
Received April 28, 2022, accepted May 15, 2022, date of publication May 18, 2022, date of current version May 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176436

Robust Kernelized Multiview Clustering Based
on High-Order Similarity Learning
YANYING MEI 1, ZHENWEN REN 1,2, (Member, IEEE), BIN WU 1,
TAO YANG 1, AND YANHUA SHAO 1
1School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210008, China

Corresponding author: Zhenwen Ren (rzw@njust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62106209; in part by the Sichuan
Science and Technology Program under Grant 2021YJ0083; in part by the State Key Laboratory Foundation for Novel Software
Technology of Nanjing University under Grant KFKT2021B23; and in part by the Open Project Program of the
State Key Laboratory of CAD&CG, Zhejiang University, under Grant A2217.

ABSTRACT This paper explores the robust kernelized multi-view clustering (MVC) for nonlinear data. The
existingMVCmethods aim to excavate the complementary and consensus information frommulti-view data
lies in the linear space for clustering. However, in real-world scenarios, data points usually lie in multiple
nonlinear spaces, leading to undesirable clustering results. To this end, we propose a robust kernelized MVC
method based on high-order similarity learning (RKHSL), to jointly learn the local structure affinities in
original space, the nonlinear affinities in mapping kernel space, and the high-order correlations in tensor
space. Specifically, the first-order similarity (FOS) is learned to excavate the local structure affinities and
the second-order similarity (SOS) is learned in the high-dimensional kernel space to excavate the nonlinear
affinities of data points. Afterwards, the third-order similarity (TOS) based on low-rank tensor is learned to
excavate the global consistency from multiple views. Extensive experiments on five commonly benchmark
datasets show that the proposedmethod outperforms state-of-the-art methods inmost scenarios and is capable
of revealing a reliable affinity graph structure concealed in different data points.

INDEX TERMS Multi-view clustering, high-order similarity, low-rank tensor learning, kernel method.

I. INTRODUCTION
As for the new coming online data rising so fast daily [1], [2],
interest in data clustering is growing rapidly. Clustering as a
preprocessing method of unlabeled data has been extensively
applied in data preprocessing, statistics, computer science
and other fields [3]–[5]. In real-world scenarios, data points
sampled from the same object have multiple heterogeneous
features, multi-view clustering (MVC) is commonly used to
combine the diverse and consistent information in each view
for clustering [6]–[8].

For effectively learn the local structural affinities among
data points to deal with the noise and corruption interfer-
ence, various multi-view graph-based clustering (MVGC)
approaches have been proposed [6], [9]–[11], most of which
first obtain a k-nearest neighbor graph [9], a self-expression
affinity graph [7], or an adaptive neighbor graph [12], and
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then the final clustering is computed by using the obtained
affinity graph. This indicates that the learned affinity graph is
very important for the clustering result.

Although these MVGC methods have achieved promising
performances, they only study the local structure affinities
of pairwise data points by the first-order similarity (FOS)
learning. However, the adjacent structures of pairwise data
points are also important.Motivated by [13], [14], we explore
the adjacent structure affinities of pairwise data points with
the second-order similarity (SOS) learning. Moreover, these
MVGC methods neglect the higher-order correlations among
different views, so we hope to learn the three-order similar-
ity (TOS) of multiple views to excavate the consensus infor-
mation and view-specific information in terms of tensors.

The proposed method is motivated by the tensor-based
MVCmodel, for example, t-SVD-MSC [15], andUGLTL [16].
Even these methods have achieved outstanding clustering
performances, they are mainly based on linear data process-
ing in the original space and may fail when dealing with
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nonlinear data. In addition to the linear data, [17] extended
the tensor-based MVC to a kernel method by introducing
the ‘‘kernel trick,’’ which gains significant improvements in
handling nonlinear data. However, it merely considers the
high-order affinities among data points.

Generally, based on the graph learning, the affinity for
each data point is assumed to be the linear representation
coefficients on the other data points restricted to low-rank
or sparsity constraint. However, this assumption may not
always be true in many real-world scenarios, where the
data points are normally considered to be obtained from
the nonlinear spaces. Commonly, manifold constraint meth-
ods [18], [19] and kernel mapping methods [20] are used
to deal with nonlinear data. For kernel mapping method,
since data points obtained from a nonlinear low-dimensional
space are usually concealed in a high-dimensional ker-
nel space [21], [22], therefore, the data points can be
transformed from the original nonlinear space into a
high-dimensional kernel space by using kernel mapping, and
the original features are preserved in the high-dimensional
space [20], [23].

Though the methods mentioned above have obtained out-
standing performance for clustering, we find that: 1) for the
limitations of the models, the tensor-based methods cannot
exploit the SOS among data points, leading to unsatisfying
clustering performance; 2) MVGC-based methods cannot
exploit the TOS among multiple views, the specific informa-
tion in each view and consensus information among multiple
views cannot be efficiently maintained; and 3) these methods
can not effectively deal with the nonlinear data. Thus, a new
multi-view graph learning paradigm is urgently needed to
improve these MVGC methods.

To solve the above three problems, a MVGC method
is proposed, namely robust kernelized multi-view cluster-
ing based on high-order similarity learning (RKHSL). The
overview of RKHSL is shown in Figure 1. Specifically,
the FOS is learned to excavate the local structure affini-
ties of data points in the original space, and the SOS is
learned in the high-dimensional kernel spaces to excavate the
nonlinear affinities of data points. Afterwards, the TOS of
multiple views is learned in a three-order tensor by intro-
ducing tensor rotation and tensor Singular Value Decom-
position (t-SVD). After that, the optimal consensus affinity
graph can be achieved by learning the FOS, SOS and TOS
simultaneously. Finally, the clustering results are achieved
by using spectral clustering on the learned optimal affinity
graph.

