [10], [76], [77]. These are the critical metrics
of the massive-AI system justification features for real-time
alerting and risk prediction algorithms [6].

Risk predictions can also improve the scalability limits
of large-scale optimization algorithms [10] at run time [5].
Therefore, trust performance and node regulative constraint
thresholds can be justified and can help to improve the growth
of the mechanism by ensuring the behavioral integrity of
the total system. Next chapter summarizes and discusses
the scope of the technical concerns with trust measure-
ment and quantification perspectives in distributed comput-
ing paradigms with AI/ML pipelining features of growing
intelligent systems.

d. AI/ML Pipelining: Dynamic knowledge base monitor-
ing and update

Dynamic contexts, in which mobile agents and system
components interact, require real-time updates in different
system layers, data models, and most critically, knowledge
bases for critical decision-support mechanisms. In order to
be able to justify the trust features and indicators, interac-
tivity of mobile agents has to be ensured with distributed
computing paradigms and challenges. System acceleration
units and algorithm level improvements can be designed for
these purposes [11]. In order to be able to manage the system
resources dynamically for the changing context parameters,
AI/ML pipelining mechanisms can be designed [78] with
novel digital control structures [79]. Swarming approaches

are also useful for mission-critical constraints of the growing
smart systems. Resiliency, robustness, durability, locality, and
anti-fragility features [5], [80] are critical features of the trust
justificationmechanisms for the trusted computing units [37],
which are explained in the next chapter.

e. Run-time feature embedding and interaction: Data
fetching at run-time to knowledge bases

Previous sections introduced background information on
the intelligent-system growth mechanisms. Some additional
advanced system features can be explored in terms of trust
justification features with technical concerns with a focus on
distributed computing paradigms. Sensor-based approaches
with wireless/visual detection/actuation interactors are
promising for dynamic and fully-automated/autonomous
designs. Detected features can be integrated within the lim-
its of current networking/communication technologies [81].
Dynamic heuristics [82] and knowledge bases can be trained
dynamically with critical-system constraints of massive AI
systems [15]. Multi-layer neural networks and tree structures
with different data structures can improve the interactivity
and performance of training [119], [120].

Other critical feature sets like data poisoning, backdoor
attack can also be monitored to improve the data collection
process of training transactions [121]. The features can be
extracted dynamically within the critical data sets like fin-
gerprint images and can be embedded into other knowledge
bases and used for critical missions like spoof detection
[122]. Furthermore, privacy-preserving deep learning models
with homomorphic encryption and chain structures can be
designed. However, these feature definitions and interactions
are limited due to computational scalability and critical sys-
tem design constraints [5]. Emerging hybrid-cloud and dis-
tributed computing design paradigms can help to maximize
total system throughputs in order to handle the limitations
in a trusted scalable manner [29], [117]. The challenges
and future directions will be summarized in a comparative
analysis matrix in Section. IV B.

c: SECURITY
Security is also a critical system constraint for the justifiable
trust features. Security concerns for distributed computing
paradigms cover a wide scope from physical protection to
digital security mechanisms. The trust features can be jus-
tified with digital security design principles for any system
with the set of nodes Ni : {No,N1,N2, . . . ,Nn,. Therefore,
we can limit the scope to digital security concerns. Justifiable
trust features can be ensured by improving system think-
ing paradigms [83] and artificially intelligent cyber-security
mechanisms [84]. Adaptive protocols for dynamic contexts
with checksum verification-based approaches can justify the
trust features and indicators [5] dynamically. Next chapter
will discuss the details of these features and future challenges.
In this section, we will introduce the basic principles of
context awareness and trusted computing paradigms.
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FIGURE 9. Frequency spectrum paradigm shift by communication and sensing features (3 kHz–30 PHz) [72].

a. Context aware dynamic adaptiveness: Event-based
secure connection policies and protocols

