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ABSTRACT Wepresent a new, accurate, low complexity channelmodellingmethodology for LiFi in realistic
indoor scenarios. A LIDAR scanner is used to capture the 3D environment in which the LiFi system is to be
deployed. Next, the generated 3D point cloud data is pre-processed to determine the reflectance parameters
of the walls and objects in the room. This is easier and more realistic than the manual definition of the
environment, which is the current state of the art. As an additional innovation, the complexity of the channel
modelling is reduced by: 1) modelling the line-of-sight and initial reflections precisely in the frequency-
domain; 2) using a well-established analytical model based on the integrating sphere for all higher-order
diffuse reflections. All steps together yield a substantially simplified channel modelling approach and model
the links between multiple optical frontends and multiple mobile devices realistically. As a validation of our
new approach, we comparemeasurements and simulations in two indoor scenarios: an empty room and a con-
ference room with furniture. Simulations and measurements show excellent agreement with a mean square
error below 3 percent. Moreover, we evaluate the performance of a distributed multiuser multiple-input
multiple-output (MIMO) link and found excellent agreement between the model and measurements. Finally,
we discuss the fundamental trade-off between complexity and model error, which depends on the scenario.

INDEX TERMS Channel measurements, channel modelling, LIDAR, LiFi, MIMO, mobility, optical
wireless communication.

I. INTRODUCTION
Light-Fidelity (LiFi) is a wireless communication technology
operating in the optical spectrum, which is mainly useful for
indoor applications [1]. It is anticipated that, besides humans,
numerous devices will soon be connected wirelessly in the
so-called Internet of Things (IoT) [2]. LiFi may be a good
candidate for future IoT applications because it provides a
very dense network of wireless access points, which can
reuse the optical spectrum very frequently [3]. Additionally,
the signal propagates mostly via the line-of-sight (LOS),
can only be received inside the light beam and does not
penetrate through walls. For these reasons, interference can
be better controlled compared to radio links. Thus, LiFi has
high potential to enable reliable, secure, and high data rate
wireless connectivity [4]. However, the deployment of LiFi
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in indoor scenarios is challenging because the LOS can be
blocked. Such blockages can be overcome by communicating
simultaneously with multiple wireless access points. More-
over, diffuse multipath reflections from walls and objects in
the environment could be relevant for the system design and
evaluation [5].

Channel modelling is an important step when designing
any new communication system. A comprehensive under-
standing of the channel is needed to develop efficient com-
munication techniques and to optimize, evaluate and compare
the performance of different system design approaches [6].
A LiFi channel model delivers channel responses and link
parameters in the considered indoor environments and rep-
resents the influence of the channel on the received signal
quality. The LiFi channel model depends on the electro-
optical parameters of the optical frontends, the transmitter
and receiver positions and the geometrical and optical prop-
erties of the walls and all other objects in the room.
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Several channel modelling methods were already
introduced for LiFi, which can be mainly classified into
deterministic [7]–[12] and stochastic approaches [13]–[15].
Deterministic models depend on architectural plans of the
environment and on the position and orientation of transmit-
ter (Tx) and receiver (Rx). Stochastic models are generic,
non-site specific and parameterized according to the mea-
surements taken in specific Tx, Rx, and scattered environ-
ments. The stochastic approach is much simpler and useful
because of its reduced computational complexity. Determin-
istic models, on the other hand, are more realistic and include
real-world effects such as blockages, partial shading of a link
and reflections from nearby objects. In scenarios where the
LOS is usually free, the generic approach may be enough for
modelling LiFi channels. However, in scenarios with a non-
negligible probability of LOS blockage and reflections from
the non-line-of-sight (NLOS) path, a deterministic approach
is useful. The major challenge is to model sufficient num-
ber of channel responses realistically so that the impact of
the environment is fully included. The existing determinis-
tic channel modelling techniques for LiFi are not efficient
enough for these requirements. Another drawback is that
only few LiFi channel models have been validated through
measurements in real scenarios [7], [11], [12].

In the recent literature, there are first approaches to include
objects inside the room [12], [15], where each object (besides
all reflecting surfaces) is currently defined manually. This
is very time consuming and lacks the precision required to
determine the availability of the LOS and to correctly include
blockage in a complex environment. Moreover, the recent
channel modelling approach uses commercial optical design
software, e.g., Zemax R©, which is based on ray tracing [12].
This framework makes it possible to include variable light-
emitting-diode (LED) models and to consider both specular
as well asmixed specular-diffuse reflections.Moreover, it can
include the wavelength-dependent reflectivity of materials.
However, ray tracing operates in the time domain, and follows
each path until it is either absorbed or received. Modelling
multiple-input multiple-output (MIMO) channels and mobil-
ity becomes very complex when using this recent approach.
The major challenge is to reduce complexity, and it can be
decomposed into two parts. First, it is possible to reduce the
effort for the 3D scenario generation. Second, one can reduce
the computational complexity for the channelmodelling algo-
rithm. The present paper introduces new techniques address-
ing both steps to reduce complexity and compares the new
techniques with measurements for validation.

Light detection and ranging (LIDAR) systems are widely
used to scan the 3D environment for planning the deploy-
ment of radio frequency (RF) based mobile communication
systems [16]–[18]. This approach is also applicable for LiFi.
In this paper, for the first time, we use a LIDAR scanner
to generate the three dimensional (3D) environment for the
LiFi scenario. Additionally, one needs to know the reflectance
of the surfaces in the room to predict the LiFi channels.
Therefore, we have developed a technique to estimate the

reflectance parameters of all surfaces directly from the raw
LIDAR data and to convert the point cloud data into a file,
which can be directly used as input for the channel modelling
algorithm. To further reduce complexity, we consider that the
required precision of the 3D indoor environment is related to
the intended bandwidth of the LiFi system. If the intended
bandwidth is low, less time resolution is needed and hence,
the modelling of the 3D environment can use lower spatial
resolution, while more precise 3D modelling is needed if
more bandwidth is targeted. Overall, this approach allows us
to replace the manual definition of objects and surfaces in 3D.
Preliminary results were reported in [19].

Previous studies show that only the LOS and the first one
or two reflections can be identified in the impulse response,
while all later reflections merge into a long exponential decay
due to the diffuse nature of the environment [11]. Therefore,
it is important to model LOS as well as initial NLOS reflec-
tions precisely. In our channel modelling algorithm, we use
the frequency-domain (FD)method to model the LOS and the
initial NLOS reflections [10], which is inherently faster than
comparable ray tracing tools operating in the time domain.
For higher-order diffuse reflections, it creates a nearly homo-
geneous illumination inside the room and the contribution
to the channel can be explained as a first-order low-pass
response as given in [11]. Considering the geometry and the
reflection of all objects and walls in the room, we can cal-
culate the contribution of the higher-order diffuse reflections
using an analytical formula proposed in [11]. This formula
reduces the overall complexity considerably, without losing
accuracy. Therefore, we only model the LOS and the initial
NLOS reflections using FD method [9] and higher-order
diffuse reflections using the integrating sphere model [11].
The new channel modelling algorithm and initial results were
reported in [20].

To validate our approach, we perform channel modelling
and measurements in two realistic scenarios, an empty room
and a conference room. The empty room scenario has few
reflecting surfaces, which is useful for initial testing. How-
ever, in the conference room scenario, the room is filled with
many objects such as chairs and tables. At first, we per-
form LIDAR measurements by placing the LIDAR scanner
at multiple locations in these rooms. Each scanned dataset
is processed, optimized and then merged to obtain complete
point cloud data of the room, which is finally used to generate
the channel responses for all Tx-Rx links. Finally, channel
measurements are performed by keeping Tx and Rx in the
same locations as in the modelling. The results demonstrate
that the simulated channels are in very excellent agreement
with the measured channels. Moreover, we evaluated the
performance by estimating the throughput when operating
the LiFi system as a distributed multiuser MIMO system and
found a good agreement between the model and measure-
ments. Finally, we discuss the trade-off between complexity
and the required precision in practical use cases.