In summary, the main contributions of our work are given
as below:
• A new high-order similarity learning paradigm is pro-
posed. Unlike the common similarity learning, the
high-order similarity learning can fully exploit the
potential affinities among data points for data clustering.

• A robust kernelized MVCmethod, RKHSL, is proposed
for nonlinear data clustering, which deeply exploits
the high-order similarity among data points. Moreover,

an optimization solver is made to solve the objective
function.

• Compared with the current state-of-the-art methods, the
proposed RKHSL performs well on several benchmark
datasets for various applications.

The followings of this paper are structured as follows. The
related work is introduced in section II. Section III intro-
duces the notations and preliminaries. Section IV proposes
our method RKHSL, optimization and complexity analysis.
The experiment is discussed in section V. Finally, section VI
concludes with some discussions.

II. RELATED WORK
The latest developments on MVGC and some linked tech-
niques to dispose of nonlinear data will be discussed in this
section.

Based on the graph learning model, some MVGC meth-
ods have been developed [6], [24], [25]. For example,
Nie et al. [26] proposed to automatically learn the optical
weights for each affinity graph to cluster. Wang et al. [6]
introduced a MVGC method which learned the unified affin-
ity graph and each affinity graph interactively. Chen et al. [24]
explore to learn a latent embedding space from all views
for clustering. Currently, tensor-based MVGC [27]–[33]
have attracted widely attention by stacking all the affinity
graphs as a 3-order tensor. Especially, the high-order corre-
lations among multiple views can be automatically learned
by using the low-rank constraint of the tensors. For instance,
Zhang et al. [34] first proposed a low-rank tensor for
MVGC based on self-expression model. Xie et al. [15] fur-
ther expanded it by using tensor rotation and t-SVD [35].
Zhao et al. [36] proposed a multi-view spectral cluster-
ing (MVSC) method based on adaptive graph learning and
tensor Schatten p-norm constraint. Zhang et al. [37] intro-
duced a low-rank tensor constrained MVC based on sub-
space representation learning. Chen et al. [28] proposed a
multi-view subspace clustering (MSC) based on low-rank
tensor graph learning. Xu et al. [38] proposed a weighted
tensor nuclear constrained MVC based on co-regularized
learning. Wang et al. [30] proposed a error-robust low-rank
tensor approximation method for MVC.

Generally, there are two methods adopted for dealing
with the data lies in nonlinear spaces. One is the manifold
operation [18], which handles nonlinear data in manifold
space. Especially, if two data points are close in the orig-
inal nonlinear space, after some basic projection, the new
representations of them are also close. Grassmann man-
ifolds can be considered as a low-dimensional nonlinear
manifolds space embedding in a high-dimensional Euclidean
space. There are several classic representations on Grass-
mann manifolds. For example, Wang et al. [39] proposed
a low-rank constraint model with non-linear learning on
Grassmann manifolds. Later, Wang et al. [40] adopted a
double nuclear norms constraint instead of the single nuclear
norm constraint based on low-rank model for clustering
on Grassmann manifolds. Guo et al. [41] introduced a
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FIGURE 1. Overview of the proposed RKHSL method. (a) Given the multi-view data, (b) the multi-view data is mapped into the
higher-dimensional kernel space, (c) V affinity graphs of each corresponding to a view are first constructed by FOS learning in the original
space and SOS learning in the kernel space. Then, (d) the resulting affinity graphs are stacked and rotated to form a tensor S, (e) the
fusion affinity graph S̄ is obtained by averaging all frontal slices of tensor S. Finally, (f) spectral clustering is used to obtain the final
clustering result.

MSC based on low-rank representation learning on product
Grassmann manifolds. Wang et al. [42] proposed to learn
an adaptive neighborhood graph for MSC on Grassmann
manifolds.

The other way to handle nonlinear data is the kernel map-
ping approach, as we can see that the nonlinear mapping by
using ‘‘kernel trick’’ can divide the data points in the same
allocation, making them linearly separable [43]. For example,
Vidal [4] et al. applied the ‘‘kernel trick’’ on SSC [44] to
deal with the nonlinear data. Alternatively, Zhang et al. [21]
proposed a kernel MSC by using a low-rank kernel map-
ping. Later, Zhang et al. [45] proposed a kernel MSC by
automatically learning the optimal weights for each affinity
graph. Hajjar et al. [46] proposed a one-step kernel MVC.
Qiu et al. [47] proposed a ensemble-based clustering with
‘‘kernel trick.’’ Zhang et al. [48] introduced a robust MVC
based on multiple kernel low-rank representation learning.
Ren et al. [23] proposed a multiple kernel clustering based
on local graph and low-rank kernel simultaneously learning.
All these methods cannot make full use of the high-order
correlations among multiple heterogeneous views.

III. NOTATIONS AND PRELIMINARIES
A. NOTATIONS
In our paper, the 3-order tensors are denoted by bold calligra-
phy letters (e.g., P ∈ RN1×N2×N3 ), the matrices are denoted
by bold capital letters (e.g.,P), the vectors are denoted by bold
small letters (e.g., p), and the scalars are denoted by Greek
letters (e.g., α, β, λ). We use pj and pij to represent the j-th
column vector and the (i, j)-th entry of matrix P, respectively.
The related representations for tensor P ∈ RN1×N2×N3 are
shown in Table 1.