Context change detection/actuation and correlation extrac-
tion between the system resource allocation abilities are
increased with the capacity improvements of computing
technologies. Event-based abstraction approaches can adapt
to change and reconfigure the required trust justifica-
tion features with the available policies and protocols [5].
Context-aware computing paradigms can distribute comput-
ing and process/extract the required features at the edge
or on mobile units [27] with trusted computing mecha-
nisms [37]. Furthermore, the bandwidth limitations of com-
munication systems can also be made trusted with secure
channels/interfaces [81], [85] and the interactivity of agents
and nodes can be ensured for continuous growth [15]. Next
chapter introduces checkpoint and verification approaches
based feature for dynamic context change.
b. Context aware dynamic adaptiveness:Dynamic pack-

age check-sum verification
Thanks to the growth of distributed computing mecha-

nisms, transaction flows can be verified at available check-
points with dynamic package monitoring approaches to
extract the required metric with sets of justification features.
Package checksum verification approaches can verify the
integrity check mechanism [5], and this can be applied to
generic IT core mechanisms with end-to-end paradigms [15].
By that means, targeted justification features of the related
context can be extracted dynamically within the edge units
and merged the transaction flows at (near)-real-time. There-
fore, we can rely on and limit the scope to package check-sum
verification approaches to justify the defined trust features,
which are summarized and discussed in the comparative
matrix in Chapter 4. B.

d: TEST
Testing is also a de facto component for the system
design lifecycle. Continuous testing mechanisms (black box,

white box, grey box etc.) can detect anomalies and future
risks with digital twins of the system units for continuous
growth-assurance paradigms. Performance metrics are the
key elements of trust justification features for both techni-
cal and human-level trust justification features. Behavioral
anomaly detection/reaction-based monitoring approaches
can detect/recover potential risks within the critical system
design constraints [80]. Therefore, we can limit the testing
scope to verification and confidence-building approaches.
a. Verification (survey, benchmarking, expert): Formal

verification with regulative and technical standards
Verification mechanisms are part of the holistic sys-

tem lifecycle for distributed computing paradigms. These
challenges can be defined and categorized as software
engineering [46] paradigms with system design per-
spectives. Therefore, the necessary quality attributes can
be defined/tracked/monitored as performance indicators.
In order to make the approaches dynamic and adaptive to
changing contexts, we can limit the scope to check-point
controller and feedback mechanism principles for continuous
growth assurance concerns. Detailed features are summarized
in the next chapters with the comparative matrix tables. Rest
of the chapter briefs about the selected trust justification
features of the testing and verification mechanisms of the
growing intelligent systems.
i. Dynamic check-point locating with feedback con-

trollers and optimization: End-to-end holistic check-
point structures

Improvements in the distributed computing can enable
packages to be processed at the edge or using mobile units
as discussed in previous sections. Feedback controllers can
be correlated with the total system performance and each
system unit’s throughput values can be correlated dynam-
ically with the behavioral anomalies for feature extrac-
tion/detection/reaction mechanisms [5]. Novel structures and
holistic abstraction approaches can be implemented on the
edge devices and used to build end-to-end TEE. Dynamic

55324 VOLUME 10, 2022



M. A. Ağca et al.: A Survey on Trusted Distributed Artificial Intelligence

optimizers can be merged as critical supplementary compo-
nents with respect to the context dependencies.

Therefore, the system can ensure growth acceleration and
improve the performances of the mobile units and agents with
the trust justification mechanism via the holistic views, which
provides dynamic feedback for the continuous growth of an
intelligent system. Critical feature sets are summarizedwithin
the comparative matrix in Table. 3. B.

ii. Resiliency and robustness monitoring with holistic
views and feedback controllers: Data-driven dynamic
control structures for monitoring mechanisms

User-level concerns are also critical metrics for the trust
justification features at the technical and human/socio-
dynamics levels. Resiliency and robustness features can be
tracked with semantic or graph-modeling approaches, which
are used to represent and visualize [43], [44] the correlations
between the entities. These features can be named and gen-
eralized as conceptual modeling [42] and monitored with a
holistic end-to-end trust mechanism [15] as part of the generic
IT core structure. Thereby, it can used to monitor regulative
constraints in related contexts to observe the identified thresh-
olds and improve train sets of alerting mechanisms.

These features can be improved with scenario-based strat-
egy planning paradigms [45]. Therefore, trust justification
features can ensure the acceleration of the growth of the sys-
tem with the monitored performance indicators and quality
attributes of resiliency and robustness features with dynamic
controllers and testing operations/processes. Table. 3 gives a
summary of the identified features and emerging challenges
to ensure the continuous growth of the intelligent systems.

b. Confidence-Building: Trust and confidence measure-
ment/quantification in intelligent systems

Trust can be defined as the behavioral integrity of a system,
that is, the system behaves as expected at all times, in com-
puting paradigms and sciences [37]. Human/socio-dynamics
level concerns can be limited to regulative legal metrics with
IT audit paradigms. Socio-dynamical visions can help us to
understand changing requirements and contexts dynamically
and provide continuous feedback on the defined/monitored
trust justification features to accelerate the growth progress
of the intelligent systems.