Altogether, this paper shows that the complexity of chan-
nel modelling for dense LiFi networks can be reduced and
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computationally efficient, precise and highly realistic results
can be achieved. The main innovations in this paper are
i) the LIDAR based 3D modelling, ii) an efficient channel
modelling approach for LiFi and iii) the validation by mea-
surements in different scenarios.

The remainder of the paper is organized as follows.
Section II describes the 3D modelling approach using
a LIDAR scanner and discusses the pre-processing for
reflectance parameter estimation from the LIDAR data.
Section III introduces an efficient LiFi channel modelling
methodology. Section IV describes our LIDAR measure-
ment campaigns for capturing 3D environments and the LiFi
channel measurement scenarios and setup. Modelling and
measurement results are compared in Section V. Finally,
conclusions are given in section VI.

II. 3D MODELLING USING LIDAR
Nowadays, LIDAR scanners are commonly used to cap-
ture 3D models of indoor environments for applications
like redesign, visualization, monitoring and simulations
[21]–[23]. To accurately capture the indoor environment, the
LIDAR scanner is placed at multiple locations [24]. In this
paper, we used this common approach to capture the 3D
environment with a Leica RTC 360 scanner. The captured
point cloud data from each scanning location are then pre-
processed. In this section, we describe the LIDAR data pro-
cessing and the reflectance estimation for the surfaces.

A. LIDAR DATA PROCESSING
The original output data of the LIDAR scanner consist of
(x, y, z) spatial coordinates of the reflected points and the
intensity of the light reflected from each point. Our goal is to
use these point cloud data as input into the channel modelling
algorithm.

Before using this data as an input to the channel modelling
algorithm, the point cloud data needs to be optimized. There
are three major steps after the scanning.

1. Most of the LIDAR scanners have difficulties to detect
transparent and specular reflecting surfaces (e.g. mirrors and
glass surfaces) [25]. In addition, due to dynamic changes in
the environment during the scanning, some of the points can
be scattered. Hence, such noisy points should be removed
from the point cloud data.

2. LIDAR scanners on the market have a resolution down
to below 2millimeter and can record millions of points within
a few seconds. Due to the reduced bandwidth of LiFi systems,
we only need the point resolution in the centimeter range.
Hence, we can significantly reduce the resolution and thus
the size of the point cloud data set.

3. In our channel-modelling algorithm, we need the surface
normal of points as additional information besides the Carte-
sian coordinates. The normal is required to calculate the angle
of incidence of light at each point.

All three steps are well covered research topics in the
literature. There are manymethods to remove the noisy points
[26]–[28], calculate the surface normal [29], [30], and reduce

the resolution of point cloud data [31], [32]. However, as a
proof of concept, we use the open-source software Cloud-
Compare to post-process the point cloud data [33]. In this
software, at first all noisy data are removed, then the point
cloud data set is down-sampled, and finally, surface normals
are calculated. After processing, each data set is exported into
the polygon file format (ply).

B. REFLECTANCE ESTIMATION
For the channel modelling, reflectance of the surfaces inside
the room is needed. Most LIDAR scanners are designed for
range measurements rather than intensity measurements [34].
The intensity information of the point cloud data is based on a
measurement of the electrical signal at the receiver side which
is obtained by converting and amplifying the backscattered
optical power of the emitted signal. This intensity informa-
tion depends on the reflectivity of the surfaces, the distance
between the laser source and the target, the angle of incidence
of the laser beam with respect to the surface normal and the
amplifiers inside the LIDAR device [35]. Hence, intensity
needs to be corrected by removing those dependencies and
evaluate the reflectance for each target point [36]. Imple-
menting and testing an appropriate method for reflectance
calculation is a major contribution in this paper.

Radiometric correction is the term for the process of con-
verting the raw intensity data to a value proportional to the
surface reflectance at each scanned point [35]. Recently, dif-
ferent correction methods have been introduced to evaluate
the reflectance from the raw intensity data [35]–[37]. Since
the LIDAR scanners internal variables are unknown, e.g. laser
and receiver temperatures, most of the existing methods only
correct the effects due to geometrical parameters such as the
distance and the angle of incidence. Therefore, it is only
possible to obtain a pseudo-reflectance, which is an increas-
ing function depending on the reflectance of the surface
points [37].

Radiometric correction methods are mainly divided into
two approaches: model-driven and data-driven. The model-
driven approach is based on a theoretical model, the so-called
LIDAR range equation [37]. The data-driven approach is
based on quantified observations of the intensity measure-
ment, which is more adaptive and suitable for the correction.
Here, we follow the data-driven approach to calculate the
pseudo-reflectance of the scanned points.

We follow the approach in [38] to evaluate the pseudo-
reflectance from the intensity data. In this method, the mea-
sured intensity is expressed as three separable functions,
which cover the effects of reflectance, angle of incidence and
distance. Therefore, the intensity recorded by the LIDAR can
be expressed as:

Iraw (ρ,D, α) = F1(ρ) · F2(cosα) · F3(D), (1)

where ρ is the reflectance varying from 0 to 1, α is the
incidence angle of the laser beam with respect to the target
point, and D is the distance from the laser source to the target
point. The functions F1, F2, and F3 is given in more detail in
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FIGURE 1. Experimental setup for intensity correction: (a) Three
Lambertian targets with a size of 10 × 10 cm2 and reflectance of 20%,
50%, and 80% are mounted on a board. (b) Lambertian targets at 1 m
distance with respect to LIDAR scanner. (c) Lambertian target with a size
of 5 × 5 cm2 and reflectance of 99% kept at (d) 1 m distance with respect
to LIDAR scanner.

equation (10) in [38]. From the measured intensity value (1),
the effects of attenuation due to the distance and the angle of
incidence should be corrected. Therefore, functions F2 and
F3 need to be determined. To do so, additional intensity mea-
surements were carried out at different distances and angles
with commercially available reflectance targets. We follow
themeasurement procedure similar to [37]. The objective is to
determine the parameters and coefficients, which control the
functions F2 and F3. Therefore, we consider four Lambertian
diffuse surfaces with known reflectance values 99%, 80%,
50%, and 20%. The 99% reflectance target is of 5 × 5 cm2

size while the 80%, 50%, 20% targets are of 10 × 10 cm2

size. The reflectance value of these targets is calibrated by
the manufacturers in the range between 400 nm - 2000 nm.
The measurement has been done by keeping the targets at
distances between 1 m to 16 m and varying the angle between
0 degree to 70 degree. From the measured data, we gener-
ate a best-fitting polynomial and determine all the required
parameters for F2 and F3 similar as given in [37]. From
these determined polynomial functions, we can calculate the
corrected intensity of the targets as:

Icorr (ρ) = δ ·
Iraw (ρ,D, α)

F2(cosα) · F3(D)
, (2)

where Iraw is the measured intensity and δ = Iraw(5, 0) is
a normalization factor respective to the intensity calculated
for the target kept at 5m at an angle of 0 degree. Using
equation (2), the corrected intensities acquired at the other
incidence angles and distances have been corrected with
respect to 0 degree and 5 m, which has been chosen as the
reference scanning geometry. The corrected intensity can be
expressed as:

Icorr (ρ) = F2 (cos 0) · F3 (5) ·
Iraw (ρ,D, α)

F2 (cosα) · F3 (D)
. (3)

FIGURE 2. Intensity correction results: (a) Raw intensity with respect to
distance for different Lambertian targets, (b) Raw intensity with respect
to incidence angle for different Lambertian targets, (c) Corrected intensity
values of different Lambertian targets with respect to distances,
(d) Corrected intensity values of different Lambertian targets with respect
to incidence angles.

Using equation (3), we correct the intensity of every
scanned point and nullify the effects due to distance and angle
similar as mentioned in [37]. Note that this correction method
is independent of the reflectance of the targets.

