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ABSTRACT The majority of the accidents were happening perpetually due to driver drowsiness over the
decades. Automation has been playing key role in many fields to provide conformity and improve the quality
of life of the users. Though various drowsiness detection systems have been developed during last decade
based on many factors, still the systems were demanding an improvement in terms of efficiency, accuracy,
cost, speed, and availability, etc. In this paper, proposed an integrated approach depends on the Eye and
mouth closure status (PERCLOS) along with the calculation of the new proposed vector FAR (Facial Aspect
Ratio) similarly to EAR and MAR. This helps to find the status of the closed eyes or opened mouth like
yawning, and any frame finds that has hand gestures like nodding or covering opened mouth with hand as
innate nature of humans when trying to control the sleepiness. The system also integrated the methods and
textural-based gradient patterns to find the driver’s face in various directions identify the sunglasses on the
driver’s face and the scenarios like hands-on eyes or mouth while nodding or yawning were also recognized
and addressed. The proposed work tested on datasets such as NTHU-DDD, YawDD, and a proposed dataset
EMOCDS (Eye and Mouth Open Close Data Set) and proved better in terms of accuracy and provides results
in general by considering various circumstances.

INDEX TERMS Eye aspect ratio (EAR), mouth aspect ratio (MAR), face aspect ratio (FAR), advanced
driver movement tracking system, spatio-temporal interest points, eye gaze tracking, deep neural networks.

I. INTRODUCTION

A large number of people across the world want to buy vehi-
cles. It is noteworthy that the menace of road accidents is also
increasing rapidly with the increase in the number of vehicles
plying on the roads. The number of road accidents is very
high in countries having highly crowded streets and roads.
The National Crime Records Bureau (NCRB) conducted a
survey and reported that around 0.13 million lives were lost
due to road accidents in India in the year 2020 alone [1].
This represents the foremost cause of deaths worldwide. The
average mortality is high in the middle-income countries
compared to the low-income countries, which is an alarming
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condition to think towards the hitch. The World Health Orga-
nization (WHO) has published an article that pointed out that
the risk factors leading to accidents are speeding, intoxicated
driver, distracted driving, etc. [2]. Almost all of these factors
reveal that most road accidents are happening due to the
carelessness of the driver, and the negligence in following
the traffic rules as well as the safety precautions. Drowsiness
may occur due to lack of sleep or continuous driving at
night or both, ultimately making the vehicle driver tired and
diverted from the concentration on driving. In the transporta-
tion industry, where the bus and truck drivers drive overnight,
it is very common for them to fall asleep, particularly in the
wee hours, due to exhaustion, while the vehicle is in motion.
The circumstances mentioned above demand that people get
alerted to avoid these situations to save many previous lives.

VOLUME 10, 2022


https://orcid.org/0000-0001-8508-6066
https://orcid.org/0000-0002-0605-4654
https://orcid.org/0000-0003-2653-3780
https://orcid.org/0000-0001-7282-2503

V. Uma Maheswari et al.: Driver Drowsiness Prediction Based on Multiple Aspects Using Image Processing Techniques

IEEE Access

FIGURE 1. Sample drowsiness captured images with various postures such as closing eyes, yawning, and controlling with hand while nodding and
yawning. (a) closing eyes and tries to control yawning with hand (b) sudden Knap (c) closing his mouth completely while yawning (d) yawning and closing
eyes (e) nodding one eye (f) yawning and closing one eye (g) closing eyes with hand (h) drowsy eyes (i) closing two eyes with drowsiness (j) closing one
eye with hand due to sleep (k) closed eyes while yawning.

Technology is advancing at a very fast pace and automation
is easing the people’s busy lives while providing them with
services with perfection and that too in less time and more
safety. Though top companies are already investing a lot of
money to identify the state of a driver’s drowsiness, it is
still a challenging task with open research avenues. Hence,
an automatic and efficient drowsiness detection and driver
mood prediction-based system is required to be implement
for real-time applications [20]. This will help to reduce road
accidents and increase the people’s safety [3].

The development of technologies required to implement
the driver drowsiness tools becomes a tedious task in the area
of accident prevention or accident-avoidance systems [49].
Due to the intensity of the problem, the industry has devel-
oped many systems based on various aspects. The driver’s
inattention may be because of the lack of sleep or negligence,
or other parameters that might draw the driver’s attention
away from driving. Alkinani ef al. has done a comprehen-
sive survey on human driving behavior using deep learning
techniques and challenges [12].