Building confidence in these systems also requires crit-
ical constraint feature predictions and forecasts for poten-
tial anomalies. This level of confidence can be maximized
with strategy planning and a vision of the future cases and
predictions about the states of the contexts [45]. Therefore,
the trusted mechanisms can keep learning and accelerate
growth continuously with an increasing confidence in the
total system. Regulative legal constraints are dependent on
the digital dynamic operation context and socio-dynamic
regulation within the client context. This field is a future
possible direction and challenge in our research. Next chapter
will elaborate on the user-level monitoring metrics, which
can be identified as critical system threshold values of the
alerting mechanisms. So that, user-oriented critical alerts can

be minimized and confidence can be built with maximum
level. Next chapter briefs about these metrics/parameters.

c. User-level continuous trust measurement: Facial
expressions/body language, behavioral anomalies

In order to retain the validity of the metrics for trust mea-
surement mechanisms in distributed computing paradigms,
these justification features can be improved with novel indi-
cators, such as facial expressions, body language or any other
human-level behavioral anomalies that can be correlated as
sensor units of opinion-mining algorithms [29]. Therefore,
the impacts of socio-dynamical changes can provide dynamic
feedback to the control loops of growth mechanisms via
trusted channels [29], and the interactivity of the mobile units
can bemaximized withminimum latencies and fault penalties
with a dynamic holistic view [5]. These features are observed
dynamically with respect to the identified regulative legal
constraints of the targeted context.

Regulation mechanisms are also disrupted by growth
acceleration and the diverse structure of emerging intelli-
gent systems. Real-time alerting mechanisms are required in
daily life also be able to observe socio-dynamic changes and
make dynamic alerts for the critical risks in the observed
context. Mathematically well-defined structures can enable
us to implement swarming approaches within the agent func-
tions fopt () and maximize the cooperation between the expo-
nentially increasing number of components and exa-scale
data resources [15]. Thereby, measurable metrics of the reg-
ulative legal constraints of observed subject matter can be
visualized within the high-level monitoring dashboards of the
intelligent systems within the intelligence-flow mechanisms.
Figure 4 visualizes the correlation between the end-to-end
trust mechanism and growth-flow structure, which can enable
to build dynamic intelligence flow within regulative legal
constraints of the observed context. Thereby, trust can be
quantified with respect to dynamic legal metrics of the socio-
dynamic metrics and parameters. This field is also a research
domain will be investigated in related future works, in this
survey we will keep focus on behavioral anomaly observa-
tions of the observed context.

On the other hand, data processing capabilities are still
limited by edge device processing limitations and the latency
values of these units. Fortunately, the current state regulatory
standards define the critical constraints, which are emissions,
power limits, and other critical factors. These have an impact
on our health and can be monitored and extracted as trust
justification features in real time or near real time via the
alerting mechanisms. Nevertheless, massive scale deploy-
ment is still limited with scalability concerns at the algorithm
and system levels [5]. These include critical risks for human
health and environmental concerns. These features are also
part of the future research directions. Table. 3 summarizes
major concerns and identifies critical feature sets of trust
justification features to be able to maximize trust in emerging
intelligent systems and minimize socio-dynamic risks within
the identified regulatory legal constraints.
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B. COMPARATIVE MATRIX

TABLE 3. A. Related works. B. Trust justification features.
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TABLE 3. (Continued.) A. Related works. B. Trust justification features.
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TABLE 3. (Continued.) A. Related works. B. Trust justification features.
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TABLE 3. (Continued.) A. Related works. B. Trust justification features.

C. RESULT ANALYSIS
As a brief summary to the explored research challenges iden-
tified in the previous section, we emphasize major concerns
and express a strong interest in the trusted distributed AI
mechanism with the identified justification features. The fea-
tures and indicators of the end-to-end trust mechanism can be
listed as below.
• Performance
• Scalability, Elasticity, and Connectivity Limits:

Total number of nodes and users in the system
• Energy Efficiency: Average energy consumption

of nodes and transactions
• Energy Efficiency: Average EMF (v/m), SAR

(w/kg), Power(W) environmental friendliness
• Run-time Monitoring
• Data-flow monitoring: Data-state monitoring

between applications
• Transaction-Flow Monitoring: Transaction life-

cycle monitoring
• Trust Monitoring: Periodical trust verification
• AI/ML Pipelining: Dynamic knowledge-base

monitoring and update
• Security
• Context-aware dynamic adaptiveness: Event-

based secure connection policies and protocols
• Context-aware dynamic adaptiveness: Dynamic

package checksum verification
• Test
• Verification (survey, benchmarking, expert):
• Dynamic check-point locating with feedback

controllers and optimization
• Resiliency and robustness monitoring with

holistic views and feedback controllers
• Confidence-Building: Trust and confidence mea-

surement/quantification in smart systems
• User-level continuous trust measurement: Face

mimics/body language, behavioral anomalies.
The main categories of these features and indicators

identified are: (1) Performance (2) Run-Time Monitoring

(3) Security (4) Test-based dynamic metrics. These can build
the end-to-end trust mechanism with technical computing
paradigms and user-level concerns. The rest of the section
will provide information on the main related works identified
that introduce the emerging challenges.

The reviewed literature shows that distributed AI has
been investigated in many domains, such as telecommuni-
cation technologies [16]. It has been merged with multi-
agent systems as a joint approach for complex system [17]
design. Trust features are also explored for the AI/ML
paradigms, which are [18] Fair, Explainable, Auditable and
Safe (FEAS), to be explored in different stages of a sys-
tem lifecycle, with each stage forming part of a Chain of
Trust. Formal definitions of trust are also elaborated widely
in literature [4], [19]. The mechanisms are improved with
ML and statistical perspectives to cover data management
challenges [2] with end-to-end pipelining mechanisms [3].
Programming paradigms, such as concurrent [20], probabilis-
tic/dynamic/differential [1] are also explored to adapt the
mechanisms to change in a dynamic context.

Performance modeling paradigms are widely discussed
in the literature. For instance, an acceleration framework
is proposed for the performance increase of distributed
machine-learning algorithms. Noises, such as straggler
nodes, system failures, or communication bottlenecks are
identified and elaborated with a coding theory technique to
provide resiliency in different engineering contexts [11]. The
authors state a bandwidth reduction gain of O(1/n) from the
fundamental limit of communication rate for coded shuffling.
Another current problem identified is to find an information-
theoretic lower boundary for the rate of coded shuffling.
AI methods have been reviewed for robot teaming and human
cooperation methodologies. Mobile robotic communication
and swarm UAVs will be explored with CNN and RNN
methods for the data processing of the obtained image/video
data [78].

AI techniques are proposed for challenges of mission-
critical autonomous software. Novel abstraction paradigms
are identified as a requirement in order to reduce the com-
plexity of swarm systems. The heterogenous structure of
emerging intelligent swarms is identified as a challenge
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for system behavior monitoring and verification. Require-
ments in engineering, nontrivial learning and planning, agent
technology, self-modifying systems, and verification tech-
nologies are emphasized as future challenges for critical
swarm mission autonomous software [79]. Formal methods
and techniques are explored for the verification, validation,
and assurance of future swarm-based missions, such as the
ANTS (Autonomous Nano Technology Swarm) mission.
It has 1,000 autonomous robotic agents designed to cooper-
ate in asteroid exploration [80]. Its non-deterministic nature,
high degree of parallelism, intelligent behavior, and emergent
behavior, and new kinds of verification methods remain to be
explored. Formal specification language to predict and verify
the emergent behavior of future NASA swarm-based systems
is currently being designed and developed.

In order to have a comprehensive overview of the chal-
lenges, it is proposed to limit the scope to the system-
level thinking process for AI systems [83]. Comprehensive
transdisciplinary approaches are proposed, which include
Axiomatic Design (AD), AI/ML techniques, and Information
Theoretic Methods (ITM) to reduce risks and complexities
by improving cyber-system adaptiveness, enhancing cyber-
system learning, and increasing the cyber-system prediction
and insight potential [84]. The growth perspectives of the
mechanisms are another research direction [27] in context
awareness surveyed from an IoT perspective, and include
techniques, methods, models, functionalities, systems, appli-
cations, and middleware solutions. The growth progress of
context-aware computing, from desktop applications, web
applications, mobile computing, pervasive/ubiquitous com-
puting to the Internet of Things (IoT) is explained. There-
fore, trusted computing paradigms can help to ensure the
behavioral integrity of the mechanisms, in which trusted
computing, trusted platforms, and trusted systems are defined
as the system components which behave as expected for all
transactions [37].