Fig. 1 shows the experimental setup for LIDAR intensity
correction measurements using the Lambertian reflectance
targets. The Lambertian targets used in our experiment are
shown in Fig. 1(a) and Fig. 1(c). At first, the targets are
kept at different distances starting from 1 m (see Fig. 1(b) &
Fig. 1(d)) to 16 m with an increment of 1 m, in order to take a
LIDAR scan. In the same environment, we performed further
measurements by varying the angle, while the Lambertian
targets are kept at 5m distance and tilted from 0 degree to
70 degree with an increment of 5 degree.

From the measured 3D point cloud data, the intensity
profile received from each target was extracted by using
the software CloudCompare. Then we calculated the aver-
age intensity for each target at its given distance and angle.
Fig. 2 shows the results after applying the intensity correction
for different Lambertian targets. Intensity as a function of
distance is shown in Fig. 2(a) and as a function of angle in
Fig. 2(b). From these results, all parameters were estimated
the same way as described in [37]. Polynomial regression
orders were chosen in regard of the minimal mean error,
i.e. polynomial order N2 = 2 for angle of incidence, and
polynomial order N3 = 6 for the distance. The polyno-
mial coefficients were normalized in a similar way as men-
tioned in [37]. The normalization constant was chosen at the
50% reflectance curve at 5 m, at an incidence angle of 0◦.
Intensity correction was performed using equation (3) and
finally scaled to the range 0-1. Final corrected intensities
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for different angles and distances are shown in Fig. 2(c)
and Fig. 2(d), respectively. When comparing the corrected
intensities to the ideal reflectance values of Lambertian tar-
gets, the mean square error (MSE) is below 5% for angles
less than 50 degrees and MSE is more than 10% for angles
larger than 60 degrees. With respect to distances, MSE is less
than 2% in most of the cases. These results validate that we
can evaluate the reflectance with minor error by using the
described intensity correction method [37], [38].

In a similar way, using equation (3), the reflectance val-
ues were estimated from the raw intensity data of a 3D
room. Example results for two considered room scenarios are
reported in the Appendix A. Note that, this method can only
detect the diffuse reflectance targets since specular reflections
would saturate the LIDAR receiver.

Finally, all scanned data are merged to get the complete
point cloud data of the room. The data set consists of Carte-
sian coordinates of the scanned points, the surface normal at
each scanned point, and the reflectance value belonging to
each point. This pre-processed LIDAR data set is used as an
input into our channel modelling algorithm.

III. CHANNEL MODELLING METHODOLOGY
In this section, we describe our channel modelling approach
for LiFi by using 3D point cloud data. Modelling is
performed in the frequency domain rather than in the time
domain. Hence, this method delivers channel transfer func-
tions instead of impulse responses. Note that LiFi links are
modelled separately for LOS and NLOS links.

A. LOS CHANNEL MODEL
The LOS channel model is based on the orientation and
optical parameters of Tx and Rx as described in [7]. The
generalized LOS channel model is given as

HLOS (f ) = VTx,Rx · LTx,Rx · e−j2π fTTx,Rx , (4)

where LTx,Rx is the transfer function coefficient between Tx
and Rx which can be described as

LTx,Rx =
1

d2Tx,Rx
· R0(θt ) · Aeff (θr ) , (5)

where R0(θt ) is the radiation pattern of the optical beam from
Tx, Aeff (θr ) is the angular-dependent effective detector area
at the Rx side, θt is the elevation angle given with respect to
the surface normal of the Tx, and θr is the elevation angle
given with respect to the surface normal of Rx [10]. The
coefficient LTx,Rx depends on the field-of-view (FOV) of the
photodiode and the radiation pattern of the optical transmit-
ter [10]. The variable TTx,Rx is the propagation time which
depends on dTx,Rx and c being the distance between Tx and
Rx and the speed of the light, respectively [10]. The visibility
factor VTx,Rx is equal to one if there is a free LOS between
Tx and Rx and zero otherwise [10]–[19]. Since many opti-
cal transmitters and receivers have Lambertian directional

characteristics, we can generalize equation (5) as follows

LTx,Rx =
u+ 1
2π
· cosu (θt ) ·

ARx · cosv (θr )

d2Tx,Rx
, (6)

where ARx is the area of the photodiode, and u, v ≥ 1 are the
lambert indices of the Tx and Rx, which are the measure of
directional properties of Tx and Rx, respectively.

B. INITIAL NLOS REFLECTIONS
We consider the reflecting surfaces as N surface elements.
From the LIDARdata, we consider that each point in the point
cloud data represents the center position of the corresponding
surface element. The average resolution of the point cloud
data defines the size of each surface element. The FDmethod
allows assembling all mutual LOS links between all surface
elements as well as the links between the surface elements
and the Rx and Tx in a matrix form and to compute NLOS
reflections by consecutive matrix multiplications [10].

For a single Tx to Rx scenario, as described in section III
in [10], the entire NLOS channel model can be represented
as

Hdiff (f ) = Rtr (f ) · Gσ ·
M=∞∑
m=0

(
HR (f ) · Pρ

)m
· T (f ), (7)

where m is the reflection order, T (f ) is the matrix consists of
LOS transfer functions for the links from Tx to all surface
elements, Gσ is a diagonal NxN reflectivity matrix, where
each diagonal element σk represents the reflectivity of the k th

surface element, R (f ) is the matrix consist of LOS transfer
functions for the links from each surface element in the room
to the Rx. The intrinsic function HR (f ) of the room is a NxN
matrix where each element HRi,k (f ) in this matrix represents
the LOS transfer function from the k th surface element to the
ithsurface element.
Ourmain objective is to simplify themodelling and achieve

high precision with limited complexity. Therefore, we model
only the first reflections accurately, i.e. we consider M =
1, 2 or 3, where M is the total number of reflections up to
which NLOS channels are modelled using equation (7). For
simplicity, the matrix multiplications in equation (7) can be
calculated in a recursive manner as described in section III.
C in [10].

When compared to the mathematical descriptions given in
section III in [10], we modify the definition of the matrices
T (f ), R (f ), and HR (f ). Each element in these matrices
contains an additional visibility factor (similar to equation
(4)) which defines the visibility in the link. The visibility
factor is equal to one if the link is free and zero otherwise.

For example, an element in the matrix HR (f ) can be rep-
resented as

HRi,k (f ) = Vi,k · Li,k · e−j2π fTi,k , (8)

where Vi,k , Li,k and Ti,k are the visibility factor, the trans-
fer function coefficient and the delay time between ith and
k th surface elements, respectively.
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C. VISIBILITY FACTOR
Visibility analysis in the point cloud data is a vital research
problem in the field of computer graphics, computer vision,
robotics and photogrammetry [39]–[44]. Usually, visibility
is estimated from a certain viewpoint e.g. the camera posi-
tion [40]. The estimation of visibility of a point cloud con-
sists of assigning a label to each point of the scene. The
label marks the point as visible if it lies on an object that
is directly visible from a given viewpoint and non-visible
otherwise [41]. This is a fundamental step in many computer
graphics applications.

There are many methods to estimate the visibility in the
point cloud data such as surface reconstruction methods,
convex hull methods, and likelihood methods [40]. Among
these, use of the hidden point removal (HPR) operator, which
is an example for the convex hull method, is known as a
simple and fast solution with sufficient accuracy [42]. The
advantage of this technique is to avoid creating surfaces from
the point cloud data and to analyze visibility efficiently both
in sparse and dense point clouds. By replacing the viewpoint
with Tx, Rx and surface point locations, we can estimate
which points are visible from each other. Detailed discussion
of HPR based visibility analysis is given in the Appendix B
where we describe the selection of parameter Rs for the HPR
based visibility analysis. From our study, we observe that,
the HPR method estimates visibility for our LiFi channel
modelling applicationwith the lowest computational time and
error.

