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ABSTRACT Today, many-objective optimization problems have attracted widespread attention. There are
significant advantages of the grid-based algorithm in solvingmulti-objective problems. Grid-based algorithm
could offer a transformation of objectives and further distinguish the non-dominated solutions. However, the
advantages of grid have not been fully exploited. For example, the traditional homogeneous grid divisions
can’t sufficiently reveal the similarity of adjacent solutions. And overemphasizing the selection pressure
may cause the diversity decline of grid. To exploit the potentialities of grid, an inhomogeneous grid-based
evolutionary algorithm (named IGEA) is proposed. IGEA applies a dynamic inhomogeneous grid division
approach and redefining the coordinate assignment of individuals, which makes the dominance relationship
more obvious. IGEA also applied the shift-based density estimation (SDE) strategy in discriminating the
non-dominated solutions in grid coordinate. SDE can provide a good balance of convergence and diversity.
The IGEA compares with several state-of-the-art evolutionary algorithms against the regular and irregular
many-objective optimization problems. The experimental results demonstrate that IGEA is very competitive
against the peer algorithms in terms of providing a good balance between convergence and diversity.

INDEX TERMS Many-objective optimization, grid-based, inhomogeneous grid, shift-based density
estimation.

I. INTRODUCTION
A many-objective optimization problems (MaOPs) could be
defined as follows:

minimize F(x) = F1(x),F2(x), . . . ,FM (x)

subject to x ∈ � (1)

where Ex denotes a solution in the feasible solution space �,
Fi(i = 1, 2, . . . ,M ) is ith objective, whereM ≥ 3.

The individual Ex dominates individual Ey is expressed as
follows:

∀i ∈ (1, 2, . . . ,M ) : Fi(x) ≤ Fi(y)

∃j ∈ (1, 2, . . . ,M ) : Fj(x) < Fj(y) (2)

Individual Ex is called non-dominated, individual Ey is called
dominated.

For MaOPs, the set of all obtained Pareto solutions is
called Pareto Set (PS) and the set of all Pareto optimal
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objective vectors is called Pareto Front (PF). Any algorithms
should optimize MaOPs with two limits: converging towards
true PF as close as possible and distributing PS as widely as
possible [1], [2].

It is difficult to solve MaOPs by the traditional gradient-
based mathematical method. Evolutionary optimization
methods give a way to handle MaOPs. Nowadays, many-
objective evolutionary algorithms (MOEAs) are proposed to
handle MaOPs [3].

At present, intelligent genetic optimization algorithms, as a
class of heuristic search algorithms, have been successfully
applied to the field of multi-objective optimization, and some
popular research directions have emerged, such as evolution-
ary multi-objective optimization, while the research on the
application of multi-objective intelligent optimization algo-
rithms in power systems, manufacturing systems and control
systems has also made great progress.

MOEAs can be generally into three categories:
decomposition-based MOEA, indicator-based MOEA and
domination-based MOEA. Each type of MOEAs has
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its own advantages and disadvantages in dealing with
different MaOPs.

Decomposition-based MOEA includes MOEA/D [4] and
its improved versions [5], [6], [7], [8]. The decomposition-
based MOEA decomposes a multi-objective problem into a
set of single-objective problems. Every individual assigning
to a single-objective problem benefits from the progress of
its neighbors. There are three commonly aggregation func-
tions in decomposition strategies: weighted sum approach,
Tchebycheff approach and penalty-based boundary intersec-
tion approach. Weighted sum approach can well deal with
the minimization problem when the real Pareto front surface
is convex. Tchebycheff approach can deal with the problem
with convex or concave Pareto surface, but it deals with the
discontinuous problems non-ideally. Penalty-based bound-
ary intersection approach has a great advantage in dealing
with high-dimensional objective problems. It can adjust the
balance between diversity and convergence by controlling
parameters, which may be also a potential disadvantage for
solving MaOPs without any prior knowledge.

Indicator-based MOEAs use one or some indicators [9],
[10], [11], [12] to distinguish the acceptable solutions from
the current population. The indicator is a quantitative tool
to evaluate the performance of different solutions. It can be
divided into three classes: convergence indicator, distribution
indicator, and comprehensive indicator. This kind of MOEAs
employs indicators to guide the search process and the solu-
tion selection process. The famous indicator-based MOEAs
include IBEA [13], indicator-based CMOEA [14], MaOEA-
IBP [15], H-RVEA [16], IMIA [17], CDG-MOEA [18]. The-
oretically, any metric can be integrated into MOEAs in some
specific ways. However, when some evaluation indicators
(SP, IGD, GD) are integrated into MOEAs, the complica-
tion of MOEAs may emerge and the operating efficiency of
MOEA may decline.

Domination-based MOEAs includes non-dominated rank-
ing algorithm (NSGA-II) [19], (NSGA-III) [20], Pareto
dominance [21], ε-domination [1], SPEA2 [22] and so on.
Domination-based MOEAs usually use the dominance rela-
tionship to assign a fitness to individuals. Individuals are
sorted by fitness, and the best individuals are selected through
the elite retention strategy. Domination-based MOEAs has
many advantages: First, the computation complexity of non-
dominated sorting is low. Second, the domination method
does not have many additional parameters that need to be set.
Third, domination method is flexible and can be combined
with any diversity or convergence indicators.