A. LIMITATIONS

A person may fall asleep while driving for various reasons.
The same is exhibited in different ways such as nodding,
closing eyes, rubbing eyes to control drowsiness, closing eyes
with a hand, and keeping hand automatically on the mouth
while yawning. Figure 1 presents the sample images of these
gestures.

1) MULTIPLE FACE DETECTION
Generally, the camera captures the whole scenario that may
consist of everything around the driver. Hence, in addition to

VOLUME 10, 2022

the face of the driver, the faces of the passengers as well as
other objects in the surrounding are also captured. Identifica-
tion of the driver’s face from the various entities in the image
is an activity that needs to be performed. Further, the face can
be cropped and processed to predict the scenario and to alert
the driver.

2) FACE ORIENTATION

When the driver is drowsy, his face may be captured in any
orientation because he may turn to the side while yawning
or trying not to fall asleep [8]. So, the proposed system must
be intelligent enough to analyze the situation from the given
orientations.

3) EXPRESSION DIFFERENTIATION

A person exhibits different expressions depending on differ-
ent situations. These expressions include excitement, disgust,
and sadness. They can easily divert the driver’s attention and
must be differentiated from each other for further processing
from the research perspective. Feature extraction techniques
are applied to extract the differentiated features [4], [54].

4) ILLUMINATION

As stated earlier, most drivers tend to fall asleep more dur-
ing the timings of night driving and early morning. It is
notable that this timing, unlike normal lighting condition
timing, also coincides with low illumination for the camera
captured images. Hence, the system to be designed for drivers
must also take care of sufficient lighting condition by use of
sources like Light Emitting Diode (LED) light or by using the
Infrared (IR) cameras [8].
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The proposed method is the integration of possible cases
arises while driving generally. Still, the state-of-the-art sys-
tems are addressing the one problem or two only. The pro-
posed method addresses the many issues instead of one based
on various parameters simultaneously. It motivated to com-
bine the different circumstances aforementioned. The paper
organized as follows: section I and II presented the introduc-
tion and literature review. Section III represents the proposed
method. In section IV discussed about the results and anal-
ysis. Section V and VI were presented with conclusion and
references as well.

Il. LITERATURE SURVEY

Dasgupta et al. [4] proposed a three-stage drowsiness detec-
tion system having PERCLOS (eyelid closure calculation),
speech handling data taken from the microphone, and fea-
ture extraction. Lin et al. [5] and Budak et al. [14] have
developed a system for drowsiness detection depending on
the EEG (electroencephalogram) integrated with ICA and
power spectrum analysis, and linear regression that was used
for classifying the state of the driver’s drowsiness. Feature
extraction, multi-view, and EEG-based systems were intro-
duced and implemented on the training system to over-
come the challenges given by dynamic behavior [6], [7].
In addition, functional near-infrared spectroscopy (fNIRS)
has been used to investigate brain function using positive
signals released. In contrast, the classification algorithms like
DNN and CNN have been used to classify the drowsiness and
alert states [9], [38]. In similar but different research works
Lee and Chung [10], and Deng and Wu [15] proposed an
integrated framework for facial changes and sensor data based
on bio signals.

Kahlon and Ganesan [11] introduced a drowsiness detec-
tion system using binary eyes data with images. Vari-
ous fusion methods have also been experimented by the
researchers. Such methods include fusion of blood, vol-
ume and pleasure (BVP) [13], bio-signals of blinking and
yawning [16], [26] and addition of nodding too [19], [29].
Valsan et al. [17] and Singh [18] have proposed a fusion-
based method utilizing eye and mouth closing status. Multi
features are used for detecting the state of drowsiness by
Wang and Shen [20]. Bhowmick and Kumar [22] used
the thresholding technique for face recognition. They also
used facial landmarks to locate the eye’s position. Many
research works [15], [21], [23], [39] have done drowsi-
ness detection using facial expressions and facial features.
Kulkarni et al. [24] proposed an embedded system to sense
the state of the driver. Their Raspbian OS-based cam-
era supported system was interfaced serially with RS232.
Miranda et al. [25] focused on eyelid movement to monitor
the driver’s state. Wongphanngam and Pumrin [27] as well as
Lin et al. [34] proposed a method that converts images into
gradient images and used random regression forest algorithm
to find the head orientation. Anilkumar et al. [28] proposed a
system based on heartbeat detection using R-peak detection,
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face movement etc., which were detected with the help of a
frame difference algorithm.