D. HIGHER-ORDER REFLECTIONS
From our previous channel measurements, we observe that
the higher-order diffuse reflections have all very similar
characteristics and could be considered jointly [45]. It is
intuitive that higher-order diffuse reflections create a nearly
homogeneous illumination in the room and depend more on
the environment than on the orientation of Tx and Rx. This
motivates the use of a heuristic model for the higher-order
reflections. They can be modelled jointly by using Ulbricht’s
integrating sphere model, which has been adapted to regular
room dimensions [11].

In contrast to the microscopic approach described in
section III B, here the macroscopic approach does not include
any details of the room. Rather, an analytic formula for
the channel transfer function is used that depends on basic
parameters such as total surface area, volume and average
reflectance of the room. These parameters can be obtained
from the point cloud data of the room.

The generalized diffuse channel model for the considered
room is given by equation (9) in [11]. Since initial reflections
are calculated using the FD method, we need to calculate
only the higher-order diffuse reflections, which can be cal-
culated by removing initial diffuse reflections from equation
(9) in [11]. The higher-order diffuse reflections are expressed
as

Hdiff high (f ) =
ηdiffH

1+ j2π f τ
ej2π f1T , (9)

where τ is the exponential decay time which is related to the
room parameters and 1T is the delay time, compared to the
LOS, after which the diffuse components arrive at the receiver
side [11]. The variable ηdiffH is the diffuse channel gain. After
excluding the initial diffuse reflections, it can be expressed as

ηdiffH = ρ1
ARx
Aroom

 1
1− 〈ρ〉

−

 M∑
j=1

〈ρ〉j−1

 , (10)

where Aroom is the area of the room surface, ARx is the
area of the photodiode, ρ1 is the average reflectivity of the
region initially illuminated by the Tx and 〈ρ〉 is the average
reflectivity of the room [11].

We consider the delay time 1T is approximately equal to
〈t〉which is the average time between two reflections as given
in equation (13) in [11].We observe that in most of the typical
indoor scenarios1T is less than or equal to 10 ns. This model
provides an approximate result for higher order reflections in
a given room.

Finally, the complete transfer function of the LiFi channel
can be represented as

Htotal (f ) = HLOS (f )+ Hdiff (f )+ Hdiff high (f ) . (11)

Using equation (11), we calculate the channel transfer func-
tion at each sampling frequency f .

E. MIMO AND MOBILITY
For a mobile MIMO scenario, at first, the LOS corresponding
to each Tx-Rx link is calculated using equation (4). Then,
for the first NLOS reflections, we follow the same approach
by using the FD method as given in [10] (see section III. G),
where Rtr(f ) and T (f ) are calculated for each Tx and Rx con-
figuration in the room. In the FD method, the NLOS channel
for a given MIMO scenario is represented by equation (47)
in [10]. It is a general advantage of the FD method that,
for a given scenario, the intrinsic transfer function matrix
HR (f ) of the room is computed once and can be used for
all Tx-Rx links in a MIMO. This helps to further reduce the
computational time. Furthermore, in case of a mobile MIMO
scenariowith fixed transmitters, we only need to updateRtr(f )
corresponding to the varying position of the receivers in the
room.

Due to the integrating sphere method, all results for the
higher-order diffuse reflections do not depend on the Rx
orientation. Therefore, in the downlink, where the Tx is static,
we can calculate the higher-order contributions only once.
Otherwise, one would need to calculate the higher-order dif-
fuse reflections for each Tx position.

F. LIMITATIONS
For simplicity, we considered the reflecting surfaces inside
the room as Lambertian for estimating the reflectance val-
ues from raw LIDAR data using equation (3). The chan-
nel model is not limited regarding the surface reflection
characteristics. It is possible to define the surfaces with
any reflectance parameter and characteristics (like Phong
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FIGURE 3. LIDAR scanner (Leica RTC360) measurement (a) at position 1,
(b) at position 2, and (c) at position 3.

FIGURE 4. Point cloud data of the empty room after LIDAR data
processing as seen from the door side.

reflection model [46]). Moreover, we did not consider wave-
length dependency. Wavelength-dependent channel models
for LiFi include three main effects: i) the spectral character-
istics of the light source, ii) wavelength- dependence of the
surface reflectance and iii) responsivity of photo detectors
[14]–[47]. LIDARs use a monochromatic source, and thus
it is difficult to measure wavelength dependent reflectance.
Note that, the wavelength dependency could be included in
the channel modelling algorithm if available.

IV. MEASUREMENT SCENARIOS AND SETUP
To validate our new channel modelling approach, measure-
ments were performed in two scenarios; i) empty room and
ii) conference room. In each scenario, at first, we performed
LIDAR measurements for capturing the 3D environment,

then modelled the LiFi channels using our channel modelling
method and finally performed LiFi channel measurements
as validation. Note that, in these two rooms, the use case
communication scenario is between users and access points.
The users may move around on the tables or in the room
and the access points could be preferably installed near the
ceiling to achieve better coverage. The channel modelling has
been done mostly in the downlink scenario. In this section,
we describe the LIDAR measurement setup, the Tx-Rx con-
figurations and the LiFi channel measurement setup for both
scenarios.

A. EMPTY ROOM SCENARIO
In this scenario, the room has a size of 4.5× 5.8× 3.1 m3 and
is empty with only walls and has no furniture (see Fig. 3). The
LIDAR scanner scanned the room at three positions as shown
in Fig. 3(a), Fig. 3(b) and Fig. 3(c) in less than 3 minutes
per scan. After the scan, offline processing was performed to
yield reflectance. Finally, the point cloud data were merged
as shown in Fig. 4. This 3D data set is further used for the
channel modelling algorithm.

To validate our channel modelling approach, we also per-
formed channel measurements in the same room as shown
in Fig. 5. The measurements were conducted in a downlink
configuration. At first, where we performed a 4×4 distributed
MIMO setup as shown in Fig 5. Transmitters were in a
2 m× 2 m grid at 2.9 m height. Receivers were at 1 m height,
looking upwards, in the middle between the transmitters. The
positions of receivers Rx1, Rx2, Rx3 and Rx4 are shown in
Fig. 5. Note that, the measurement of Rx1 and Rx2, whose
positions are marked as P1 and P2 in Fig. 5, was done
separately at a different time.

In the mobile user scenario, using the same measurement
setup, measurements were done at 40 different positions
where Rx1 moved at the edge of a 2 m × 2 m square
while Rx2 was kept fixed at the center position of the room.
Fig. 6 shows the DC optical power distribution in the room
at 1 m height. The positions of Rx1 and Rx2 are marked
by blue and green color, respectively. Note that, positions
of transmitters are the same as shown in Fig. 5 for both
scenarios.

B. CONFERENCE ROOM SCENARIO
In the conference room scenario, the room contained 6 tables,
12 chairs, and a mobile table carrying the channel sounder.
Here, the room size was 5.8 × 6.8 × 3.1 m3. Since the
scenario contained more reflecting surfaces, we placed the
LIDAR scanner at five different positions, where position 1 is
shown in Fig. 7 and all others are marked as green crosses in
Fig. 8. After the LIDAR data processing, all 3D point cloud
data were merged as shown in Fig. 9 and used as input to the
channel modelling algorithm.

In the same room, we performed LiFi channel measure-
ments for a 12 × 6 distributed MIMO downlink scenario,
which comprises of two measurements with 6 transmitters
each, as shown in Fig 10. Four receivers were kept on the
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FIGURE 5. 4× 4 MIMO configuration in the room. P1 and P2 represent
the position of Rx1 and Rx2, which have been measured separately.

FIGURE 6. Top view of DC optical power distribution in the empty room.
A,B,C and D represents location of Tx1, Tx2, Tx3, Tx4. Blue and green
colors indicate Rx1 (mobile) and Rx2 locations. Arrow mark indicate the
direction of movement of Rx1.

tables at 75 cm height and two receivers in the middle of
the room at 1 m height. All positions of transmitters are
marked as red color in Fig. 8. Transmitters were separated at
1.5 m distance to realize a homogeneous coverage. Note that,
transmitters were fixed at 2.9 m height pointing downwards
and receivers are pointing upwards.