B. PRELIMINARIES
To help us clearly understand the computation of tensors, usu-
ally, we first present some related definitions about tensors.
Definition 1 (T-Product): Given tensor P ∈ RN1×N2×N3

and tensor Q ∈ RN2×N4×N3 , the t-product between them is
defined as P ∗Q ∈ RN1×N4×N3 , i.e.,

P ∗Q = fold(bcirc(P) bvec(Q)). (1)

Definition 2 (f -Diagonal Tensor): If each frontal slice of
a tensor is a diagonal matrix, the tensor is considered as
f -diagonal.
Definition 3 (Identity Tensor): If the first frontal slice of a

tensor I ∈ RN1×N1×N3 satisfies N1 × N1 identity matrix and
all the other frontal slices satisfy zero matrix, the tensor is
considered as identity tensor.
Definition 4 (Orthogonal Tensor): The orthogonal tensor

P ∈ RN1×N1×N3 satisfies

PT
∗P = P ∗PT

= I. (2)

Definition 5 (t-SVD): The t-SVD of a tensor P ∈

RN1×N2×N3 can be expressed as

P = U ∗Q ∗ V>, (3)

where Q ∈ RN1×N2×N3 is f -diagonal, and U ∈ RN1×N1×N3 ,
V ∈ RN2×N2×N3 are orthogonal.
Definition 6 (t-SVD Based Tensor Nuclear Norm): The t-

SVD of a tensor P ∈ RN1×N2×N3 based on tensor nuclear
norm ‖P‖~ is given by the sum of singular values of all the
frontal slices of P f :

‖P‖~ =
N3∑
k=1

∥∥∥P (k)
f

∥∥∥
∗

=

min(N1,N2)∑
i=1

N3∑
k=1

∣∣∣Q(k)
f (i, i)

∣∣∣ , (4)
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TABLE 1. The representations of the tensor.

whereQ(k)
f is computed by the SVD,P (k)

f = U (k)
f Q(k)

f V (k)>
f

of the frontal slices of P f .
Definition 7 (Tensor Transpose): The transpose tensor of

the tensor P ∈ RN1×N2×N3 is defined as P> ∈ RN2×N1×N3 ,
which can be obtained by transposing all the frontal slices
of P .
Definition 8 (3-order Tensor): Given V matrices P(v)

∈

RN1×N1 , the 3-order tensor P∗ ∈ RN1×N1×V is constructed
by stacking all the V matrices, which is defined as

P∗ = bvfold([P(1)
; · · · ;P(V )]). (5)

Definition 9 (Tensor Rotation): The rotation of the tensor
P∗ ∈ RN1×N1×N3 is defined as

P = rotate(P∗), (6)

where P ∈ RN1×N3×N1 . Note here that rotate is a shift
function.

IV. PROPOSED METHOD
In this section, we propose the RKHSL, its optimization
strategy and complexity analysis.

A. FIRST-ORDER SIMILARITY (FOS) LEARNING
The FOS represents the direct similarity sij of two data
points xi and xj, which is the first and foremost measure of
similarity between two data points. According to [6], [49],
the FOS learning model is defined as

min
S

N∑
i,j=1

∥∥xi − xj
∥∥2
2sij

s.t. S> = S, 0 ≤ S ≤ 1, (7)

where sij in affinity graph S ∈ RN×N denotes the affinity
between xi and xj, and N denotes the number of data points.

According to [23], we introduce a complete graph D,
in which all the data points are treated as nodes, and the
affinities among data points are expressed as edge weights.

FIGURE 2. A toy example of the FOS and SOS among data points. Data
points 7 and 8 should be first-order similar as they are directly connected.
Data points 6 and 7 should be second-order similar as they share the
similar neighbors.

So we have

min
S

N∑
i,j=1

∥∥xi − xj
∥∥2
2 sij = min

S
Tr(D>S)

s.t. S> = S, 0 ≤ S ≤ 1, (8)

where D represents a complete graph with dij =
∥∥xi − xj

∥∥2
2.

The smaller the dij in D is, the greater the similarity sij is.

B. SECOND-ORDER SIMILARITY (SOS) LEARNING
The SOS between pairwise data points represents the simi-
larity of their adjacent structures. Given si = [si1, · · · , siN ],
which represents the FOS between xi and other data points.
Then, the SOS between xi and xj denotes the similarity
between si and sj [49]. Figure 2 shows a toy example
of the data points relation based on FOS and SOS in an
affinity graph. Note that the data points relation based on
FOS represents the pairwise similarity between data points,
while the data points relation based on SOS represents the
similarity between a data point and its adjacent point set.
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The SOS learning model is given by

min
S

N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

sijxj

∥∥∥∥∥∥
2

2

s.t. S> = S, 0 ≤ S ≤ 1. (9)

With (9), we keep the data point xi close to its neighbors.
As shown in Figure 2, data points 6 and 7 share the same adja-
cent point set {1, 2, · · · , 5}, (9) guarantees that data points 6 is
close to data points set {1, 2, · · · , 5}, and data point 7 is also
close to {1, 2, · · · , 5}, so data points 6 and 7will be close even
if they are not directly connected. This implicitly preserves
the affinity based on SOS of two unconnected data points.