The dominance-based algorithms have to face some dif-
ficulties [23], [24]: (1) Domination-based MOEAs performs
poorly in dealing with MaOPs with some many objectives.
The non-dominated relationship occupies among most of the
individuals, which makes the elite retention mechanism diffi-
cult. (2) In a high-dimensional space, the diversity indicators
and identifying neighbors cost lots of computations. To make
the computations faster, any simplification in diversity esti-
mate may lead to a poor distribution of PS. (3) When dealing

with high-dimension problems, the huge difference between
each two non-dominated parents cause that the offspring solu-
tions produced by recombination operator are far from their
parents. (4) Inappropriate density estimation deteriorates the
search performance. Some well-converged non-dominated
individuals can’t be distinguished from the inferior offspring
with poor convergence to PF.

There are two kinds of attempts to solve these problems:
First, to increase the Pareto selection pressure, the Pareto

dominance relationship should be changed or enhanced [25].
The strengthened dominance relation (SDR) and controlled
SDR (CSDR) are representative of this way [26], [27], [28].
One way is to partition objective space. In the space partition-
ing selection and angle-based truncation (SPSAT) [29], the
normalized objective space is divided into many subspaces.
One way is to reduce dimensionality [30], [31]. Many-
objective space can be changed into one or two-objective
space for clarifying the Pareto dominance relationship. Pareto
corner search evolutionary algorithm (PCSEA) [32] itera-
tively eliminates the objectives according to the principal
components analysis. The originally obtained non-dominated
solutions can be compared with dimensionality reduction
process. Another way is to build grid to deal with MaOPs.
Grid-based algorithms [33] can maintain wide distribution
of solutions towards PF under the appropriate selection
pressure.

Second, the indicator method is to design a metric to esti-
mate either or both of the convergence and diversity of indi-
viduals. e.g., GD/MaOEA [34], DIR [35] metric and Pareto
dominance-based MOEA (PDMOEA) [36]. Shift-based den-
sity estimation (SDE) [23] could estimate both diversity and
convergence of individuals in the population. The main idea
of SDE is to give the preference of density estimators for
individuals in sparse regions. SDE attempts to drive individ-
uals with poor convergence towards crowded areas through
coordinate transformation.

Although the existing methods can solve the above prob-
lems, there is still some space of improvements. For example,
the advantages of the grid are not fully exploited. Traditional
grid divisions are homogeneous and can’t sufficiently reveal
the similarity of adjacent solutions. It is possible to take
advantage of the characteristics of the population to divide
the grid inhomogeneously. Some novel diversity and conver-
gence conservation mechanisms may be also beneficial for
the grid-base selection.

This paper proposes a novel dynamical grid-based evolu-
tionary algorithm (named IGEA) to solve MaOPs. In IGEA,
the grid is dynamically divided inhomogeneously by the
clustering algorithm, and the coordinates of individuals is
assigned by a normalization method. To maintain the conver-
gence and diversity, IGEA also introduces the SDE strategy
that can distinguish the poorly converged or crowded solu-
tions in the population. To demonstrate the characteristics of
IGEA for solving MaOPs, it has been compared extensively
with four famous algorithms on a series of regular and irreg-
ular issues.
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The remainder of this paper is organized as follows.
Section II discusses the current mainstream grid-based algo-
rithms and their shortcomings. Section III gives the improve-
ment plan towards some problems of GrEA. Section IV
shows some details of the proposed algorithm. Section V
gives some details of the experimental design. The experi-
mental results are given in Section VI. Finally, Section VII
provides some summary of the algorithm and gives some
suggestions for the future.

II. REVIEW OF GRID-BASED MOEAS
The grid strategy has been introduced in MOEAs for solv-
ing MaOPs [37]. The number of solutions sharing grid
places is to determine a solution’s crowding degree. When
a non-dominated solution joins a full archive, it replaces the
most crowded solution if its own congestion is low. Different
from PESA [38] and PESA-II [21], the grid is viewed as
a tool of storing convergence and diversity of individuals.
According to the solution’s position in grid, each individual
is assigned with a rank level and a density value [39]. In [40],
a dynamic grid adjustment strategy is presented, whichmakes
the size of hyper-box change as needed. Also, the DIR [35]
metric is used to assess the diversity of individuals in the grid.

Although traditional grid-based algorithms have good per-
formance on MaOPs, they also have some drawbacks. The
reasons of these drawbacks can be outlined as follows:
1) The objective space is inappropriately divided, and the

number of non-dominated solutions grows geometri-
cally as the number of objectives increases [41].

2) The traditional grid algorithm lacks an effective domi-
nant evaluation method [33], because the existing indi-
cators cannot discriminate individuals effectively.

3) Many grid-based algorithms are biased towards con-
vergence or diversity, but it is a challenge to balance
convergence and diversity [23].

4) Traditional homogeneous-grid-based algorithms have
limitations in solving irregular multi-objective prob-
lems, especially discontinuous problems.

In recent years, several grid-based evolutionary algorithms
have been designed to solve MaOPs. In [42], one single
solution of the cell is used to create the non-dominated area
in grid. Moreover, the method utilizes the smallest number
of virtual solutions to determine whether a solution is a non-
dominated solution. The selection pressure, diversity of solu-
tions, time and memory consumption are taken into account.
As the most famous grid-based MOEA, GrEA adopts homo-
geneous grid division and proposes a new punish strategy
based on neighborhood and grid dominance relationship.
GrEA can provide higher selection pressure and wide and
uniform distribution of PS towards PF. GrDE [43] propose
a novel grid-based differential evolution (DE) algorithm. The
method of dividing grid is similar to GrEA, and GrDE also
uses indicators of GrEA to select individuals for local muta-
tion. In [44], a new mechanism for maintaining diversity is
designed. The vision of grid-based crowding distance in deci-
sion space is brought in. In addition, the algorithm maintains

diversity of solutions in not only decision spaces but also
objective spaces. Penalty strategy [45], Pareto dominance and
weighted sum [46], grid-based archiving [47] approaches are
also used to deal with grid-based on many-objectives. These
approaches can’t make a significant improvement of grid-
based multi-objective algorithms on overcoming the draw-
backs mentioned before. Similar to GrEA, most of these
strategies act on neighbors and lack a global evaluation for
crowding distance and fitness.