In this room, we considered three different multiuser (MU)
MIMO scenarios. In scenario 1, all receivers were kept at
the positions as shown in pink color in Fig 8. In scenario 2,
we considered two receiver pairs. Rx1 was moved towards
Rx2 and then kept nearby. Similarly, Rx4 was moved towards
Rx3 and then kept nearby. In this scenario, receiver pair
Rx1 and Rx2 had better coverage from Tx1 and the second
receiver pair Rx3 and Rx4 were under the coverage of Tx3.

FIGURE 7. LIDAR measurement in the conference room, where LIDAR
scanner is kept at position 1.

FIGURE 8. Top view of the conference room, Tx and Rx positions are
marked in red and pink color, respectively. Shaded area show objects in
the room. Positions of LIDAR scanner are marked in green color (L1-L5).

Finally, in scenario 3 receivers Rx1, Rx2, Rx3 and Rx4 were
kept close to each other under the coverage of Tx1. In all
scenarios, the positions of Rx5 and Rx6 were at the same
place as shown in Fig 8.

C. LIFI CHANNEL MEASUREMENT SETUP
The characterization of MIMO LiFi channels has been
performed using the LiFi channel sounder developed at
Fraunhofer HHI [48]. It can perform broadband 8 × 8 chan-
nel measurements at frequencies of up to 250 MHz. Our
optical frontends are described and characterized in [45].
The transmitter side consisted of a 16-bit, 8-channel
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FIGURE 9. 12× 6 MIMO LiFi channel measurement configuration in the
room. All transmitters are marked in red color. Measurement is performed
at two separate groups of six transmitters at two different time, where
first six transmitters are shown in (a) and all other transmitters in (b).

arbitrary waveform generator (AWG) (Spectrum DN
2.662-08), in which the first nTx channels were connected to
nTx optical Tx frontends. At the receiver side, the optical sig-
nals were received by nRx optical Rx frontends and connected
to the first nRx channels of the 8-channel digitizer (Spectrum
DN 2.445-08) algorithm.

A multi-carrier approach, also denoted as direct cur-
rent (DC) biased orthogonal frequency-division multiplexing
(OFDM), was used for simultaneous measurement of MIMO
LiFi channels at all modulation frequencies. The nTx OFDM
waveforms were generated using Matlab and transferred into
the memory of the AWG. The corresponding signals were
simultaneously sent from the parallel AWG outputs to the
optical frontends in which aDC is added tomodulate the LED
around a certain bias resulting in the DC-OFDM waveform.

The transmitted waveform has a similar structure like a
physical layer frame in the ITU-T G.9991 standard [49].
It consists of three parts; (a) framing sequence (FS) for detec-
tion of the frame start, (b) training sequence (TS) for the
estimation of the channel frequency response and (c) OFDM
symbols corresponding to the payload data.

After transmitting these packets through the wireless chan-
nel, the optical signals were detected at the optical receivers
where they are converted into the electrical domain. Then,
the DC bias was removed and the signal was digitized for the
purpose of channel estimation. Based on FSs defined in [49],
we used frame detection by a modified auto-correlation

FIGURE 10. Point cloud data of the conference room after LIDAR data
processing as seen from the door side.

method [50]. Subsequently, the OFDM blocks were pro-
cessed individually, followed by the de-multiplexing via a
DFT. The first OFDM symbols are TSs containing the known
complex-valued pilot symbols on a grid of supported sub-
carriers only, where the used grid depends on the transmitter
index. Based on these known symbols, channel estimation on
the supported sub-carriers and channel interpolation between
them was performed for each pair of Tx and Rx [51].
Accordingly, the frequency response of the MIMO LiFi
channel was recorded through simultaneous transmission and
detection [52].

V. RESULTS
In this section, we compare channel modelling and channel
measurement results for various Tx-Rx configurations in the
empty room and in the conference room scenarios. Moreover,
we compute the throughput as a metric in exemplary mobile
scenarios and show how useful the model is for performance
evaluation in complex MIMO scenarios intended for LiFi.

FIGURE 11. Magnitude response of NLOS channels for varying reflection
order m, (a) at 2.5 m distance, (b) at 3 m distance.

A. EMPTY ROOM SCENARIO
At first, we consider two simple SISO channel scenarios to
check the accuracy of the channel modelling methodology.
In these SISO scenarios, we model the channels based on
varying simulation parameters and compare themwith exper-
imental results. In this way, we obtain the parameter values
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FIGURE 12. Magnitude response of NLOS channels for varying average
resolution of the point cloud data 1S, (a) at 2.5 m distance, (b) at 3 m
distance.

used for the rest of the simulations. Finally, we model the
channels and report the results for a 4 × 4 MIMO scenario
and a mobility scenario.

1) SISO
Most of the optical channel modelling parameters have more
significant influence for NLOS channels than for LOS chan-
nels. There are two major simulation parameters that must be
optimized to obtain nearly perfect modelling results. These
are i) the number of first reflections m, and ii) the spatial
resolution of the point cloud data1S. By varying each param-
eter, all simulations were performed for two NLOS scenarios
with dominant first-order reflection, for which measurements
have already been reported in [45]. Note that the indoor
scenario reported in [45] has been the same room where the
LIDAR scanwas now performed.We compared the simulated
channels with regard to the number of first reflections m
modelled. We increased m from 1 to 3 and calculated the
channel responses as shown in Fig. 11. Note that here we
considered 1S= 5 cm. For the 3 m scenario in Fig. 11(a),
we achieved anMSE of 10%, 4% and 3% form = 1, 2, and 3,
respectively, compared to the experimental result. Similarly,
for the 2.5 m scenario in Fig. 11(b), the MSE was 2.6%, 1.1%
and 0.8% for m = 1, 2 and 3. As expected, as the reflection
orderm increases, simulation and experimental results agreed
better. However, the simulation time increased significantly
as m increased. There is a fundamental trade-off between
complexity and accuracy of the results.

Finally, we considered the impact of varying the aver-
age resolution of the point cloud data 1S for the values
1 cm, 3 cm, and 5 cm. To limit computational complexity,
we modelled only first-order reflections precisely using the
FD method, i.e. m = 1. We observed for the 3 m sce-
nario (see Fig. 12(a)), the MSE = 10%, 8% and 7% for
1S = 1cm, 3cm, and 5cm, and for the 2.5 m scenario
(see Fig. 12(b)), MSE = 8%, 7% and 5%, respectively. Dis-
regarding the insignificant differences between the results,
we observed a possibility for overestimating the reflected
signals and hence a more frequency selective channel for
decreasing resolution of the point cloud data. Additionally,
when the resolution of the point cloud is small, the matrix
dimensions in the equation (6) are larger and, hence, the

computational effort. For very dense point cloud data, it is
very complex to compute the channels with more than one
reflection.

Overall, from these results, we chose the parametersm= 3,
and 1S= 5 cm to model the channels for the rest of our
simulations, which we consider the best trade-off between
complexity and accuracy of the results.

2) MIMO
The measurement and simulation results for a 4 × 4 MIMO
channelmeasurement are shown in Fig. 13. Here, the bold and
dashed lines denote the measured and simulated responses,
respectively. Fig. 13 (a) shows the channel at Rx1, placed at
position P1 in the middle between Tx3 and Tx4. There are
strong LOS signals from Tx3 as well as from Tx4 and weak
signals from Tx1 and Tx2. Since all transmitters were kept in
a 2 m x 2 m grid, the simulated channel responses for Tx3 to
Rx1 and Tx4 to Rx1 are the same. In the experiment, however,
due to small differences in the optical frontends, wires and
connectors, measured responses differ slightly from each
other and do not overlap perfectly like in the simulation.
The channels with respect to Tx1 and Tx2 have lower signal
strength and measurements were more affected by the noise.
Therefore, we observed measured results fluctuate more than
in the simulation. As a measure of accuracy, we calculated
the relative MSE between measurement and simulation for
all links between all Rx and Tx. The MSE of links from
Tx1, Tx2, Tx3, Tx4 to Rx1 are 22%, 25%, 1.1%, 2.7%,
respectively.