The majority of the research works are done based on
the eye status of the driver [30], [31], [36], [40]. Drowsi-
ness detection was done using LBPH [32], [47]. Cheon
and Kang [33] worked on the bio-data gathered from
PPG (PhotoPlethysmography) and processed with segmen-
tation and averaging. They completed classification using.
Tateno et al. [35] developed a drowsiness detection system
based on the heart rate and respiration changes. Wang and
Qin [37] implemented a system based on the FPGA to detect
the driver’s drowsiness. Ishii et al. [40] have proposed High-
order Local Auto-Correlation (HLAC) for extracting the
shape features and identified the attention, stress, drowsiness.
Ling et al. [41] has introduced a discriminative local feature
vector for facial expression recognition using the sparse coef-
ficients. Maheswari et al. [52] presented a comprehensive
survey on texture-based local patterns such as LBP, LTP.
LTrP, DBC, and DLEP. Hong and Wang [42] has introduced
the integrated feature vector-based multiple features along
with the LSTM. Hammedi et al. [43] discussed various driver
drowsiness detection methods. Cristiani et al. [44] have pre-
sented the work of the project REFLECT and have discussed
the differences in detecting drowsiness and fatal crashes of
cars. Lashkov et al. [45] and Joshi et al. [46] advocated that
OpenCV libraries are useful to retrieve the required features
to detect the driver drowsiness.

Ill. PROPOSED METHOD

Drowsiness detection is a system that helps to provide safety
and accident prevention. The proposed system is a driver
drowsiness prediction system that will identify various sce-
narios. It will capture closed eyes, open mouth, hands-on eyes
or mouth while nodding or yawning etc. It will also detect
whether the person is yawning or trying not to fall asleep by
the innate actions such as making eyes broad from normal size
and rubbing eyes with a hand. An image of the driver captured
through the camera serves as the system’s input. Furthermore,
the face will be identified and cropped from the image with
created Region of Interest (ROI). This will be followed by
detection of eyes from ROI which in turn will serve as the
input to the CNN algorithm for classification of various states
of sleepiness.

A. GRADIENT AND MAGNITUDE CALCULATION

Gradient and magnitude calculation is used to recognize the
edges of a given face and orientation. Therefore, to calculate
the texture based gradient magnitude [53] and the orienta-
tions, we use Robinson’s operator in four orientations such
as 0°,45°,90° and 135°.

The given 3 x 3 image can be convolved with their
four possible orientations to gather the gradient responses
were calculated using the equation (1) and designated as
Go, Gys, Ggg and G35, respectively [52].

Gp = Rp*L (X, ¥)|p=pe 450.90°,135° )]
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FIGURE 2. lllustration of EAR, MAR, and FAR among landmark points.

Here, Ro,R40,Rgp and Ri35Rg, R4, Roo and Ryzs are
Robinson’s convolutional mask operators for 0°,45°, 90°
and 135°0°, 45°, 90° and 135° orientations.

[—1 0 1 0 1 2
Ro=|-2 0 2 Rys = | —1 0 1

| -1 0 1 -2 =1 0

1 2 1 2 1 0
Rog = 0 0 0 Rizs = | 1 0 —1

| -1 -2 -1 0o -1 =2

Magnitudes are calculated using equation (2) from the above
responses.

IM| = /(Go + Gas + Goo + G135) ()

and the orientations are calculated for each pixel using the
following formula:

(o (G0
6 = arc (tan ( Go >> 3

With the use of equations (2) and (3), we could find the
driver’s face position as well as, similar to [48], the ori-
entation of the driver’s face. We could also find the facial
expressions like sad, disgust, and excitement, which may lead
a driver to have diverted concentration from his work.

B. FINDING THE EYE, MOUTH, AND FACE STATUS

Identifying prominent facial features on the face is a fun-
damental process that helps analyze complex problems such
as expression recognition. Various applications can then use
the status of the specific features for further processing.
Automated facial landmarking generally describes the unique
process to find the effective differences to construct the
appropriate model. This method uses the dlib68 point model
to point the landmarks on the face to compute the Eye Aspect
Ratio (EAR), Mouth Aspect Ratio (MAR), and the newly
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proposed Face Aspect Ratio (FAR) parameters. These param-
eters are depicted in Figure 2. After finding the landmarks on
face, EAR, MAR, and FAR were calculated using equations
(4), (5), and (6) to find the status of eyes and mouth.

