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ABSTRACT A general-purpose GPU (GPGPU) is employed in a variety of domains, including accelerating
the spread of deep natural network models; however, further research into its effective implementation is
needed. When using the compute unified device architecture (CUDA), which has recently gained popularity,
the situation is analogous to use the GPUs and its memory space. This is due to the lack of a gold standard
for selecting the most efficient approach for CUDA GPU parallel computation. Contrarily, as solving
the least absolute shrinkage and selection operator (LASSO) regression fully consists of the basic linear
algebra operations, the computation using GPGPU is more effective than other models. Additionally, its
optimization problem often requires fast and efficient calculations. The purpose of this study is to provide
brief introductions to the implementation approaches and numerically compare the computational efficiency
of GPU parallel computation with that of the fast iterative shrinkage-thresholding algorithm for LASSO.
This study contributes to providing gold standards for the CUDA GPU parallel computation, considering
both computational efficiency and ease of implementation. Based on our comparison results, we recommend
implementing the CUDA GPU parallel computation using Python, with either a dynamic-link library or
PyTorch for the iterative algorithms.

INDEX TERMS Compute unified device architecture, graphics processing unit, fast iterative shrinkage-
thresholding algorithm, LASSO, Python.

I. INTRODUCTION
A general-purpose GPU is a graphics processing unit that
can be used for general calculations typically conducted on
a central processing unit (CPU) rather than graphics-related
calculations such as graphics rendering. Modern GPUs have
more than thousands of lightweighted cores and provide
higher computational capabilities and memory bandwidth at
comparable prices than modern CPUs [1]. However, the high
computational capability of the GPU is fully utilized only
for the calculations that are adequate for single-instruction
multiple data (SIMD) parallelism. Basic linear algebra oper-
ations like matrix-vector or matrix-matrix multiplications are
ideally suited to SIMD parallelism. The CPU is still more
powerful than the GPU in terms of task-level parallelism.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

Although the efficiency of the GPU parallel computation is
restricted to SIMD parallelism, many researchers have devel-
oped efficient GPU-parallel algorithms and demonstrated a
significant reduction in execution time for tackling target
problems in various fields [2]–[6]. More recently, parallel and
distributed algorithms have been developed in multi-GPUs or
distributed GPU environments [7]–[9], and the popularity of
the GPU computation has grown consistently.

To exploit GPU computational capabilities, we must use
a specific programming language that handles GPUs and
memory space on a GPU device. There are two program-
ming models, the CUDA (Compute Unified Development
Architecture) programming model [1], only supported by
NVIDIA’s GPU devices, and the OpenCL (Open Computing
Language) [10], supported by many graphics device ven-
dors, including NVIDIA. Among them, the CUDA program-
ming model has gained more popularity and is widely used
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in several applications as the CUDA environment evolves
rapidly and NVIDIA provides various efficient libraries
for the CUDA programming model, including the cuDNN
library [11]. This is one of the basic requirements for the
state-of-the-art deep neural network programming libraries,
such as TensorFlow [12] and PyTorch [13], to accelerate
the learning algorithms with the GPU parallel computation.
Moreover, the CUDAC programming model provides syntax
similar to C/C++ languages [1], allowing researchers who
are familiar with C/C++ languages to easily develop the
CUDA GPU computation programs.

Several implementation approaches exist to write and
use the CUDA GPU computation programs such as imple-
menting an executable program or a dynamic-link library
written by the low-level languages (e.g., C and Fortran),
and using the existing GPU computation libraries (e.g.,
PyCUDA [14] and PyTorch [13]). However, ascertaining
the most efficient approach for the CUDA GPU parallel
computation, considering computational efficiency and ease
of implementation, remains uncertain. To answer this ques-
tion, we first briefly introduce the existing implementation
approaches and numerically compare their computational
efficiency with the fast iterative shrinkage-thresholding algo-
rithm (FISTA) [15] for the least absolute shrinkage and selec-
tion operator (LASSO) regression model [16]. There are two
reasons for considering the FISTA for LASSO in this paper.
First, the FISTA is applicable to a wide range of applications
as it is a general iterative algorithm for minimization prob-
lemswhose objective function is the sum of differentiable and
non-differentiable convex functions. Second, it is well suited
for CUDA GPU computation, which is comprised entirely
of the basic linear algebraic operations (see more details in
Section III). Moreover, considering the convenience of utility,
we restricted the implementation approaches to be callable in
Python. The main contributions of this study are as follows:

• We provide a brief implementation guideline for each
implementation approach, including examples on how to
use the implemented functions in Python with examples.
These are useful for readers who want to develop their
own parallel GPU algorithms running on Python.