Fig. 13 (b) shows the channel responses for Rx2, placed in
the middle between Tx1 and Tx2. It can be observed that Rx2
has strong LOS signals from Tx1 and Tx2 and weak signals
from Tx3 and Tx4. In the simulated channel responses, the
links between Rx2 to Tx1 and Rx2 to Tx2 have the same
response. Similarly, links between Rx2 to Tx3 and Rx2 to
Tx4 are similar. As explained before, due to mismatch in
the optical frontends and other connectors, there were minor
deviations in the measurement results, which are not identical
to those in the simulations. Here the MSE of links from Rx2
to Tx1, followed by links to Tx2, Tx3, and then Tx4 are 1.5%,
1.3%, 26%, and 29%, respectively.

Fig. 13 (c) shows the channel responses for Rx3, placed in
the middle between Tx2 and Tx3. For Rx3, signals from Tx2
and Tx3 had strong LOS and signals from Tx1 and Tx4 were
weak. Here the MSE of links from Rx3 to Tx1, followed by
links to Tx2, Tx3, and then Tx4 are 25%, 2.6%, 1.7%, and
29%, respectively. Finally, the channel responses for Rx4 are
shown in Fig. 13 (d). Rx4 placed in the middle between Tx1
and Tx4 had strong LOS signals from Tx1 and Tx4 and weak
signals from Tx2 and Tx3. The MSE of the links from Rx4 to
Tx1, followed by links to Tx2, Tx3, and then Tx4 are 2.3%,
17%, 21%, and 1.6%, respectively.

From these results, we observed that the MSE is less than
3% for channels with strong signal strength and 10% - 30%
for weak signals. It should be noted that the channel mod-
elling simulations reported in [47] produce similar results to
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FIGURE 13. Magnitude response of 4× 4 MIMO channels in the empty
room scenario. (a), (b), (c) and (d) represent the channel responses at
Rx1, Rx2, Rx3 and Rx4.

those presented here. However, a manually defined model
was used, which includes assumptions about material prop-
erties that are not required in the LIDAR-based approach.

FIGURE 14. Channel gain at 5 MHz for the mobile user (Rx1) with respect
to all transmitters. X-axis is the distance between Tx and mobile user
(Rx1).

3) MOBILITY
In this scenario, we considered a 4×2MIMO scenario where
Rx1 moved at 40 positions around in the room while another
receiver Rx2 was kept at a fixed position. Positions of all
transmitters and receivers is shown in Fig. 6. We performed
MIMO channel measurements and simulations correspond-
ing to all 40 positions of Rx1.

To plot all channels for all frequencies at 40 positions it
require larger graph area in the paper. Therefore, to compare

the experimental data with the simulations, we calculated the
channel gain at a lower frequency of 5 MHz corresponding to
each position. Fig. 14 shows the variation of the channel gain
versus the distance between Tx and Rx1. The channel gain
is plotted for each Tx to the Rx1 link for all positions. When
the receiver move away from the center of illumination of
one transmitter, the corresponding channel gains are reduced.
In the experiment, we observed that the channel gain variation
is between −13 dB to −50 dB for distances from 1.85 m to
3.33 m. Due to mismatches in the optical frontends, there are
negligible differences in the channel gains at lower distances.
When Rx1 is far from the transmitters, the corresponding
channel gain is lower and there is a random variation due
to noisy data. In the simulations, since all transmitters are
placed in a 2 m × 2 m grid, channel gain variations for all
Tx links with respect to Rx1 is nearly the same. Therefore,
we plotted the average channel gain variation for Tx-Rx1 link.
As shown in Fig. 14, the channel gain variations for the
simulated channel at 5 MHz varied from −15 dB to −45 dB.
When compared with experimental data, the deviation of
simulated channel gain was smaller and higher at shorter
and longer distances, respectively, due to noise. This study
shows that approximate results for channel gain variations
can be estimated for a mobile device with low error. From the
numerically calculated channel, in the next section we extend
our study to estimate channel throughput.

FIGURE 15. Total throughput corresponding to each mobile user (Rx1)
position. Black cross indicate the position of fixed receiver (Rx2). Letters
A, B, C, and D indicate the (x, y) position of transmitters Tx1, Tx2, Tx3,
and Tx4.

4) THROUGHPUT ANALYSIS
In this section, we extend the study on mobile scenario to
calculate the achievable data rate. From the MIMO chan-
nel matrices corresponding to all Rx positions we compute
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further metrics such as singular values and channel through-
put. For estimating the throughput, we followed the same
approach as given in [52].

Based on the modified Foschini formula [53], [52], the
throughput at each position is given as

Th =
∑C

i=1
1Bi · log2

(
det

[
I +

PTx
nt · PN · 0

· Hi · HH
i

])
,

(12)

where I is an identity matrix, C is the total number of consid-
ered frequency points, nt is the total number of transmitters,
Hi is the MIMO channel matrix for ith subcarrier, and 1Bi
is the bandwidth covered by ith subcarrier. As given in [52],
0 = 10 is an empirical scaling factor taking into account
impairments like non-linear distortions (clipping) and imper-
fect constellation shaping. PTx and PN are the total optical
power from each Tx and the noise power.

As explained in [52], the Tx power-to-noise ratio (PNR)
can be expressed as

PTx
PN
=

PRx
ηH · PN

, (13)

where ηH is the average path loss of the MIMO channel
matrix, and PRx is the received power. Finally, the PNR
has substituted in equation (12) and the channel throughput
corresponding to each user position is calculated.

The total throughput for both receivers along the track is
shown in Fig. 15. Note that by substituting equation (13) in
(12) the average path loss is normalized out, and thereby any
changes in the SNR, which is assumed fixed and equal to
20 dB. Because of (13), only the singular values of theMIMO
channel matrix have an impact on the throughput results. Rx1
is moving as follows: first from A to B, then B to C, next C
to D and finally D to A: Here A, B, C, and D are the 2D
positions of transmitters Tx1 to Tx4 as shown in Fig. 6. Data
rate is lowest when both receivers are close to each other and
Rx1 receives theminimumpower. Intermediateminima occur
always if the Rx1 is at points A, B, C or D. Data rates are the
highest if Rx1 is in between two Tx positions, i.e. between
B and C or between C and D. In the measurement, due to
noise, we observe slight overestimation of the throughput at
some points. Overall, the measured and simulated throughput
results agree very well. From this results, we can say that,
our channel modelling methodology can be used also for the
performance analysis of LiFi systems.

B. CONFERENCE ROOM SCENARIO
In this section, we report the results for 12 × 6 distributed
MIMO configuration in a larger conference room. We con-
sider three different MIMO configurations as mentioned in
section IV B.

In the previous cases, we focused on the matching between
simulated and measured channels. In this section, we expand
our study to provide insights into the MIMO channel char-
acteristics and estimate the throughput for different MIMO
scenarios.

At first, using the 3D point cloud data, all LiFi channels are
modelled for eachMIMO configuration. Second, all channels
are measured using the channel sounder system [48]. Finally,
from both simulated and measured channels, we calculate
the singular values and the throughput same as explained
in [52]. From a previous study, it is known that the MIMO
channel matrix and singular values are dependent on the
positions of receivers relative to the transmitters and between
each other. Therefore, the positions of optical frontends in
the infrastructure have a significant impact on the achievable
throughput [52].