In [47], the Pareto Archived Evolution Strategy employs
an adaptive crowding mechanism to recursively divide the
objective space into grid segments. Meantime, adaptive grid
archiving (AGA) system is introduced in grid. The main con-
cept is to prevent premature aggregation of dominant solu-
tions in the optimization process. Such common optimization
solutions usually lead to genetic drift and result in a final
set of approximations gathering around these elite solutions.
These non-elite solutions appear early in the optimization
process, and they may contain potential information that
would is helpful in searching undiscovered areas of the objec-
tive space later. In [18], the grid system is introduced in to the
decomposition-based algorithm. When one objective is opti-
mized, other objectives are regarded as its constraints. The
constrained decomposition is to sort the objectives of each
solution. This algorithm offers a well performance on multi-
objective optimization but not many-objective optimization.
In the above grid-based algorithms, the grid is still divided
homogeneously, and the potential of the grid are not fully
utilized.

In summary, although the grid-based methods would
enhance the performance of MOEAs on solving MaOPs,
some deficiencies still limit the performance, which is worth
deeply researching on grid division methods.

III. MOTIVATION
GrEA uses the grid’s potential to solve MaOPs. The solutions
can be compared by three grid-based indicators: Grid Rank
(GR), Grid Crowding Distance (GCD) and Grid Coordinate
Point Distance (GCPD). However, there are some drawbacks
in handling the multi-objective problems with grid. As shown
in Figure 1, the GR of individual A in the grid is better than
that of B. However, actually, B is closer to the Pareto Front
than A. The reason is that the homogeneous grid can’t reveal
the dominance relationship or makes dominance relationship
biased toward A.

The inhomogeneous grid division has more potential in
solving the above problem. Each objective is divided inde-
pendently by certain method, such as cluster algorithm [48],
[49], [50]. The individuals with high similarity are located in
the same cell, and individuals are assigned to coordinates by a
normalization method. An illustration of the inhomogeneous
grid division is given in Figure 2. Even though A and B locate
in the same cell, their grid coordinates are not consistent.
In comparison with the homogeneous grid division, the inho-
mogeneous grid division can offer a more obvious dominance
relationship.
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FIGURE 1. Disadvantages of GrEA.

FIGURE 2. Distribution of similar individuals in the inhomogeneous grid.

With the help of grid, the convergence could reflect the
evolutionary state of the solution. Grid coordinates consider
not only the similarity between individuals but also the dif-
ferences between them. As an illustration shown in Figure 3,
the difference between A and B in the objective f2 is greater
than the difference in the objective f1. Grid difference enables
to provide higher selection pressures.

This paper proposes IGEA to solve MaOPs. The inhomo-
geneous grid division implemented by K-means clustering
method could appropriately and simultaneously maintain the
diversity and convergence. Offspring are generated based on
the novel Grid Dominance, Grid Difference (GD) and Grid
Crowding Distance (GCD). In the process of environment
selection, the SDE method that covers both the distribution
and convergence information of individuals is used to reflect
the relative closeness of the individual to the PF.

Moreover, most grid-based multi- or many-objective opti-
mization algorithms perform really well on regular problems
but fail in dealing with irregular problems. Nevertheless,

FIGURE 3. Illustration of individuals in two-objective space.

the proposed IGEA with inhomogeneous grid division own
an outstanding performance on solving irregular problems,
because the inhomogeneous grid division canmake not only a
qualitative comparison of the dominant relationship between
the solutions but also a quantitative calculation of the differ-
ences among them.

The original design intentions of designing IGEA and
GrEA is similar, but there still are some differences between
them:
(1) The inhomogeneous grid division implemented by

K-means clustering is one of the main differences
between IGEA and GrEA.

(2) In GrEA, the normalization process used in calculating
GCDP is only to distinguish the solutions in the same
cell. In IGEA, the normalization process is to assign the
coordinates to all solutions in different cell.

(3) In GrEA, the individuals are selected based on an adap-
tive penalty mechanism that is mainly related to neigh-
bors. In IGEA, the individuals are selected based on the
fitness calculation that is related to global individuals.

Here, the inhomogeneous grid is important to be able to
distinguish individuals better. The SDE strategy provides an
auxiliary function in environment selection, which prevents
individuals from overcrowding on PF compared to the GrEA
penalty strategy.

IV. THE PROPOSED ALGORITHM
The main steps of IGEA involves population initialization,
inhomogeneous grid division and coordinate assignment,
assignment of Grid Difference (GD) and Grid Crowding
Distance (GCD) metrics, mating selection, and environment
selection. The flow chart of the algorithm is in Figure 4. The
detailed will be given in the following chapters.