According to [49], we have

min
S

N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

sijxj

∥∥∥∥∥∥
2

2

= min
S

Tr
(
X(I− S)(I− S)>X>

)
s.t. S> = S, 0 ≤ S ≤ 1, (10)

where X = [x1, x2, · · · , xN ] denotes the data matrix consists
of N data points and Tr(·) denotes the trace of the matrix.

C. THIRD-ORDER SIMILARITY (TOS) LEARNING
The TOS is proposed to excavate the third-order correlations
among multiple views [16]. Given a tensor S, which is con-
structed by combing all input affinity graphs S(v). The nuclear
norm ‖ · ‖~ is adopted to constrain the 3-order tensor S. The
TOS learning model is given as

min
S(v)

V∑
v=1

(
Tr(X(v)(I− S(v))(I− S(v))>X(v)>)

+ Tr(D(v)>S(v))
)
+ β‖S‖~

s.t. S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
, (11)

where X(v) and S(v) represent the data matrix and affinity
graph in the v-th view, respectively, the tensor S ∈ RN×V×N

denotes the rotated tensor which is constructed by collecting
all affinity graph S(v), V represents the number of views, and
β > 0 is the trade-off parameter. The tensor rotation is used to
effectively capture the common information among multiple
heterogeneous views.

Aswe all know, a good affinity graphwith strict block diag-
onal property is benefit for similarity learning clustering [20],
[34], [50], [51]. Therefore, we aim to learn an optimal affinity
graph with strict block diagonal property in our method.
According to [20], if the clustering indicator matrix satisfies
Q := {Q | Q ∈ RN×c,Q>Q = I}, QQ> is strictly block
diagonal. Then, we enforce the affinity graph S to be strictly
block diagonal by introducing Theorem 1.
Theorem 1 [20]: S1 := {S | S = QQ>,Q>Q = I},

Q ∈ RN×c, and S2 :=
{
S | S = S>,Tr(S) = c, 0 ≤ S ≤ 1

}
,

S2 is the convex hull of S1, and S1 is exactly the set of extreme
points of S2.

Hereto, optimal affinity graph S can be learned by

min
S(v)

V∑
v=1

(
Tr(X(v)(I− S(v))(I− S(v))>X(v)>)

+Tr(D(v)>S(v))
)
+ β‖S‖~

s.t. Tr(S(v)) = c,S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
, (12)

where c represents the number of classes.
It can be seen that the trace of the affinity graph is decided

by the number of clusters, which plays an important role
for MVC [29].

D. ROBUST KERNELIZED MULTI-VIEW CLUSTERING WITH
HIGH-ORDER SIMILARITY LEARNING
Although (12) has achieved better performance, it cannot
effectively deal with nonlinear data. To solve this problem,
some kernel-based approaches are proposed inwhich the non-
linear data is mapped into a high-dimensional kernel space
and the linear operations are performed in this kernel space.
The ‘‘kernel trick’’ is commonly used in kernel-based meth-
ods, in which data points mapping is computed and the inner
products between two data points are denoted as kernel val-
ues. Following the existing kernel-based method [17], [21],
for the v-th view, we denote the kernel Grammatrix byH(v)

∈

RN×N , and the kernel function by κ(x, y), we have

H(v)
ij = κ

(
x(v)i , x

(v)
j

)
∀i, j = 1, . . . ,N , (13)

where κ
(
x(v)i , x

(v)
j

)
induces a mapping φ. Then, the function

κ(·, ·) can be rewritten as

κ
(
x(v)i , x

(v)
j

)
= φ

(
x(v)i

)>
φ
(
x(v)j

)
. (14)

Given8
(
X(v)

)
=

[
φ
(
x(v)1

)
, . . . , φ

(
x(v)N

)]
, and the kernel

Gram matrix of the v-th view can be calculated as

H(v)
= 8

(
X(v)

)>
8
(
X(v)

)
. (15)

Commonly, the kernel function includes linear ker-
nel, polynomial kernel, and the Gaussian kernel. For
simplicity, in this paper, we define κ

(
x(v)i , x

(v)
j

)
=

exp

(
−

∥∥∥x(v)i −x(v)j ∥∥∥22
2σ 2

)
(Gaussian kernel), where parameter σ

denotes the width of the kernel. A larger σ tends to produce a
full rank matrix and a smaller σ tends to produce a diagonal
matrix. In general, the larger σ is, the fewer clusters the
algorithm tends to find.

Although the data points may be nonlinear in original
space, the local structure of the data points is useful which
can well reveal the intrinsic affinities among data points.
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Therefore, according to the existing kernel-based methods,
for the v-th view, we have

min
S(v)

V∑
v=1

(
Tr(8(X(v))(I− S(v))(I− S(v))>8(X(v)>)

+Tr(D(v)>S(v))
)
+ λ1‖8(X(v))‖∗ + β ‖S‖~

s.t. Tr(S(v)) = c,S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
, (16)

where 8(·) represents kernel mapping. ‖8(X(v))‖∗ is added
to constrain the rank of 8(X(v)).
Thus the data points in original nonlinear space aremapped

into the high-dimensional kernel space, and the local struc-
ture affinities among data points in original space are well
preserved [23].

Based on ‘‘kernel trick,’’ the kernel Gram matrix can be
represented asH(v)

= 8(X(v))>8(X(v)). Fortunately, because
the kernel matrix H(v) is symmetric positive semi-definite
(i.e., H(v)

≥ 0 ), it can be decomposed into H(v)
= B(v)>B(v),

that is ‖B(v)
‖∗ = ‖8(X(v))‖∗. This indicates that ‖B(v)

‖∗ can
capture the real affinities among data points.