Fig. 16 shows the normalized singular values for each
MIMO configuration. Here, the bold and dashed lines denote
the measured and simulated singular values. Note that for all
considered MIMO configurations, positions of receivers Rx5
and Rx6 are the same as shown in Fig. 8 and receivers Rx1,
Rx2, Rx3 and Rx4 are always on the table. In all scenarios,
receivers Rx6 and Rx5 are closer to the transmitters and have
higher signal strength compared to other receivers.

FIGURE 16. Normalized Singular values for each MIMO scenario,
(a) scenario 1, (b) scenario 2, (c) scenario 3 in the conference room.

In scenario 1, where all receivers were well separated from
each other (see Fig. 8), there are six dominant singular values
as shown in Fig 16(a). This indicates the potential of six
parallel data links for wireless communications. Some of
the singular values have almost the same values indicating
nearly orthogonal channels with similar strength, between the
ceiling infrastructure and mobile devices. Since Rx5 and Rx6
are located closer to the infrastructure, the first two singular
values are higher compared to the other four singular values.

Singular values in the scenario 2 are shown in Fig. 16(b).
In this scenario, we considered two receiver pairs, i) Rx1 and
Rx2 and ii) Rx3 and Rx4. Here, receivers Rx5 and Rx6 were
in the same position as in the previous scenario. Therefore,
there are four significant singular values available in this
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FIGURE 17. Throughput results for each MIMO scenario in the conference
room.

scenario, which show that up to four parallel data streams are
useful. At the same time, the first data stream is received by
Rx1 and Rx2, the second data stream by Rx3 and Rx4 and
the final two streams separately by Rx5 and Rx6. Hence, the
channel throughput may be lower as compared to the previous
scenario.

Finally, in scenario 3, all receivers on the tables,
i.e., Rx1-Rx4, were kept close together and receivers Rx5
and Rx6 are at the same position as shown in Fig 8. Singular
values are plotted as shown in Fig. 16(c). In the simula-
tion, there are three dominant singular values, which indicate
up to three data streams could be used to communicate in
parallel. In the measurement, the fourth singular value is
higher than expected, possibly due to orientation error of the
optical frontend. The dominant singular values differ more
from each other than in the previous scenarios, because the
four receivers are kept closer together, so that the correlation
of the channels may be high. Only one data stream can
be transmitted in the same time slot from the infrastruc-
ture to the receivers Rx1 to Rx4, i.e., users can only be
served sequentially by using time-division multiple access.
The other two data streams are attributed to the strong links
between Tx8 and Rx5, and Tx5 and Rx6, respectively. Thus,
in this scenario, the throughput becomes rather low compared
to previous scenarios.

In Fig. 16(b) and (c), there are singular values that are
nonzero but very small i.e. below one, which do not con-
tribute to the throughput at low SNR and maybe used for
data communication only at very high SNR. This is visible
from comparing the throughput results in the scenarios, which
is shown in Fig. 17. At low SNR, only the largest singular
values matters and the curves converge. However, due to
the differences in the singular values, the curves diverge at
higher SNR. Also in scenario 3, the slope increases at high
SNR, which is due to the contribution from the lower singular
values.

We evaluated the throughput as a function of SNR, which
ranges from 5 dB to 25 dB. The throughput is calculated
according to the equation (4) in [52]. In Fig. 17, bold lines
show the experimental results and dashed lines show the
simulation results. In the simulation results, the channel
throughput for scenario 1 varies from around 344 Mb/s to
4.3 Gb/s, for scenario 2 from 332 Mb/s to 3.6 Gb/s and for
scenario 3 from 310 Mb/s to 3.1 Gb/s. From the experimental
data, the calculated throughput is from 346 Mb/s to 4.4 Gb/s
for scenario 1, from 331 Mb/s to 3.4 Gb/s for scenario 2, and
from 305 Mb/s to 2.8 Gb/s for scenario 3. From the results,
the channel throughput is high when all users are spatially
well separated and low when all users are closer together.
Therefore, the throughput is higher in scenario 1 because
all users are well separated, while the throughput is lowest
in scenario 3 because four users are closer to each other.
In scenario 2, there are two pairs of receiver and therefore
lower channel throughput than in scenario 1. Overall, the
throughput is reduced from scenario 1 to 3.

As a measure of accuracy, we calculate the relative
MSE between measured and simulated throughput results.
We observe that, the MSE results for scenario 1, sce-
nario 2 and scenario 3 are 0.02%, 0.08%, and 0.4%
respectively. The estimated throughput results show a com-
plex relation between Rx and Tx configuration, singular val-
ues and SNR, similar to our previous study [52].

Note that due to mismatch in the optical frontends and
noise in the experimental setup, there are always slight differ-
ences between experimental results compared to simulations.
However, the overall throughput results show that the simu-
lated and measured throughput are well matched and yield
MSE below 1%.

C. COMPLEXITY RESULTS
The computational complexity of our new channel modelling
approach depends mainly on i) the number of points in the
point cloud data, ii) the number of first reflectionsmmodelled
precisely. As the number of points in the point cloud data gets
larger, computation time increases. However, by keeping the
resolution 1S in the range of 5 cm (which is equivalent to
a time resolution of 0.167 ns), we can realize a point cloud
data set which is sufficient for the currently discussed LiFi
systems with several 100 MHz bandwidth and compatible
with available computing power. By considering1S = 5 cm,
there are around 35000 and 50000 points in the point cloud
data of the empty room scenario and in conference room
scenario, respectively.

Similarly, as the number of first reflections m increases,
computational time increases significantly. To compare the
computational time with respect to first reflections m we
consider a NLOS scenario in the empty room (see Fig. 5).
We consider a receiver Rx2 kept at P2 position and looking
towards the wall. Note that in this case, there exist strong
NLOS links from Tx1 and Tx2 and weak NLOS links from
other transmitters Tx3 and Tx4.
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TABLE 1. Comparison of computation properties.

Table 1 shows the comparison of computational time,
average MSE and data rate as a function of m. Note that,
here we model m reflections precisely using FD method
and include all other reflections with the integrating sphere
model. To compare the variations of the results, we calcu-
late the MSE when compared to the experimental result.
We observe that, as number of reflections m increases, MSE
reduces slightly. We calculated the data rate at the Rx2 using
the equation (10). Even though data rate are nearby the same,
computational time increases significantly as the number of
first reflections m increases.
In the conference room, LOS links are available in most of

the scenarios in the room. Additionally, the walls and objects
in the room are far away from the receiver. Therefore, we did
not observe significant differences in MSE as well as for the
data rate when increasing m. However, computation time is
50 seconds, 3.2 hours and 6.1 hours for m = 1, 2 and 3. The
steepest increase in computational time is betweenm = 1 and
m = 2. This is caused by the intrinsic room function H (f ) in
equation (6) is considered from m = 2 onwards.
Therefore, by choosing a reasonable tradeoff between

accuracy of the modelling results and number of first reflec-
tions m, our approach can be used to model mobile LiFi
channels in a timely manner. In most parts of this paper,
a minor modelling error was targeted, for which we have used
m = 3 as a reasonable compromise.

For mobile LiFi network simulations with large numbers
of access points and mobile devices, another trade-off at
m = 1 may be reasonable. This approach would model
the LOS links and the first diffuse reflection precisely and
include the residual reflections by the integrating sphere
model. In this way, computational time can be significantly
reduced. For example, in the empty room scenario, compu-
tational time is reduced by factor around 180 for a single
point on the track (see Fig. 6). The computation time could
be well spent to model a dense grid of points in the room.
Some very relevant effects, such as blockage of the LOS
and the possibility of NLOS communications via a nearby
object would then be included, which is a major advantage
over the common assumption to model the LOS links with
no blockage at all.

Since calculations are based on matrix or vector multipli-
cations, it is possible to accelerate the modelling by using
high performance Graphics processing unit (GPU) or Tensor
Processing Unit (TPU).