These challenges for the mechanisms can be identified
in a nutshell as major points. Key challenges for emerg-
ing smart-system mechanisms are identified as computing,
communication, and control. In order to ensure resilience
against manipulation threats, the other research directions
concern end-to-end trust mechanisms (integrated view of the
three pillars: networking, processing/optimization, as well as
security) and swarm controller methods guaranteeing safety,
which aim to enable the trusted scalability of the swarm
systems. These features are called CCAM Connected, Coop-
erative, Autonomous Mobility) as generalized use/business
cases [15]. Chapter. V briefs on these emerging features and
discusses the challenges with a focus on the last ten years
between 2011-21.

V. DISCUSSION AND CHALLENGES
Previous sections presented a comprehensive scientific
background on emerging intelligent systems with a focus
on TDAI concept and trust justification features. Poten-
tial research directions and challenges are also discussed

in detail from a historical perspective. In this section,
these features will focus on the challenges between
2011-21, and potential directions will be summarized in
Table. 3.

Intelligent systems require more elaboration on distributed
computing principles and paradigms to improve the identified
challenges. Based on the explored literature, we can say that
the system resource management principles and AI system
perspectives introduced in previous sections can enable con-
tinues growth for smart-system mechanisms with the set of
nodes Ni : {No,N1,N2, . . . ,Nn,. Thus, critical features like
robustness, resilience, reliability, and trust of the nodes can
be ensured. We can identify the research challenges and AI
systems research studies with the four main questions below:

• How can trust in distributed systems be mea-
sured/quantified/justified?

• How can the trusted scalability of autonomous sys-
tems be enabled?

• How can trust for swarm intelligence mechanisms be
ensured?

• How can swarm system units with a search and
mining focus be manipulated to implement trusted
distributed AI methodology in real time?

These questions can help us to understand how to build
a growth-flow mechanism for emerging intelligent systems,
which have dynamic and untrusted contexts. For this reason,
the trusted distributed AI methodologies need to be imple-
mented to maximize confidence and accelerate the growth
of intelligent systems. Table. 3. summarizes the recent chal-
lenges and require main feature sets and is followed by
the conclusion with a focus on the distributed computing
principles and paradigms of the identified trust justification
features.

An intelligent system with of nodes Ni : {No,N1,N2, . . . ,

Nn, which have critical selected features can be categorized
into five main groups as in Table. 3:

- Trusted scalability and elasticity for throughput maxi-
mization

- Resilience to adversarial/adversarial threads
- Simulation-based validation and verification with digital
twins or limited context simulations

- Monitoring with holistic views of the system
- Thread detection and reaction with dynamic feedback
controllers for continuous growth flow.

As summarized in Table. 3, state-of-the-art approaches
investigate the challenges with disruptive system-level inno-
vations. For instance, a data-centric operating system is
proposed with limited features [106]. Higher-throughput
lower-latency features are also studied with protected data
planes [107]. The approach has triggered paradigm switches
on transaction definitions and implementations, such as
a device [108] is proposed for a secure transaction with
advanced feature sets like dynamic feedback controllers.
Although trusted scalability remains an open issue but novel
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TABLE 4. Artificial intelligence system state-of-the-art and main research challenges between 2011–2021.
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TABLE 5. Summary of future directions.
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holistic abstraction approaches [5] can help maximize the
throughput of nodes and total systems.

AI-driven system modeling is also a hot topic, espe-
cially for decentralized and distributed systems [109].
Adversarial/un-adversarial thread monitoring and transaction
approval approaches [110]–[113] also promising to minimize
system-level anomalies and failures in (near)-real time. Quan-
tum computing and quantum cryptography features [114] are
becoming a critical challenge and feature for the growing
intelligent systems. Simulation-based digital twins are [115]
widely implemented to minimize potential future failures and
improve knowledge bases and training sets.

In a nutshell, we can say that decentralized and dis-
tributed designs enable us to implementmassive-scale AI/ML
algorithms within the growing intelligent systems as hybrid
clouds [116], [117] with novel accelerator components,
as indicated in Table. 3. The next chapter summarizes these
challenges and main findings and introduces potential TDAI
research fields.