• We provide results comparing the computational effi-
ciency of the various implementation approaches. The
comparison results reveal that the Python, with the
dynamic-link library, and PyTorch, with the basic lin-
ear operations, are the most efficient among the other
implementation approaches for the FISTA for LASSO.

The remainder of this paper is organized as fol-
lows. Section II briefly introduces various implementation
approaches, including Python with the dynamic-link library
directly using CUDAC [1], PyCUDA [14], Numba [17], Ten-
sorFlow [12], and PyTorch [13] with a simple matrix-matrix
multiplication example. Section III introduces the FISTA and
the FISTA for LASSO as well. In Section IV, we numerically
compare the implementation approaches in terms of their
computational efficiency and ease of implementation with the

FISTA for LASSO. Finally, we conclude this paper with a
brief summary and some remarks in Section V.

II. CUDA GPU IMPLEMENTATION APPROACHES
In this section, we provide a brief introduction of the existing
implementation approaches and implementation guidelines
with a simple matrix-matrix multiplication example provided
in Section 3.2.4 in [1]. To be specific, for A,B,C ∈ Rn×n,
we consider a calculation of C = AB. As we focus on
using CUDA GPU computation in Python, we assume that
a matrix is stored in row-major order. For a fair comparison,
we investigated the implementation of naive functions for the
matrix-matrix multiplication without any techniques that are
solely relevant for a specific implementation approach, such
as Python with a dynamic-link library utilizing the memory
hierarchy in CUDA C (e.g., shared memory). Addition-
ally, we considered the implementation with single-precision
since most GPU devices have better computation perfor-
mancewith single-precision thanwith double-precision. Note
that the readers need a CUDA-enabled GPU device listed
in https://developer.nvidia.com/cuda-gpus and must install
CUDA Toolkit from https://developer.nvidia.com/cuda-
downloads to proceed with the examples provided in this
paper.

A. PYTHON WITH A DYNAMIC-LINK LIBRARY BY CUDA C
USING KERNEL FUNCTION
We first introduce how to implement and use the CUDAGPU
parallel computation in Pythonwith a dynamic-link library by
CUDA C. To distinguish the functions and memory spaces
related to CPU and GPU, we use the terms host and device
for CPU and GPU, respectively. A host function, for example,
refers to a function running on the CPU and a device memory
denotes a memory accessed by the GPU.

The kernel function, a special function in the CUDA
C programming model, is callable in a host function
and running on GPUs. To define a kernel function,
we simply add __global__ declaration specifier to
a usual C function having void return type. To exe-
cute the kernel function, we must specify the thread-
block-grid hierarchy, where a grid consists of three-
dimensional blocks, a block consists of three-dimensional
threads, and a thread is the smallest computing unit in
the CUDA C programming model. To support the thread
hierarchy, the CUDA C programming model uses a new
execution configuration syntax �<BlocksPerGrid,
ThreadsPerBlock�>, where BlocksPerGrid and
ThreadsPerBlock are int type (i.e., one-dimensional
integer type) or dim3 type (i.e., three-dimensional unsigned
integer vector type) variables. To handle the threads, the
CUDA C programming model also provides special index
variables such as threadIdx.x, threadIdx.y and
threadIdx.z. Similarly, the index variables for the thread
blocks are also provided. There are several limitations on the
dimensions and sizes of the thread blocks and grids. For the
current GPUs, for example, the maximum number of threads
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per block is 1024. Further details are provided in Chapter
2 and Appendix K in [1].

We usually write two CUDA C functions to use the CUDA
GPU computation in Python: a host function called by Python
and a kernel function called by the host function. Only the
host function is required while using the cuBLAS library.
We will present two example codes by using CUDA C
with the user-defined kernel functions and CUDA C with
the cuBLAS library for the matrix-matrix multiplication.
To compile a CUDA C code, we need to add CUDA C
headers cuda.h and cuda_runtime.h. The header file
cublas_v2.h should be included for the cuBLAS library.
We omit these header files in the provided code examples
to focus on the implementation of CUDA C functions. It is
also worth noting that the cuBLAS library uses column-major
order to store a matrix, whereas Python uses row-major order.

Now, we introduce Python with a dynamic-link library by
CUDA C implementation approach using the kernel func-
tion. First, we need to write a CUDA C kernel function
for a matrix-matrix multiplication as provided in Code 1.
As described in Code 1, each thread indexed by i and j
performs the operation cij =

∑n
k=1 aikbkj.

Code 1. CUDA C kernel function for the matrix-matrix multiplication.

The host function is required after writing the kernel
function in Code 1 in order to call the kernel function
d_MatMul() and to connect the Python environment. The
implemented host function for the matrix-matrix multiplica-
tion is provided in Code 2. The declaration specifier extern
"C" at line 3 in Code 2 is required to make the host function
visible in the Python environment. In this host function exam-
ple code, we used two-dimensional threads and blocks in a
gridwhere each block has 32×32-dimensional threads, which
is the maximum number of threads per block on current GPU
devices. The number of blocks is calculated by the dimension
of threads per block and the dimension of the input matrix in
lines 10 and 11.