In addition, if the data points are corrupted by outliers and
noise, the computation performance is reduced [52]. In order
to effectively process outliers and noise, H(v) is decomposed
into B(v)>B(v) and a sparse noise component E(v).
Therefore, by considering the above discussions, the pro-

posed RKHSL is given by

min
S(v),B(v),E(v)

V∑
v=1

(
Tr
(
(I(v)−2S(v)+S(v)S(v)

>
)B(v)>B(v)

)
+Tr(D(v)>S(v))+ λ1‖B(v)

‖∗ + λ2‖E(v)
‖1

)
+β‖S‖~

s.t. Tr(S(v)) = c,H(v)
= B(v)>B(v)

+ E(v),

S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
.

(17)

Combined with the above theory analysis, we propose a
kernelized MVGC model. An overall schematic illustration
of RKHSL is presented in Figure 1. First, RKHSL learns the
affinities between data points and their neighbors by FOS
and SOS learning, which can effectively avoid the noises and
outliers interference. Second, the tensor is used to learn the
TOS amongmultiple views, so that the consistent information
and view-specific information of all views can be efficiently
maintained. In addition, a kernel mapping is used to deal with
the nonlinear data. Finally, the clustering result is achieved by
using spectral clustering.

E. OPTIMIZATION
The (17) can be effectively solved by the augmented
Lagrange multiplier-based alternate direction minimization

(ALM-ADM) [20], which can iteratively update one variable
by fixing the other variables. By introducing the auxiliary
variableA, the augmented Lagrange function can be written
as

L({S(v),B(v),E(v)
}
V
v=1,A)

=

V∑
v=1

(
Tr
(
(I(v) − 2S(v) + S(v)S(v)

>
)B(v)>B(v)

)
+ Tr(D(v)>S(v))+ λ1‖B(v)

‖∗ + λ2‖E(v)
‖1

)
+β‖A‖~ +

µ

2

∥∥∥∥S −A+
Y
µ

∥∥∥∥2
F

+
ρ

2

∥∥∥∥∥H(v)
− B(v)TB(v)

− E(v)
+

Y(v)
2

ρ

∥∥∥∥∥
2

F

s.t. Tr(S(v)) = c,S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
, (18)

whereY and
{
Y(v)
2

}V
v=1

represent the Lagrangian multipliers,
and µ > 0, ρ > 0 represent the penalty parameters.
Then, each variable is calculated by fixing the other variables,
respectively.

(1) S(v) -subproblem: For updating
{
S(v)

}V
v=1 inS, we have

the following optimization problem

min
S(v)

(
Tr
(
(I(v) − 2S(v) + S(v)S(v)

>
)B(v)>B(v)

)
+ Tr(D(v)>S(v))

)
+
µ

2

∥∥∥∥∥S(v) − A(v)
+

Y(v)
1

µ

∥∥∥∥∥
2

F

s.t. Tr(S(v)) = c,S(v)
>
= S(v), 0 ≤ S(v) ≤ 1,

S = rotate
(
bvfold([S(1); · · · ; S(V )])

)
, (19)

where A(v) and Y(v)
1 are the v-th slices of the 3-D rotated

tensorA and Y , respectively. Then, (19) can be rewritten as

min
S(v)

1
2

∥∥∥S(v) − R(v)
∥∥∥2
F

s.t. Tr(S(v)) = c,S(v)
>
= S(v), 0 ≤ S(v) ≤ 1, (20)

where

R(v)
=

(
2B(v)>B(v)

+ µI
)−1 (

µA(v)
− Y(v)

1

+ 2B(v)>B(v)
− D(v)>

)
. (21)

The above discussed problem can be well solved according
to Theorem 2.
Theorem 2 [20]: For a symmetric affinity matrix S ∈

RN×N , the SVD of S is denoted as R = UDiag(ζ )U>. The
following problem

min
S

1
2
‖S− R‖2F s.t. Tr(S) = c,S> = S, 0 ≤ S ≤ 1

(22)
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has the optimal solution given by S∗ = UDiag (ρ∗)U>,
where ρ∗ is the solution to

min
ρ

1
2
‖ρ − ζ‖22, s.t. 0 ≤ ρ ≤ 1, ρ>1 = c. (23)

Finally, (23) can be effectively solved with an alternate
iterative algorithm as [53].

(2) B(v)-subproblem: For updating B(v), the optimization
problem is denoted as

min
B(v)

Tr
(
(I(v)−2S(v)+S(v)S(v)

>
)B(v)>B(v)

)
+λ1‖B(v)

‖∗

+
ρ

2

∥∥∥∥∥H(v)
− B(v)>B(v)

− E(v)
+

Y(v)
2

ρ

∥∥∥∥∥
2

F

. (24)

Let W(v)
= H(v)

− E(v)
+

Y(v)
2
ρ
, the optimization problem

for (24) can be reformulated as

min
B(v)

λ1‖B(v)
‖∗ +

ρ

2

∥∥∥B(v)>B(v)
− W̃(v)

∥∥∥2
F
, (25)

where W̃(v)
= W(v)

−
1
ρ

(
I(v) − 2S(v) + S(v)S(v)>

)
. Fortu-

nately, such a problem can be effectively solved according to
Theorem 3.
Theorem 3 [23]: Given A ≥ 0, A = U6U> represents the

singular value decomposition of A. Then

min
G

κ

2

∥∥∥A−G>G
∥∥∥2
F
+ τ‖G‖∗

=

n∑
i=1

(
κ

2

(
σi − γ

∗2
i

)2
+ τγ ∗i

)
. (26)

A minimizer G∗ of (26) is given by

G∗ = 0∗UT (27)

with 0∗ ∈ Qn
+, γ

∗
i ∈

{
α ∈ R+ | pσi,τ/2κ (α) = 0

}
∪ {0},

in which pa,b represents the depressed cubic pa,b(x) = x3 −
ax + b. Qn

+ represents the set of n × n diagonal matrix with
non-negative entries.