A. MAIN FRAMEWORK
IGEA is similar to most common MOEAs, whose main
steps include: population initialization, mating selection, and
environment selection. The main framework of IGEA is
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Algorithm 1 Algorithmic Framework of IGEA
Require: P (parent population), N (archive size), i (Max
number of iterations)
1: P← Initialize(P)
2: While iterations ≤ i do
3: Inhomogeneous Grid Division(P)
4: GD/GCD _assignment(P)
5: P’← Matting_selection(P)
6: P’’← Variation(P’)
7: P← Environmental_selection(N = P ∪ P’’)
8: end while
9: return P

FIGURE 4. The flow chart of the algorithm.

demonstrated in Algorithm 1. Here, the grid is dynamically
divided by K-means clustering method. Every individual is
assigned to a new coordinate according its grid location. And
the optimal individuals are selected based on grid dominance
and two grid indicators (GD and GCD) in mating selection,
which are similar to GrEA. The environment selection uses
the SDE strategy to pick out the individuals with well con-
vergence and distribution. The details of above-mentioned
strategies are given in the following sections.

B. INHOMOGEENOUS GRID DIVISION
In IGEA, the k-means method is adopted to construct the
inhomogeneous grid. The minimum value min(Pl) and max-
imum value max(Pl) in the lth objective are found. K classes
are obtained by k-means clustering in the lth objective, and
the distances among these classes are inhomogeneous. These
classes are used to partition grid. The inhomogeneity grid
division in the lth objective is displayed in Figure 5. The
same is used if the objective space is a single, when the whale
algorithm can be applied to optimize that objective very well.

In Figure 5, after clustering, K classes are obtained, and
the minimum and maximum values in each class are used as
the left and right boundaries of the class, respectively. On its
left side of the ith class, the middle value of its the min and
max value of (i-1) classes are regarded as the dividing grid
line. On the right side of the ith class, the middle value of its
maximum value and the minimum value of (i + 1) classes
is regarded as the line dividing the grid. On this way, the
inhomogeneous grid is built.

After dividing the grid, a local normalization method is
used to determine the coordinates in the lth objective. First,
the class that the lth objective of an individual locates at is
found, and then the normalized coordinate of the lth objective
value of this individual’s location based on the ratio of the
distance between the individual and the left boundary to the
cell length. The normalized coordinate of certain individual
in the ith class is calculated as follow:

GLl(x) = (i− 1)+ |
Fl(x)− CLl(i)

CLl(i+ 1)− CLl(i)
| (3)

where GLl(x) represents the coordinates of this individual in
the lth objective, Fl(x) represents the lth objective value of
the individual, CLl(i) represents the left boundary of the ith
cell in the lth objective, and CLl(i+1) - CLl(i) represents the
length of ith cell in the lth objective, i denotes the ith class
(1 < i ≤ K −1). For the 1st class, CLl(1) is equal to min(pl).
The normalized coordinate of certain individual in the

1st class is calculated as follow:

GLl(x) = |
Fl(x)−min(Pl)
CLl(2)−min(Pl)

| (4)

Similarly, the normalized coordinate of certain individual in
the last class is calculated as follow:

GLl(x) = (K − 1)+ |
Fl(x)− CLl(K )

max(Pl)− CLl(K )
| (5)

Definition (Grid Dominance): Let x, y ∈ �, x ≺grid y:⇔

∀i ∈ (1, 2, . . . ,M ) : Gi(x) ≤ Gi(y)

∃j ∈ (1, 2, . . . ,M ) : Gj(x) < Gj(y) (6)

where x ≺grid y denotes that the x grid-dominates y andM is
the objective number.

The idea of grid dominance and Pareto dominance is basi-
cally the same. The dominance relationship between two indi-
viduals is judged by the coordinate. Through grid dominance,
the individuals (such as B and E in Figure 1) that can’t be
distinguished based on the original Pareto domination can be
compared.

As slack forms of the Pareto dominance relation, there are
some differences between the proposed grid dominance and
the ε-dominance [1]. In ε-dominance, the objective space is
divided into several boxes. For grid dominance, after each
cycle, the grid is dynamical inhomogeneous re-divided. And
a normalized coordinate is assigned to the individual. Even
if two individuals are in the same grid, their coordinates may
be different after normalization, which makes the dominance
relationship between them clearer.
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FIGURE 5. Division of the grid in lth objective.

C. GD/GCD_ASSIGNMENT
Definition (GridDifference): Let x, y ∈ P, the grid differences
as follows:

GD(x, y) =
M∑
k=1

|Gk (x)− Gk (y)| (7)

whereGk represents the cell coordinates on the kth objective.
M is the number of objectives. The grid difference is related
to the number of classes. The more classes there are, the finer
the division between population, which results in a larger
difference between their coordinates in each dimension of the
grid.
Definition (Grid Crowding Distance): Grid Crowding Dis-

tance (GCD) of individual x as follows:

GCD(x) =
∑
y∈N (x)

(M − GD(x, y)) (8)

where N (x) represents the set of neighbors of x. GCD rep-
resents the crowd of solution Ex in the objective space. Here,
the density is estimated only in certain area. The solution Ex
neighboring to the solution Ey meets GD(x, y) < M . For
example, in Figure 6, as the neighbors ofF areE andG, so the
GCD of F is (2 - (|4.4 - 3.5|+ |0.6 - 0.9|))+ (2 - (|4.4 - 4.6|+
|0.6 - 0.3|)) = 2.3. The density could reflect the distribution
quantitatively.

GCD of the solution depends not only on difference
between individuals but also on the range of the neighbor-
hoods. The number of objectives M determines the size of
neighborhoods. As the number of objectives increases, the
number of cells in the hyperbox space becomes larger. The
finite number of individuals distributed in grid will be sparse,
so the range of the neighborhood that varies with M may be
a good scheme. On the other hand, grid differences are also
important for the measurement of GCD. The distance among
neighbors is larger, so that the grid differences will be larger,
which makes a smaller contribution to the value of GCD. For
example, in Figure 6, individuals C and F have the same
number of neighbors, but the GCD value of C is smaller than
that of F(1.6 vs. 2.3).