_ =zl lw =yl

EAR 4
2 lu— x|
t_ J— —
MAR — Nt —zll + llu—yll + llv—xl| )
3ls —wll

MAR is the parameter to know the status of the person is
yawning or normal based on the value says that whether
mouth is opened or normal.
and
_ llp22 —psll + llp2g — poll + llp23 — pioll
31lps — pr2ll

Eye gaze state classification: EAR determines the status of
the eye, whether it is open or close, and helps to classify
it. The existing methods have generated the features for the
classification of eye status. Still, they are not up to the mark
as they do not cover the micro-level gestures like the eyeball
orientations in the open eye, which has a vital role to play.
Statistical methods can also compute the orientation of the
eyeball. Compared to the closed eye, the open eye produces
more edge information and can separate the eyeball based
on the shape and texture. To find the mid-point from an
image having captured the eyeball centered, let us assume
that C (x1, y1) is the center of the circle and the radius r =

FAR

(6)

\/ ((r —x1)? 4+ (v — y1)?). Later, compare the eyeball radius
with radius and displacement of the earlier circle corner
position. If it is high, it indicates that the eyeball is rotated
in that orientation.

FAR is calculated from the facial landmarks pointed ver-
tically in the middle 3 points using the Equation (6) parallel
equation, which impacts distance while the mouth opens. The
gap between the points beside the mouth is reduced while the
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TABLE 1. Various expressions exhibited by the people for describing sleepiness.

Actions and Expressions

Al: Left eye close

E2: Disgust

A2: Right eye close

Ul: Eyes not found

A3: Left and Right eyes closed

U2: Mouth not found

A4: Mouth open

U3: Left eye not found

E1: Sad expression

U4: Right eye not found

The above expressions or actions were given by the people usually in a sleepiness mood.

[ Captured

image frames

algorithm

Derection combination considers based on the rules mentioned in

Apply
measurements on
COIltiIIUOUS frames

Expression Eyes status
detection if closed

Covering / l'

mbbti?}% eY;S Drowsiness and
W1 z_m mood detection
detection

Yawning
detection while
opening mouth

Evye glasses
detection

FIGURE 3. An integrated driver drowsiness prediction framework with various factors.

TABLE 2. Threshold ranges and status of eye based on EAR.

TABLE 3. Threshold ranges and status of mouth based on MAR.

mouth opens, and the vertical gap increases so that yawning
status can be found out even if the person covers their mouth
with a hand or something while yawning as innate nature. The
proposed prediction framework is presented in Figure 3 while
the corresponding Algorithm 1 is presented below and makes
use of symbols listed in Table 1. Following are formulas used
for calculating the semantics of the face based on the given
landmark positions:

IV. THRESHOLD VALUES FOR EAR, MAR, AND FAR

A. EYE ASPECT RATIO (EAR)

B. MOUTH ASPECT RATIO (MAR)

C. FACE ASPECT RATIO (FAR)

Table 2, 3 and 4 are holding the threshold values required to
analyze the status of the eye, mouth, and face to predict the
drowsiness of a driver.
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Range Status Range Status

<0.23 low (Drowsy, eyes are closed) 0-0.3 Normal

0.25-0.30 Normal >0.35 High (Yawning, mouth open wide)
>0.32 High (Eyes wide open)

TABLE 4. Threshold ranges and status of face based on FAR. FAR is
dynamic value as face length differs for every individual person.

Status
(Yawning)

Range
>=FAR +0.35

The below formats are for calculating the semantics of the
face based on the given landmark positions as follows:
Left Eye Image (LEI) from the given image:

(x1, ¥1), (X2, y2) = (shape[43][0], shape[44][1]),
(shape[46][0], shape[4T][1])
LEI(x,y) = cv2.resize(frame[y; — 15 :yp +15,x1 — 15:
x2 + 151,(86,86))

RightEye Image (REI) from the given image:

(x1, ¥1), (x2, y2) = (shape[3T][0], shape[38][1]),
(shape[40][0], shape[41][1])

VOLUME 10, 2022
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Algorithm 1 Action Based Rules for Multiple Aspects

Input: Image frames from a surveillance camera
MR- Closure, Set of actions, expressions, and rules

N={R1,R2,...,RnnE1,E2,.