(3) E(v)-subproblem: For updating E(v), the optimization
problem is given by

min
E(v)

λ2‖E(v)
‖1 +

ρ

2

∥∥∥∥∥H(v)
− B(v)>B(v)

− E(v)
+

Y(v)
2

ρ

∥∥∥∥∥
2

F

.

(28)

Let O(v)
= H(v)

− B(v)>B(v)
+

Y(v)
2
ρ
, the problem for (28)

can be solved according to

min
E(v)
i

ρ

2

∥∥∥E(v)
i −O(v)

i

∥∥∥2
2
+ λ2

∥∥∥E(v)
i

∥∥∥
1
, (29)

where E(v)
i and O(v)

i are the i-th column of E(v) and O(v),
respectively. The solution for this problem is given by

E(v)
ij
∗

= sign
(
O(v)
ij

)(
abs

(
O(v)
ij

)
−
λ2

ρ

)
+

=


O(v)
ij −

λ2
ρ
, if O(v)

ij >
λ2
ρ

O(v)
ij +

λ2
ρ
, if O(v)

ij < −
λ2
ρ

0, otherwise .

(30)

(4)A-subproblem: For updatingA, the optimization prob-
lem is given by

min
A
β‖A‖~ +

µ

2

∥∥∥∥A− (S + Y
µ

)∥∥∥∥2
F
, (31)

which can be considered as a t-TNN minimization problem.
Given R = S + Y

µ
, (31) can be effectively solved by

Theorem 4.
Theorem 4 [15]: The 3-order tensorsA ∈ RN1×N2×N3 ,C ∈

RN1×N2×N3 , and a scalar τ > 0 are given, the following
problem

min
A
τ‖A‖~ +

1
2
‖A− C‖2F (32)

can be effectively solved by the tensor tubal-shrinkage oper-
ator, i.e.,

A = FN3τ (C) = U ∗FN3τ (M) ∗ V>, (33)

where C = U ∗M ∗ V>, FN3τ = M ∗ Q. The tensor
Q ∈ RN1×N2×N3 is f -diagonal, and the diago-
nal element of Q ∈ RN1×N2×N3 is represented by
Qf (i, i, j) =

(
1− N3τ
M(i,i,j)

)
+

.

(5) ADMM variables: The Lagrange multiplier Y can be
updated by

Y = Y + µ(A− S),

µ = min (νµ,µmax) ,

ρ = min (νρ, ρmax) , (34)

where µ and ρ represent the scalars involved in ADMM.
In each iterator, the algorithm convergence is checked via

error = ‖A− S‖∞ < ε, (35)

where ε = 10−7 is a threshold. The tensor S with size
N × V × N can be rotated to S∗ = irotate (S) with size
N × N × V . Then, the optimal affinity graph S can be
computed by averaging all the frontal slices of S∗, i.e.,

S =
1
V

V∑
v=1

S∗(:, :, v). (36)

Subsequently, by using S as input, the final cluster-
ing assignments are achieved by using spectral clustering.
The optimization algorithm of RKHSL is described
in Algorithm 1.

F. COMPLEXITY ANALYSIS
The computation complexity of Algorithm 1 is as follows:
Updating S(v) has the computation complexity of O

(
VN 3

)
.

For updating B(v), the computational complexity isO
(
VN 3

)
.

The updating E(v) is element-wise operation, which has the
computational complexity of O

(
VN 2

)
. Updating A need to
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Algorithm 1 Optimization for RKHSL.

Input: Multi-view matrices X = [X(1), . . . ,X(V )], parame-
ters λ1, λ2 and β.

Output: The clustering results.
1: Initialize A = S, ε = 10−7, µ = 10−4, ρ = 10−4, and
maxIter = 50.

2: while convergence criterion ε < 10−7 is not satisfied do
3: Update each affinity graph S(v) via (19);
4: Update B(v) via (24);
5: Update E(v) via (28);
6: Update graph tensorA via (31);
7: Update ADMM involved variables via (34);
8: end while
9: Perform spectral clustering on affinity graph S.

TABLE 2. Summary of the benchmark datasets.

compute the tensor FFT and inverse FFT along the third
dimension of S ∈ RN×V×N , which has the computation
complexity of O

(
VN 2 log(N )

)
; moreover, the SVD of all

frontal slices of S in the Fourier domain has the compu-
tation complexity of O

(
V 2N 2

)
. Therefore, updating A has

the computation complexity ofO
(
VN 2 log(N )+ V 2N 2

)
. For

the auxiliary variables involved in ADMM, the computation
complexity isO(V ) in each iteration. Therefore, the complex-
ity of RKHSL isO(t((V 2

+V )N 2
+VN 2 log(N )+2VN 3

+V )),
where t denotes the iterations. The spectral clustering has
the computation complexity of O(N 3). In practice, we have
t � N and V � N . Thus Algorithm 1 has the computation
complexity of O(N 3).