D. ENVIRONMENT SELECTION
The purpose of environmental selection is to pick the opti-
mal solutions from the parents and offspring. In traditional

FIGURE 6. Distribution of individuals in the grid after clustering.

MOEAs, convergence indicators and distribution indicators
are usually introduced to environment selection. Therefore,
SDE strategy is utilized in our proposed IGEA. After inho-
mogeneously dividing the grid by the clustering method, the
normalized coordinate of the individual is assigned. Then,
the individuals are assigned to a fitness level by SDE. When
density of individual p is calculated, the density of p is not
directly calculated based on Euclidean distance. If a solution
better than p in a certain objective, then the individual will
move to the same coordinate in this objective of p. On the
contrary, it will not move. Assuming a minimization MaOPs
is considered, the new density of individual p in population P
can be defined as follows:

D′(p,P)=D(dist(p, q′1), dist(p, q
′

2), . . . , dist(p, q
′

N−1)) (9)

where N represents the size of the population P, dist(p,q′i)
represents the degree of similarity between individuals p and
q′i, and q

′
i is the shifted version of qi(qi ∈ P, qi 6= p), which is

defined as follows :

q′i(j) =

{
p(j), qi(j) < pi(j)
qi(j), otherwise,

j ∈ (1, 2, . . . ,M ) (10)
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FIGURE 7. Individuals B, C and D are shifted to A′ , B′ and C’.

where p(j), qi(j) and q′i (j) represent the jth objective value of
individual p, qi, q′i, respectively. M is number of objectives.
The shifted distance density can be defined as:

Dis(y) =
M∑
i=1

(
∑
x,y∈P′

(Gi(x)− Gi(y))) (11)

where Dis(x) denotes the shifted distance density of individ-
ual y. P′ is the population after SDE operation and x, y ∈
population P′, the solutions Ex and Ey in population P’ meet
Gi(x) > Gi(y) in ith objective.

Individuals with poor convergence are shifted to a crowded
region and assigned to a large density value. Individuals with
larger density values may be removed during the selection
process. Figure 7 illustrates the shift-based density operate in
two objectives. In order to estimate the density of individuals,
A. B, C, D are shifted to B′, C ′, and D′, respectively. There-
fore, B(1) = 0.4 < A(1) = 2.3, C(2) = 0.6 < A(2) = 2.8 and
D(2) = 0.2 < A(2) = 2.8.
After moving, A with three neighbors B′, C ′ and D′ will

be assigned to a larger density value than before. Because
three original individuals B, C and D are better than A. This
means A has not significant advantage against individuals B,
C and D.
The SDE strategy does not perform very well in a homo-

geneous grid, because in the same cell the individuals with
different positions have the same coordinates. Since the den-
sity may be the same after moving with SDE, and the worse
solutions cannot be removed from the archive. This problem
is clearly explained in [23]. This problem can be solved with
the inhomogeneous grid division by clustering, because the
coordinates of individuals in the same cell can be discrimi-
nated after the normalized coordinate assignment.

Algorithm 2 gives the processing flow of environment
selection. First, the fitness of the parents and offspring
is calculated, then sort by fitness, and algorithm chose

Algorithm 2 Environment Selection
Require: N (archive size), Original Population(P1),
Offspring(P2)
1: Generate an empty set Q for archive
2: Calculate fintness([P1,P2])
3: Q = sort (Fitness<1)
4: if Q < N
5: Q1 = sort (Fitness(2N -Q))
6: Q← Q ∪ {Find_best(N -Q) from Q1}
7: else:
8: Re-Calculate Fitness(Q)
9: Q← Q\ {Select_Worst(Q-N )}
10: end if
11: return Q

individuals Q with fitness less than 1. If the size of Q is less
than archive size, individuals Q from parents and offspring
were removed, then (N -Q) individuals will be recalculated
fitness and be chosen with the best value of fitness until the
size of Q equal archive size. If the size of Q is more than
archive size, individuals Q will be recalculated fitness alone,
and individuals (Q-N ) with the worst value of fitness are
deleted until the size of Q equal archive size. The fitness can
be expressed as:

Fitness(i) = R(i)+
1

Dis(i)
(12)

where Fitness(i) represents the fitness of the ith individual,
R(i) represents the number of individuals dominating the ith
individual in the population, and Dis(i) represents thehifted
distance density of the ith individual. The fitness includes not
only the shifted distance but also the dominance relationship.

In IGEA, it applies K-means to establish a new coordinate
system, and its algorithmic complexity is O(MNKT). M is
the number of objectives, N is the size of population,
K represent the number of clusters, T is the number of
iterations. Some metrics of IGEA are also calculated under
this coordinate system. The complexity when calculating GD
is O(N 2), and the computational complexity of GCD is less
than O(N ). In mating selection, IGEA and GrEA both apply
binary tournament selection, and their complexity is the same
in this stage. In environment selection, the worst case of the
algorithm is considered, the algorithmic complexity of the
penalty strategy in GrEA isO(MNqlog(2N)),Nq is the number
of neighbors. The algorithmic complexity of SDE in IGEA
is O(MN2). Overall, Since IGEA introduces K-means, the
algorithm complexity of IGEA is a little higher than that of
GrEA, but it brings about an improvement in performance.