.., EnnU1,U2, .., Un}

R1:{A1 VA2V A3V A4V ElVE2}
R2 : {(A1 AA4) v (A2 A A4) v (A3 A A4) |E landE2not mandatory}

Output: Drowsiness prediction

IfRIVR2VUIVU2vVU3VU4S):
Drowsiness is detected due to some actions
Else if (U1):

The driver may wear glasses or cover his eyes with hands or rub his eyes

Else if (U2):

The driver may be yawning or covering his mouth while yawning

Else if (U3):

The driver may be rubbing/covering his left eye with his hand due to sleep or anything

Else if (U2):

The driver may be rubbing/covering his right eye with a hand due to sleep or anything

Else if (U1 A U2):

The driver may wear glasses and yawn but may be controlled with a hand

Else:
Driver is steady

Note: A— Action presented, E - Expression presented, U — — Uncertainty condition

REI(x,y) = cv2.resize(frame[y; — 15 :yo + 15,x1 — 15 :
xp + 15],(86,86))

Mouth Image (MI) from the given image:

MI(x,y)=cv2.resize(frame[y; —15 : y,+15,x1—15 x2415],
(86,80)):

Similarly, the computes of the mouth and facial cropped
images were calculated in size. Detection of hand, when it is
found on the face in an image that has been captured while
yawning or nodding, is the prominent step in the present
research work. A camera is used to capture the image which
is then processed further. A training algorithm is used to train
with the samples. Whenever hands are detected on the face,
it can be cropped and used along with the training data.

V. RESULT ANALYSIS
1. DATASETS:

2. NTHU DDD: National Tsing Hua University (NTHU)
dataset consists of 22 various subsets with different
ethnicities at various levels. It has images captur-
ing various scenarios while driving, such as yawn-
ing, blinking, dozing, and laughing, in various illu-
minations. Each scenario is considered from the
video consisting of 30 frames/sec [13], [51]. The
videos are also simulated with various scenarios like
glasses-wearing in the daytime or nighttime, sleepy or
non-sleepy, etc.

3. YawDD: This dataset is constructed from videos of
driving in real-time. The images are captured by cam-
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eras fixed either in the front mirror or dashboard.
Images of people driving have been collected in
color 24-b (RGB) with resolution 640 X 480 from
the 30 frames/sec [50]. Images consist of people of
all ages, different facial features, ethnicities, etc. All
mouth postures are taken in various illumination con-
ditions while talking, singing, etc.

4. EMOCDS (Eye and Mouth Open Close Data Set):
The dataset is comprises of cropped eye and mouth
images with open and closed status. The images were
taken from Google and it has around 12k images of
various people’s images.

5. UTA-RLDD (University of Texas at Arlington Real-
Life Drowsiness Dataset) [55]:

It consists of 180 videos of 60 different participants.
Each participant given in three classes drowsiness,
alertness, and vigilance with low.

A. CLASSIFICATION

The model we used is built with Keras using Convolutional
Neural Networks (CNN). A convolutional neural network
is a special type of deep neural network which performs
extremely well for image classification purposes. A CNN
basically consists of an input layer, an output layer and a
hidden layer which can have multiple numbers of layers.
A convolution operation is performed on these layers using a
filter that performs 2D matrix multiplication on the layer and
filter. The CNN model architecture consists of the following
layers:
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TABLE 5. TP, FP, TN, FN and Accuracy (in %) for the 40 images tested on the proposed dataset.

TP FP TN FN Accuracy
in %
32 6 1 1 95
32 5 1 2 92.5
35 2 2 1 92.5
36 2 1 1 95
34 2 1 3 90
33 4 2 1 92.5
34 3 2 1 92.5
35 2 1 2 92.5
32 3 3 2 87.5
Sun glasses N ——
No Handson Eye —
Hands on Eye /s s s s s s s
NoHands on mouth —

e Handz on mouth —

E Mouth Closed — = Accuracy

ﬁ MMouth Opened —

Eyes Closed —
Eyes Opened —
80 83 20 93 100
Detection Accuracy (in %)

FIGURE 4. The accuracy of detection (in %) for a total of 2685 images comprising eye open: 350 images, eye closed: 300 images, mouth
open: 275 images,mouth closed: 250 images, handson mouth: 280 images, hands off mouth: 250 images, handson eye (nodding or
otherwise): 200 images, hands off face: 180 images, with sunglasses: 295 images, and without sunglasses: 305 images.

1. Convolutional layer; 75 nodes, kernel size 3

2. MaxPolling layer: (5,5)

3. Convolutional layer; 64 nodes, kernel size 3

4. MaxPolling layer: (5,5)

5. Convolutional layer; 128 nodes, kernel size 3

6. MaxPolling layer: (5,5)

7. Fully connected layer; 64 nodes

The final layer is also a fully connected layer with 2 nodes.
In all the layers, a Relu activation function is used except the
output layer in which we used Softmax.