V. EXPERIMENT
All these experiments are performed on an Intel Core i5
(2.9 GHz) CPU, with a Windows 10(x64) operating sys-
tem, 16 GB memory, and the MATLAB 2019b simulation
software.

A. DATASETS
We adopt five real public datasets in our experiments and
summarize the related information in Table 2, which include
text, flower, digit, generic object, and scene. Then we briefly
introduce these datasets as follows.

BBCSport1 includes 544 sports news refer to five the-
matic areas on the BBC website. In our experiment, similar
to [27], it contains two views with dimensions of 3183 as
view 1 and 3203 as view 2.

1http://mlg.ucd.ie/datasets/segment.html

TABLE 3. Parameter settings of RKHSL.

Flowers2 contains 1360 flower samples with 17 categories.
In our experiment, similar to [27], three features are extracted
as three views, which are 1360d color feature as view 1,
1360d texture feature as view 2, and 1360d shape feature as
view 3.

UCI digits3 includes 2, 000 digit images of handwritten
numbers (0-9) corresponding to 10 categories. In our exper-
iment, similar to [54], three different kinds of features are
extracted to represent these digit images, which are Fourier
coefficients feature, pixel averages feature, and morphologi-
cal feature.

COIL-204 consists of 1, 440 images corresponding to
20 categories. In our experiment, similar to [34], three differ-
ent types of features are extracted to represent these images,
including intensity, LBP, and Gabor features.

Scene-15 [55] includes 15 categories of indoor and outdoor
natural environment scenes, including industrial, kitchen,
store, etc., with a total of 4, 485 images. Similar to [16],
three different types of features are extracted to represent
these scene images, including PHOW (pyramid histogram of
words), LBP, and CENTRIST (census transform histogram).

B. BASELINES AND EVALUATION METRICS
The proposed method is compared with two classical
single-view clustering methods and six advanced multi-view
clustering methods.
• SPCbest [56]: Best spectral clustering (SPCbest)
achieves the best clustering result by using stan-
dard SPC.

• LRRbest [57]: Best low-rank representation (LRRbest)
achieves the best clustering result by adopting a low-
rank constraint.

• RMSC [54]: Robust MVSC (RMSC) achieves the MVC
results by recovering a shared low-rank transition prob-
ability matrix of the Markov chain.

• DiMSC [58]: Diversity-induced multi-view subspace
clustering (DiMSC) learns the complementary informa-
tion of multiple views by using HSIC as the diversity
term.

• MCLES [24]:MVC in latent embedding space (MCLES)
achieves the MVC by learning a latent embedding rep-
resentation from all views.

• LTMSC [34]: Low-rank tensor constrained MSC
(LTMSC) learns the optimal self-representation matrix

2http://www.robots.ox.ac.uk/vgg/data/flowers/
3http://archive.ics.uci.edu/ml/datasets/Multiple+Features
4http://www.cs.columbia.edu/CAVE/software/softlib/
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TABLE 4. Performance comparison of different clustering methods on the BBCSport dataset.

TABLE 5. Performance comparison of different clustering methods on the flowers dataset.

TABLE 6. Performance comparison of different clustering methods on the UCI digits dataset.

by using a low-rank tensor constraint to improve clus-
tering performance.

• t-SVD-MSC [15]: t-SVD based MSC (t-SVD-MSC)
learns the optimal self-representation matrix by using
the t-SVD based on tensor rotation to improve clustering
performance.

• ETLMSC [16]: Essential tensor learning for MVSC
(ETLMSC) is a novel tensor-based spectral clustering
method by using the multi-view transition probability
matrices of the Markov chain to excavate the high-order
relations of multiple views.

• HOSL: MVC based on high-order similarity learn-
ing (HOSL) is presented in (12) in section IV.

For evaluating the comparison methods mentioned above,
five benchmark metrics are used, including Accuracy (ACC),
Normalized Mutual Information (NMI), F-score, Precision,
adjusted rand index (AR), and Recall [59]. For these met-
rics, the higher values indicate better performance. To avoid
the random value in our experiments, each method is

performed 20 times and the mean and standard deviation
are reported. To comprehensively evaluate our work, these
methods include single view clustering, MVC, and tensor-
based clustering.

C. EXPERIMENTAL RESULTS
Abundant MVC experiments are performed for evaluating
our work and the above comparisonmethods. The experimen-
tal results are shown in Tables 4-8, where the numbers in the
parentheses refer to the standard deviations.

From these comparison results, the following results can
be observed:
• The single-view clustering, SPCbest and LRRbest, have
obtained better performance. But in the main, MVC
performs better than single view clustering. This verifies
that the complementary information included inmultiple
views can greatly improve the clustering performance.

• Overall, as shown in Tables 4-8, the RKHSL achieves
the best performance on all the datasets under
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TABLE 7. Performance comparison of different clustering methods on the COIL-20 dataset.

TABLE 8. Performance comparison of different clustering methods on the Scene-15 dataset.

FIGURE 3. Visualizations for affinity graphs learned from the different methods on the BBCSport dataset. As presented, our RKHSL produces much more
clear structures.

six evaluation metrics. For example, for ACC, from
Table 4 and Table 5, the improvements of RKHSL over
the best competitor HOSL are about 3% and 9% on
BBCSport and Flowers datasets, respectively.