VI. CONCLUSION
In this paper, we propose a new channel modelling method
for LiFi. We used a LIDAR scanner to automatically capture
the 3D environment and use the point cloud data as an input
to our channel modelling algorithm. In the channel modelling
algorithm, we used a frequency domain technique to model
the LOS and the first m NLOS reflections and an integrat-
ing sphere model for the rest of the higher order diffuse
reflections.

In the 3D modelling using LIDAR, at first, the LIDAR
scanner was kept at multiple locations in the room to accu-
rately scan the room. As a pre-processing, at first, we remove
the noisy points, secondly calculated the surface normal, and
then reduced the resolution of point cloud data. After that,
we estimated the reflectance of the surface points based on
the method was described and tested in this paper. Finally,
all scanned data were merged to get the complete point cloud
data of the room, based on which the LiFi channels for the
given Tx-Rx configuration can be modelled as described
above.

To validate our simulation method, we compared mod-
elling and measurements in two realistic indoor scenarios,
an empty room and a conference room. In an empty room
scenario, we first obtained the best parameter values used for
the rest of our simulations based on the channel modelling
results. For a realistic LiFi scenario in a 4 × 4 distributed
MIMO configuration, measurements and modelling results
are in a good agreement with less than 3% error for the
channels with high signal strength. Moreover, we demon-
strated the possibility to model mobile scenarios in the same
room, in a 4 × 2 MIMO scenario where one receiver is
moving while another is at a fixed position. Measurement
and modelling results are in good agreement for channels
with high gain. For the mobile MIMO channel, we calculated
the achievable data rate and observed that the modelled and
measured throughput results agree very well.

In a further step, we performed channel modelling and
measurements in a larger conference room scenario, where
the LIDAR scanner was kept at five different locations to
capture all objects including blockages from all necessary
points of view. We modelled the LiFi channels for a 12 × 6
distributed MIMO scenario with three different MIMO con-
figurations. From the channel data, we evaluated the singular
values and channel throughput. The overall throughput results
show that the simulated and measured throughput results
agree very well and yield an error below 1%.

Overall, our approach can be used to model LiFi chan-
nels in complex environments including multi-story build-
ings, apartments, auditoriums, hospitals etc. In the future,
it is possible to integrate our channel modelling algorithm
with the LIDAR pre-processing software to model the LiFi
channels in many indoor scenarios. As a future vision, it is
possible to create the 3D map of a coverage area, deter-
mine how many access points are required and evaluate the
SNR and throughput of the LiFi systems. Additionally, using
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advanced algorithms, it may be possible to predict the chan-
nels for dynamic movements and evaluate the performance
with minor error. One of the major applications will be the
performance analysis of PHY and MAC layer algorithms in
research and standardization. Moreover, our technique can be
used for LiFi network planning in real scenarios, including
cost-versus-performance optimization.

APPENDIX
A. INTENSITY CORRECTION RESULTS
Using the intensity correction method described in the
section II B, we estimate the reflectance of walls and
objects in a 3D room from the raw intensity data mea-
sured by the LIDAR. In this section, we report the
results for two considered rooms, an empty room and a
conference room.

Based on the LIDAR measurements in the empty room
(see Fig. 3), intensity data are obtained along with the point
coordinates. Fig. 18 (a) shows the raw intensity data of
the room obtained from our measurement. To obtain the
reflectance parameter of each point, the raw intensity data
need to be corrected. From this raw intensity data along
with considered 3D coordinate positions of LIDAR scan-
ner in the room, we correct the intensity and estimate the
values as shown in Fig. 18(b). These corrected intensity
values of each point in the point cloud data are consid-
ered as reflectance values for rest of the simulations in this
empty room.

FIGURE 18. Intensity heat map plot of the empty room before (a) and
after (b) the intensity correction.

Similarly, intensity correction method is applied for the
conference room scenario. The LIDAR measurement setup
in the room are mentioned in section IV. Scanning locations
of LIDAR scanner in this room is given in Fig. 8. The raw
intensity data of the conference room scenario obtained from
our measurement is shown in Fig. 19 (a). After the correction
method, the corrected intensity is shown as Fig. 19(b). These
corrected intensity values of each point in the point cloud data
are considered as reflectance values for rest of the simulations
in this conference room.

Note that in both rooms the reflectance values of the ceiling
after intensity correction are stronger than those of the other

FIGURE 19. Intensity heat map plot of the conference room before (a)
and after (b) the intensity correction.

FIGURE 20. Visible points looking from the Tx1 location. Tx1, plot in red
color, looking towards the corner of the room. Variation of visibility points
for radius RS = 1(a), 2(b), 3(c) and 4(d). There is a table in the room which
act as an obstacle to block the links.

walls. There are few factors that affect the reflectance value
of a particular surface, such as the material properties and
the color of the surface. Different materials have different
surface irregularities and thus different reflectance properties.
Similarly, the same material with different color has dif-
ferent reflectance. In these rooms, although the ceiling and
all other walls are white, the materials of the walls and
ceiling are different. In both rooms, ceiling contains a sim-
ilar surface material that is highly reflective compared to
the walls. A detailed examination of the material properties
of each reflective surface in the room is beyond the scope
of this paper. Similarly, one of the four walls in the room
is made of a different material, gypsum, while the other
three walls aremade of wood.We found that the three wooden
walls have the same but lower reflectance than the wall with
gypsum.

B. VISIBILITY ANALYSIS USING HPR METHOD
The HPR method consist of two main steps: inversion and
convex hull construction. At first, an inversion of the point
cloud data is performed using the so-called spherical flip-
ping method. In the next step, for the given view point, the
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convex hull construction of the inverted point cloud data set
is performed. We follow all these steps as mentioned in [42].
To calculate the visibility from the given view point, we use
the sameMATLABcode as given in Section 5 in [42]. Besides
the simplicity of the implementation, major advantages of this
method are to i) determine the visibility without reconstruct-
ing a surface and ii) calculate the visibility for dense as well
as sparse point clouds. By using this approach, we calculate
the visibility factor in each optical link between Tx, Rx and
surface elements.

In the HPR-based visibility analysis, it is important to
select a suitable radius parameter, which can be defined as
10RS [42]. As RS increases, more points are marked visible
and when RS is small fewer points are marked visible [42].
Therefore, there are always some false points being marked
wrongly as visible or not [42]. Fig. 20 shows an exam-
ple plot for visibility analysis for varying values for RS .
We consider the point cloud data of an empty room scenario
(see Fig. 18(b)). In this example, we calculate the visibility
between Tx location to all the points in the point cloud data.
Note that, Tx is kept nearby one corner of the room (marked
as red color) and is looking towards the next corner of the
room. Due to the mobile table, which is kept in the middle
of the room (see Fig. 5 or Fig. 6), there will be blockage
between Tx to some of the points in the point cloud data.
Therefore, there is a possibility that some of the points should
not be visible while looking from the Tx point. As shown in
Fig. 20(a) many points are not visible from the Tx location
when RS = 1. In the Fig. 20(b), when RS is increases to
2 many more points are visible and only few points are not
visible. However, when RS = 3 (Fig. 20(c)) and RS = 4
(Fig. 20(d)) most of the points are visible even there is a
blockage present due to the mobile table. We observe that,
large RS lead to more points that are visible and lower values
of RS lead to very less visible points, hence the wrong estima-
tion of channel. From this study, we observe that results are
better when RS lies in between 1.5 to 2. Although the mini-
mum is not the same, indicating the best choice, we consider
the value for RS = 1.5 for our rest of the simulations. Even
though the value of RS is considered as 1.5, still there will
be fewer false points, which do not affect significantly on the
LiFi channel modelling.

When the point cloud is very noisy or non-uniformly sam-
pled, a robust HPR operator (RHPR) can also be used to
evaluate the visibility as reported in [43]. Note that, instead of
HPR method, we can also use any other method to evaluate
the visibility of the point cloud data [44]. From our study,
we observe that, the HPR method estimates visibility for our
LiFi channel modelling application with the lowest computa-
tional time and reasonable error.
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