B. PERFORMANCE ANALYSIS

The performance of the proposed system can be ana-
lyzed using following parameters for measuring classification
accuracy:

True Positive (TP): Yawning/closed eye status is detected
as correct one yawning, and the eye is closed.

True Negative (TN): Non-yawning/opened eye status is
detected as the correct one as non-yawning, and the eye is
opened.

False Positive (FP): Non-yawning/opened eye status is
incorrectly detected as yawning / closed eye.

False Negative (FN): Yawning/closed eye status is incor-
rectly detected as non-yawning/open eye.
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Table 6 in particular presents the comparison results
with different state-of-the-art algorithms and using the same
dataset. The accuracy is calculated in percentage using
equation (7):

TP +TN
X
TP + TN + FP + FN

The experiments were executed on datasets of NHTU DDD
YawDD, and an additional dataset created by us. The dataset
consists of 45000 images of human beings collected from
various sources such as Kaggle, Google images, pixel.com,
etc. The eyes and mouth areas were cropped from the images
and grouped into four categories to detect the drowsiness
based on the closed eye and open mouth status images using
EAR, MAR, and FAR calculations. In addition, gradient and
orientations were used to find the expression and orientation
of the face of the driver while driving. Hand gestures or
identification and glasses detection has done with appropriate
algorithms such as convex hull etc. This depicts the driver’s
concentration on the task of driving. Classification has done
with CNN deep learning algorithm to check the status of the
possible cases mentioned in algorithm 1.

Another dataset created by us having 2685 number of
images contains scenarios like eye open, eye close, mouth

Accuracy =

100 7)

VOLUME 10, 2022
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TABLE 6. Comparison of the state-of-the-art methods with proposed method. Results were worked on various datasets such as NTHU-DDD, YawDD, and

EMOCDS in terms of accuracy in %.

Method Bench k . P d .
ethods il)l:ta:(:?sr Accuracy in % Il;z)\?;sseet Accuracy in %
LRCN NTHU - DDD 62.9 EMOCDS 64.5
LSTM UTA-RLDD 64.0 EMOCDS 67.0
FlowImageNet NTHU - DDD 65.9 EMOCDS 64.56
3D DCNN NTHU - DDD 71.2 EMOCDS 72.8
KNN NTHU - DDD 72.5 EMOCDS 75.45
FaceNet* | yTA.-RLDD | 90.0 EMOCDS 94.0
SVM
CNN (LeNet) | UTA-RLDD 92.0 EMOCDS 92.89
SVM YawDD 92.5 EMOCDS 94.7
FaceNet* | yTA.RLDD | 95.0 EMOCDS 96
KNN )
Proposed method YawDD 94.78 EMOCDS
Proposed | ;14 R pD 95.0 EMOCDS 95.67
method
Proposed method | NTHU — DDD 79.98 EMOCDS

open, mouth close, hands ‘on’/‘not on’ mouth, eye, face,
etc. This dataset called EMOCDS (Eye and Mouth Open
Close Data Set) is used for experimenting and calculating the
accuracy in the prediction of right state from the nine different
cases as mentioned in Figure 4. The corresponding results are
listed in Table 5.

VI. CONCLUSION

The major issue in the framework is extracting the efficient
features from the images that have been cropped and cut
from the video sequence. The proposed work has detected the
driver’s drowsiness based on various aspects such as closed
eyes, opened mouth, nodding with hand, and putting hand
on mouth while yawning. The methods such as EAR, MAR,
and the proposed novel FAR were used for feature extraction.
Also, orientation of the faces was identified and gradient-
based patterns were used to identify the various scenarios
created by different states of face parts and hands. More-
over, unlike the feature extraction, threshold has been defined
based on the gestures given generally. Finally, integrated
all the features to generate the efficient feature vector and
adopted CNN to classify various scenarios that describe the
drowsiness state. The proposed method has been validated
on the proposed dataset called EMOCDS (Eye and Mouth
Open Close Data Set), a dataset of the chaos of all possible
cases of sleepiness, and the benchmark datasets NHTU-DDD
and YawDD to examine the accuracy and efficiency of the
system. The proposed work has proved better compared to the
state-of-the-art methods. However, this method also has some
confines as the gestures given by the persons can dynamically
vary from one person to the other. The proposed work can also
be improved by focusing on more features extracted based
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on the various feature extraction techniques and adopting
ensemble classification algorithms and CNN.
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