VI. CONCLUSION
A. SUMMARY OF THE MAIN FINDINGS
As a brief conclusion of the research challenges explored,
we ascertain that TDAI is seen as amissing, and as yet, largely
unexplored area. Critical feature sets can be summarized as
illustrated in Table.2, that is: (1) trust measurement and quan-
tification (2) trusted scalability (3) trust assurance (4) swarm
manipulation (5) system and user behavior monitoring. The
feature sets identified can help to ensure the continuous
growth of the intelligent systems, which are core mechanisms
of emerging smart ecosystems, with software-driven dynamic
systems to ensure adaptiveness and flexibility in a dynamic
context, rather than hardware-dependent designs. Thereby,
the trust factor of the system, P (x∗) ∝ t with the set of
nodes NE:{N1, N2, N3, . . . , Nn} can be increased to maxi-
mize the throughput in the well-defined dynamic context with
the adaptive agent function fopt (). The critical feature sets
selected in Table.3.B can be considered as the key elements of
the end-to-end trust mechanism for the continuous growth of
intelligent systems. The better the features justified, the faster
the growth for the dynamic objectives of the mechanisms is
ensured.

The challenges summarized in Tables.2 and 3 briefly
introduced potential research directions. Architectural design
principles are critical concerns for the novel innovations
in the growing context. Decentralized approaches can build
autonomous/embedded/local components with basic func-
tionalities like swarm manipulation. In order to improve the
components with trusted scalability and monitoring features,
end-to-end fully connected channels are required. Centralized
designs can guarantee these features with respect to end-to-
end latency limits. Identified advanced justified functional-
ities are required for the novel futuristic designs, which are
possible with the distributed design paradigms, which include
edge/hybrid/hierarchical/multi-layer features with emerging
holistic abstraction principles [14], [15], [31]. These features

and research challenges are also included in the growth-flow
of the emerging intelligent systems with advanced trusted
AI capabilities. Next chapter introduces potential research
challenges and future directions within a summary table.

B. POTENTIAL TDAI RESEARCH FIELDS
Disruptive innovations proposed for growing intelligent sys-
tems trigger acceleration to obtain an end-to-end fully
trusted execution environment, which can be operated in the
distributed context within the limits of critical systems con-
straints. However, the limitations of the decentralized com-
ponents can only provide basic functionalities, like swarm
manipulation features. These features can be improved with
decentralized designs and hybrid mechanisms for the recent
challenges. Table.5 introduces major points from the related
works and reviewed literature between 1950 and 2021, with
a focus on recent years. These challenges remain open
issues to be explored in detail to obtain a fully trusted
execution environment for growing intelligent systems with
dynamically correlated and observed socio-dynamic features,
which mainly focus on the regulative legal measurement met-
rics of alerting methodologies. These identified challenges
will be investigated in detail in future related works.

In the TDAI research field, we identify the following
emerging areas as being of increasing interest within the
distributed computing communities:
• Trust measurement, quantification, and justification
in distributed systems and its underlying diverse
components.

• Trusted scalability of autonomous systems with algo-
rithms and system levels with end-to-end holistic views.

• Trusted architecture mechanisms (e.g. Machine Learn-
ing) with novel abstraction approaches of end-to-end
paradigms.

• Real-Time swarm manipulation to implement trusted
distributed AI methodology.

The challenges and future directions identified in this
survey can be defined as key features and milestones for
massive scale trusted AI. Thereby, an intelligence flow can
be assured for growing intelligent mechanisms via end-to-
end trust mechanisms, which have TEE based trusted inter-
action with the environments within the smart-ecosystems
and dynamic contexts. The more features justified within the
critical systems constraints, the more trust can be obtained
with TDAI for the growing intelligent systems.

On the other hand, in spite of the major progress made
in computing systems with distributed design innovations,
there are still challenges for the critical system constraints
for the continuous growth of the intelligence systems. For
instance, in [37] experiments have recently reported with
trusted computing paradigms in real life use-cases. In [81]
high throughout mobile and wireless communication tech-
nologies have recently been replaced with tethered ones.
More critically, [117] HPC limitations are still set to be
improved with modern AI/ML frameworks with hybrid cloud
design paradigms.
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Table.5 gives the summary of the major parts of the identi-
fied future directions. Fortunately, defined architectural per-
spectives (central, decentral/autonomous, distributed/hybrid)
for emerging trusted distributed AI mechanisms can enable
to ensure resiliency and robustness in a dynamic context with
an end-to-end TEE for growing intelligent mechanisms and
systems. Furthermore, the trust measurement, quantification,
and justification methodologies can be applied in emerging
distributed systems and their underlying diverse application
domains with TDAI, which will be explored and experi-
mented in our related future works.
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