V. EXPERIMENTAL DESIGN
This section will depict the IGEA’s performance. First,
the test problem and performance evaluation metrics
will be introduced. Then, several state-of-the-art MOEAs
are briefly introduced: MSOPS-II [51], MOEA/D [4],
GrEA [33], SPEA2+SDE [23], DGEA and TiGE2. And the
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TABLE 1. Parameter settings for regular problems.

TABLE 2. Parameter settings for irregular problems.

parameter settings are described. Finally, the experiments of
parameters will be given.

A. TEST PROBLEMS
The irregular and regular test suites are used to verify the
performance of IGEA. For irregular test suites, it includes
DTLZ7, WFG2, ZDT3, UF6 and UF9. Irregular problems
have many local PFs. It is difficult for general algorithms
to maintain diversity and convergence in irregular functions.
Irregular problems challenge algorithms’ ability of locating
all disconnected PF segments and handling nonseparable
variable dependencies. These test suites with challenges of
varying shapes and locations are used to verify algorithm’s
performance.

It contains WFG1, WFG3 to WFG9 for regular test suites.
The WFG problems could test whether the algorithm is suit-
able for solving bias and mixed PF forms or not. WFGs have
degenerated and linear PF forms and their variables are
also nonseparable. Some WFGs with multimodal assess the
capacity of escaping from local optima.WFGs have a consid-
erable nonseparable reduction, and they all incorporate some
bias to increase the challenge of diversity.

B. PARAMETERS SETTING
The parameter settings of GrEA and IGEA for regular and
irregular problems are given in TABLE 1 and TABLE 2,

respectively, where div belongs to GrEA and K belongs
to IGEA.

For regular problemsWFG1&3-8, the parameter k is set to
2(M -1), where M is the number of objectives. For irregular
problem WFG2, the parameter k of WFG2 is set to (M -1),
whereM is the number of objectives.

In this experiment, the simulated binary crossover (SBX)
and polynomial mutation are used in IGEA, SPEA2+SDE,
GrEA and DGEA. More precisely, the crossover operator
produces an offspring, which is thenmodified by themutation
operator. The distribution index in both SBX and polynomial
mutation was set to 15. The crossover rate is 0.94 and muta-
tion rate is 1/n, where n is the number of decision variable;
In TiGE2, rand/1 differential evolution (DE) operator and
polynomial mutation are used.

C. EXPERIMENTAL DESIGN
1) STOPPING CONDITIONS AND NUMBER OF RUNS
To prevent chance errors, each problem is tested 30 times
independently. And then the average values of the final results
are calculated. The criterion for stopping is the predefined
number of evaluations. For the regular and irregular test sets,
the number of evaluations is set to 30,000 [33].

2) POPULATION AND ARCHIVE SIZE
For the compared MOEAs and IGEA, the population size
and the archive size are the same. The population size is not
arbitrarily specified. Here, the population sizes are set to 120,
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TABLE 3. The results of seven algorithm’s IGD value on regular problems, the best mean of IGD is shown with gray background.

126, 126, 120, 55 for 4, 5, 6, 8, and 10 objectives, respectively.
In particular, in the irregular test sets (ZDT3, UF6, UF9), the
population sizes are set to: 120, 120 and 150, respectively.

3) OTHER PARAMETER SETTINGS IN MOEA/D, GREA, TIGE2
AND IGEA
MOEA/D uses the Chebyshev function as the scalarization
function. In GrEA and IGEA, the parameter div is set to about
half of the number of classes in a certain objective. In TiGE2,
the number of reference vector offspring generation is set 10;

D. PERFORMANCE METRICS
Inverted Generational Distance (IGD) focuses on calculating
the sum of the distances between true PF and the obtained PS.
It can be expressed as:

IGD(P,Q) =

∑
v∈P d(v,Q)
|P|

(13)

where P is the points of PF, |P| is the number of P. Q is the
obtained PS. And d(v,Q) is the minimum Euclidean distance
from v in P to Q. An ideal set of points is uniformly and
widely distributed in PF, and these points are very close
to PF.

Hypervolume (HV) is used to measure the volume of a
target space that is dominated by at least one solution from a
non-dominated solution set. HV provides a good measure of
the convergence and diversity of the algorithm. The specific
calculation is as follows:

HV (X ,P) =
X
∪
x∈X

v(x,P) (14)

where v (x, P) denotes the hypervolume of the space formed
between the solution Ex and the reference point P in the non-
dominated solution set X , i.e., the volume of the hypercube
constructed by taking the line between the solution Ex and the
reference point P as the diagonal.
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TABLE 4. The results of seven algorithm’s HV value on regular problems, the best mean of HV is shown with gray background.

The regular problems (WFG1, WFG3 to WFG9) will
reveal some characteristics of the proposed IGEA. Moreover,
to verify the performance for the irregular problems, a set of
irregular solution sets (DTLZ7, ZDT3, WFG2, UF6, UF9)
be utilized. These questions are used to validate whether the
irregular solution sets still maintain good convergence and
distribution.

VI. EXPERIMENTAL RESULT AND DISCUSSION
In this section, the characteristics of IGEA are revealed. The
performance of IGEAwill be comparedwith other algorithms
on both regular and irregular test suites.