• Compared with RMSC, DiMSC, and MCLES, our pro-
posed RKHSL gains a remarkable improvement. The
primary reason is that RMSC,DiMSC, andMCLES only
acquire the common information among multiple views,
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FIGURE 4. The ACC of RKHSL on the BBCSport dataset with different parameter settings.

FIGURE 5. The ACC of RKHSL on the Flowers dataset with different parameter settings.

while our proposed RKHSL learns the 3-order similarity
among multiple views which can effectively excavate
each view-specific information and multi-view consist
information.

• Compared with ETLMSC and t-SVD-MSC, our pro-
posed RKHSL gains significant improvement on all
datasets, especially on the difficult Scene-15 datasets.
We can easily observe that RKHSL improves 3% and
8% in terms of ACC than ETLMSC and t-SVD-MSC
on Scene-15 datasets, which shows the effectiveness of
FOS and SOS simultaneous learning.

• Compared with HOSL, our proposed RKHSL performs
well. The primary reason is that we introduce the kernel
mapping to further learn the nonlinear data, both the
linear affinities in the mapping kernel space and the
locally structure affinities in the original space can be
captured simultaneously. Therefore, the RKHSL obtains
the perfect results.

D. VISUAL VERIFICATION OF BLOCK DIAGONAL
REPRESENTATION
The importance of affinity graph for multi-view clustering
has been discussed earlier. Therefore, we illustrate the affinity

FIGURE 6. Plots of clustering accuracy (ACC) on BBCSport dataset with
missing data noise.

graphs of the compared methods on the BBCSport dataset in
Figure 3. It is observed that the affinity graph satisfies the
block diagonal property with exact c connected blocks, where
each block corresponds one-to-one with one cluster of the
data points. For example, from Figure 3, the affinity graph
learned from RKHSL has exact 5 block diagonal components
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FIGURE 7. Convergence curves of RKHSL on the BBCSport dataset and Flowers dataset.

clearly because the BBCSport dataset contains 5 clusters. The
inter-cluster affinities are all zeros, but the intra-cluster affini-
ties are not-zeros. This indicates that the data points placed in
the same cluster have greater affinity than data points placed
in different clusters. Considering the cluster diameter and
cluster spacing, the maximum distances between data points
within clusters are less than the minimum distances between
data points in different clusters. And the cluster separation is
ideal if the diameter of each cluster is smaller than each of its
cluster spacing.

Therefore, the above visual results demonstrate that
RKHSL has admirable clustering performance; moreover,
they further verifies that RKHSL can well explore the non-
linear affinities among data points.

E. PARAMETER ANALYSIS
Table 3 gives the optimal values of λ1, λ2 and β involved
in our algorithm. The grid search method is used to show
the influences of the three hyper-parameters. Taking the
BBCSport and Flowers datasets for example, we present
the ACC of our proposed RKHSL method in Figure 4 and
Figure 5, respectively. We first fix λ2 = 10000 on BBC-
Sport dataset and λ2 = 1000 on Flowers dataset, and
then turn λ1 and β in [10−2, · · · , 104]. From Figure 4(a)
and Figure 5(a), we can observe that our algorithm is
not sensitive to λ1. Besides, the results suggest that when
β varies in [102, · · · , 104], clustering performance is rela-
tively stable.

Next, we fix λ1 = 0.01 on BBCSport dataset and
λ1 = 1000 on Flowers dataset, and then turn λ2 and
β in [10−2, · · · , 104]. From Figure 4(b) and Figure 5(b),
we can observe that the RKHSL can achieve the desired
effect when λ2 varies in [101, · · · , 104]. In summary, when
these hyper-parameters vary in a relatively large interval,
our algorithm is insensitive. Besides, these hyper-parameters
are insensitive to different datasets. On all the five datasets,
we use the same set of hyper-parameters to achieve the com-
parative results shown in Tables 4-8.

F. ROBUSTNESS EXPERIMENT
In this part, we test the robustness of RKHSL to non-Gaussian
noise on the BBCSport dataset. In our experiments, we ran-
domly select some samples and set them as zero to simulate
the missing noise data. All results are presented in Figure 6.
We can clearly see that RKHSL has good robustness. When
the data is corrupted, RKHSL can fully excavate the potential
affinities among data points and different views to ensure the
validity of the learned consensus affinity graph.

G. CONVERGENCE ANALYSIS
The convergence of our algorithm is analyzed in this part. The
error of our algorithm in each iteration is shown in Figure 7 on
the BBCSport dataset and Flowers dataset. In our algorithm,
the error is defined as the change in each iteration: error
= ‖A − S‖∞. According to Figure 7, the error reduces
with the increasing of iterations which indexes that the opti-
mization algorithm is convergent. The error value decreases
quickly with the increase of iterations and converges within
50 iterations, and similar phenomena can be observed for
other datasets.

VI. CONCLUSION
In this paper, we put forward a robust kernelized MVC based
on high-order similarity learning (RKHSL). Based on FOS
and SOS learning, we explore the local structure affinities
among data points in original space and excavate the non-
linear affinities among data points in the high-dimensional
kernel spaces. Afterwards, the TOS from multiple input
affinity graphs of multiple views is captured in a 3-order
tensor with a low-rank nuclear norm constraint. By t-SVD
and tensor rotation operation, the RKHSL can be highly
optimized. We evaluate the performance of our work on
five open datasets in multiple applications, and it achieves
significant improvement compared with the current state-of-
the-art methods under six benchmark metrics.

In future work, we would like to concentrate on the mul-
tiple kernels learning for MVC, which can effectively utilize
the high-order similarity among data points for clustering.
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