A. PERFORMANCE COMPARISON OF REGULAR MAOPS
TABLE 3 gives the IGD experimental results of MSOPS-II,
SPEA2+SDE, MOEA/D, GrEA and IGEA against the reg-
ular test problems (WFG1&3-9). TABLE 4 shows HV of
these algorithms, IGEA was able to get 23 best out of 40 test
cases. HV provides a good measure of the convergence and
diversity of the algorithm. From TABLE 3, the proposed

IGEA outperforms the compared MOEAs. The optimal
results for each problem are signed with gray background.
The overall performance of the IGEA is the ideal. And IGEA
obtains 22 best IGD values of 40 test instances, especially on
WFG1, WFG7, WFG8.

On WFG1, IGEA is the best among seven algorithms.
Although the performance of IGEA is slightly worse than
SPEA2+SDE in terms of mean on 4-objective, though the
Wilcoxon rank sum test with p-value= 0.05, the performance
of IGEA is equal to the performance of SPEA2+SDE. How-
ever, onWFG3, IGEA’s performance is not ideal.WFG3 has a
degenerated and linear Pareto-optimal front (POF) form, and
its variable in the decision space is also non-separable. For
maintaining the diversity, IGEA attempts to disperse popu-
lation throughout the whole objective space, which results
in a relatively small number of points on the degraded POF.
On WFG 4, IGEA’s IGD value is 10% worse than the best
IGD value obtained by MSOPS-II on 4-objective. And on
10-objective, IGEA is competitive and its IGD value is 6%
worse than the best IG value obtained by GrEA. On 5,
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TABLE 5. The results of seven algorithm’s IGD value on irregular problems, the best mean of IGD is shown with gray background.

FIGURE 8. The distribution of solutions based on one run on the 8-objective WGF8. (a) GrEA. (b) TiGE2. (c) DGEA. (d)
SPEA2+SDE. (e) MOEA/D. (f) MSOPSII. (g) IGEA.

6 & 8-objective, the IGEA are outstanding. On WFG5,
IGEA’s performance is not ideal, and the IGD value of
IGEA is 12% worse than the best IGD value obtained by
MSOPS-II on 4-objectives. The IGD value of IGEA is 0.5%
worse than the best IGD value obtained by MSOPS-II on
6-objective. Though the Wilcoxon rank sum test with
p-value = 0.05, the performance of IGEA is equal to the
performance of MSOPS-II. And on 10-objective, the IGD of
IGEA is 9%worse than the best IGD value obtained byGrEA.
It should be noted that although the IGD value of IGEA is
the best on 8-objective, though the Wilcoxon rank sum test
with p-value = 0.05, the performance of IGEA is equal to
the performance ofMSOPS-II and SPEA2+SDE. OnWFG6,
WFG7 and WFG8, overall, the performance of IGEA is
steadily ideal in both low and high dimensions. Except on the
10-objective WFG6, the IGD value of IGEA is 11% worse
than the best IGD obtained by GrEA. In other test instances,
IGEA’s overall performance is competitive than the other four
algorithms. On 5, 6& 8-objectivesWFG9, the performance of
IGEA is idea. On other objectives, the difference between the

performance of IGEA algorithm and other algorithms is not
very obvious. DGEA does not perform well on all test sets,
TiGE2 performs very well onWFG3, and the performance on
other test sets is not excellent.

Meanwhile, MSOPS-II performs well on WFG3 and
WFG5. Intuitively, SPEA2+SDE and the IGEA are similar in
terms of SDE strategy, but the SPEA2+SDEdoes not perform
aswell as the IGEA.When SPEA2+SDE and IGEA calculate
the distance, the former uses the true values of the individuals
to calculate the shifted distance, and the latter with cluster
method calculate the shifted distance based on the inhomoge-
neous grid division that can assign the similar individuals into
the same grid. Through the grid characteristic, the individuals
selected in the mating selection are closer to the Pareto Front.
Above phenomenon caused by the inhomogeneous grid divi-
sion make IGEA outperforms SPEA2+SDE. MOEA/D per-
form unsatisfactorily on these test suites. The weakness of
MOEA/D is the diversity. Although the individuals obtained
byMOEA/D are fairly near to the PF, these individuals are too
concentrated in some narrow regions of the PF, which results
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FIGURE 9. The distribution of solutions based on one run on the 8-objective WGF8. (a) GrEA. (b) TiGE2. (c) DGEA.
(d) SPEA2+SDE. (e) MOEA/D. (f) MSOPSII. (g) IGEA.

in a poor diversity. Although GrEAwith the parameter div set
to about 6 [33] can obtain the extremely competitive results,
the overall performances of GrEA are still not as well as that
of IGEA.

The performance of IGEA is satisfactory on the regular
test problems, especially on the five to eight objectives.
Figure 8 displays the distributions of solution on the
8-objective WFG8 based on the one run. The performance of
GrEA is indeed good, but it is slightly worse in terms of dis-
tribution. The convergence and diversity of MOEA/D is not
ideal, because the Chebyshev scalar function is not a tool of
guaranteeing convergence and diversity. The comprehensive
performances of MSOPS-II and SPEA2+SDE are not as well
as IGEA.

One distinguishing feature of WFG issues is that each
objective has a different range. MOEA/D scores badly in
terms of diversity for WFG issues, which implies that adding
restrictions to subproblems is insufficient for dealing with
difficult-to-converge and diversity-resistant problems. On the
other hand, other algorithms retain diversity well on WFG,
even if it does not fully converge to the PF in certain runs.

On low-dimensional objectives, IGEA still has an out-
standing performance. In Figure 9, the distribution of solu-
tions on the 5-objective WFG5 based on the one run is
shown. From Figure 9, intuitively, IGEA outperforms the
compared algorithms. GrEA and SPEA2+SDE also per-
formed very competitively. Since SPEA2-SDE also uses the
SDE method, when solving the problem of hyper-ellipse sur-
face type WFG5 [52], it has a better performance. MSOPS-II
uses the automatic objective vector generation strategy.
When solving such problems, it can also guarantee conver-
gence, but the diversity is insufficient. In terms of diversity,
IGEA performed best among it and compared algo-
rithms. The experimental results prove the effectiveness of
dynamic inhomogeneous grid division in dealing with regular
problems. Compared with other algorithms, with the benefit
of dynamic inhomogeneous grid division, IGEA keeps the

diversity well in dealing with regular problems. With the help
of SDE strategy, IGEA enhances the diversity and conver-
gence simultaneously. Overall, on the regular problems, the
modification of IGEA achieves the anticipative enhancement.

B. PERFORMANCE COMPARISON OF IRREGULAR MAOPS
TABLE 5 shows the experimental IGD results of the state-
of-the-art MOEAs and the proposed IGEA against some
irregular problems (DTLZ7, ZDT3, WFG2, UF6 and UF9).
TABLE 6 shows HV of these algorithms, IGEA was able to
get 6 best out of 13 test cases. HV provides a good measure of
the convergence and diversity of the algorithm. On 4, 5, 6 &
10-objectives DTLZ7, the performances of IGEA are ideal.
But on 8-objective DTLZ7, the IGD of IGEA is 2.8% worse
than the best IGD value obtained byGrEA. DGEA and TiGE2
not ideal on DTLZ7;

To illustrate the performance of IGEA intuitively, the dis-
tributions of the final solutions obtained by it and other
MOEAs against ZDT3 are compared in Figure 10. On ZDT3,
the performance of IGEA is outstanding. GrEA is not very
effective in maintaining diversity. Any preference toward sin-
gle aim (convergence or diversity) will inevitably exacerbate
the performance. In MaOPs, the balance between conver-
gence and diversity should be considered.

MSOPS-II is biased towards convergence. The diver-
sity of MOEA/D and SPEA2+SDE are not ideal. IGEA
can maintain a good balance between convergence and
diversity.

On WFG2, the performance of IGEA is not ideal on 4,
5, 6-objective. However, IGEA’s performance is excel-
lent on 8 and 10-objective. On UF6, the IGD value of
IGEA is 34% worse than the best IGD value obtained by
SPEA2+SDE. UF6 has many local PFs, and its Pareto Front
is not smooth curve. IGEA doesn’t have ability of compe-
tently dealing with cliff PF. On UF9, IGEA’s performance
is best among these algorithms. DGEA performance well on
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TABLE 6. The results of seven algorithm’s HV value on irregular problems, the best mean of HV is shown with gray background.

FIGURE 10. The distribution of solutions based on one run on the 8-objective WGF8. (a) GrEA. (b) TiGE2. (c) DGEA.
(d) SPEA2+SDE. (e) MOEA/D. (f) MSOPSII. (g) IGEA.

10-objective WFG2, but not well on other objectives. TiGE2
performance not ideal on WFG2.

MOEA/D does not perform well on irregular prob-
lems. In fact, for the above test problems, MOEA/D is
located fairly near to the PF, but it does not cover the
PF very well, which results in dissatisfactory IGD values.
Its poor performance on irregular problems mainly results
from the aggregation-based selection operation in MOEA/D.
A collection of uniformly distributed weight vectors fails in
providing a uniform distribution of crossing sites on the irreg-
ular PF. The Chebyshev-based scalarization function is not a
good tool of guaranteeing diversity. GrEA, SPEA2+SDE and
MSOPS-II are very competitive, but these algorithms does
not perform well in dealing with irregular problems. Toward
irregular problems, clustering methods are a good choice.

On the whole, IGEA has succeeded in maintaining diver-
sity and convergence for solving MaOPs with different char-
acteristics. The IGEA outperformed the other algorithms.

VII. CONCLUSION
Through systematic experiments on the proposed IGEA,
several state-of-the-art MOEAs have been extensively com-
pared. Regular and irregular test problems were chosen to

verify the capabilities of IGEA. IGEA is highly competitive
in terms of IGD value. The IGEA is able to reach a good
balance between diversity and convergence. Inhomogeneous
grid division makes the differences between individuals more
obvious, and it making the point to PF more convergent. The
SDE strategy prevents the solution from converging locally
on the target space and allows the solution to be distributed
more uniformly and widely on the PF. The proposed IGEA
can mainly be characterized as:

1) IGEA dynamically and inhomogeneously divides the
grid through the clustering algorithm, and assigns coordinates
to individuals through a normalization method.

2) The comparisons and domination analysis are bases on
the normalized grid coordinates rather than the objectives of
solutions.

3) SDE strategy is introduced to calculate the fitness of the
solution according to not only neighbors but also the global
solutions in the normalized grid coordinates, which is helpful
for evaluating the diversity and convergence.

A number of future directions were identified from the
current work. IGEA can’t offer an acceptable performance
on a degenerated and linear Pareto-optimal front (WFG3).
In the following work, the optimization process of IGEA on
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WFG3 should be tracked and the reason of failure should be
clarified. Some modifications of IGEA should be made for
improving the universality. IGEA uses a clustering algorithm
to inhomogeneously divide the grid, which leads to a higher
complexity than before. In the future, some efficient methods
that can reflect the characteristics of the population could be
adopted to divide the grid. In addition, the inhomogeneous
grid division method also be used in combining with the
decomposed-based MOEAs.
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