In the third step, we create a dynamic-link library using
the nvcc compiler provided by NVIDIA. Before proceed-
ing, we assume that the source code matmul_kernel.cu
contains the codes provided in Codes 1 and 2 and we work
on the Linux platform. To make the dynamic-link library,
we executed the following command:
We used the option -o of nvcc to name the output
file matmul_kernel.so. The numeric expression 61

Code 2. CUDA C host function for the matrix-matrix multiplication.

Code 3. Example of nvcc for making a dynamic-link library.

in compute_61 and sm_61 denotes the CUDA com-
pute capability 6.1 of the NVIDIA GeForce GTX 1080 Ti
used in this study. The CUDA computing capability varies
from the CUDA-enabled GPU devices and readers can
find the computing capability of their GPU device from
https://developer.nvidia.com/cuda-gpus.

Finally, after completing the three steps above, we can con-
duct the matrix-matrix multiplication running on the CUDA
GPU device in Python. To call the host function MatMul
in Code 2, we used ctypes.CDLL() function that loads
a shared library into the Python process. The python example
code for Python with a dynamic-link library using the kernel
function is provided in Code 4.

The python example code in Code 4 comprises six parts.
The first part involves loading the required libraries and
functions at lines 1 and 2 in Code 4. To test the imple-
mented MatMul function, we defined the matrices A and
B with a random sample from the standard normal dis-
tribution in the second part at lines 4–8. The third part
involves loading the shared library matmul_kernel.so
with ctypes.CDLL() function and making an alias
matmul_ker() for MatMul() at lines 10 and 11 in
Code 4. In the fourth part at lines 13 and 14, we define
the arguments and return types with the fundamental
data types supported by ctypes (see more information
in https://docs.python.org/3/library/ctypes.html). In the fifth
part, at lines 16–20, we define the pointer variables using
the numpy.ndarray.ctypes.data_as() function,
which provides a memory address adequate for data types in
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Code 4. Python with a dynamic-link library using the kernel function for
the matrix-matrix multiplication.

ctypes.CDLL(). Note that the kernel function in Code 1
is implemented with the row-major ordered array and the
numpy also stores a matrix with the row-major order as well.
Thus, we do not need to convert the matrix-type data into
the vector-type data in row-major order (i.e., order="C").
In the sixth part, we conduct the matrix-matrix multi-
plication on CUDA GPU with matmul_ker() func-
tion. As the matmul_ker() is conducted with the
memory addresses of A, B and C, the computed matrix
multiplication is stored in the numpy.ndarray type
matrix C.

B. PYTHON WITH A DYNAMIC-LINK LIBRARY BY CUDA C
USING cuBLAS LIBRARY
Another implementation approach for Python utilizes a
dynamic-link library. If the target operations fully consist
of the basic linear algebraic operations, we can conduct the
CUDA GPU computation by writing a host function using
only the cuBLAS library (i.e., we do not need to write a
kernel function). Here, we provide the implementation exam-
ple for the matrix-matrix multiplication utilizing the cuBLAS
library.

As mentioned earlier, we should include cublas_v2.h
to use the cuBLAS library as written in line 3 of Code 5.
In this example code, we use the cublasSgemm() function
that conducts

C ← αop(A)op(B)+ βC, (1)

where α, β ∈ R, op(A) ∈ Rm×k , op(B) ∈ Rk×n, C ∈ Rm×n,
op(A) conducts one of the operations A, AT , and AH based
on the related argument transa in cublasSgemm(), and
AT and AH denote the transpose of A and the Hermitian
of A, respectively. From the documentation of the cuBLAS
library [19], the function cublasSgemm() has the follow-
ing form:

Code 5. CUDA C host function for the matrix-matrix multiplication with
the cuBLAS library.

where handle is a cublasHandle type object that han-
dles the cuBLAS library context, transa and transb are
cublasOperation type object having one of the values
CUBLAS_OP_N (i.e., op(A) = A), CUBLAS_OP_T (i.e.,
op(A) = AT ), and CUBLAS_OP_C (i.e., op(A) = AH ), m,
n, k, alpha, beta, A, B, and C correspond to the variables
in the equation (1), and lda, ldb, and ldc are the leading
dimensions of A, B, and C, respectively.
To call the functions of the cuBLAS library, we first

declare a cublasHandle object variable as written in
line 18 of Code 5 and create the cublasHandle instance
as written in line 31 of Code 5 before using the cuBLAS
functions. Note that the usual cuBLAS functions need the
cublasHandle object as their argument. After allcuBLAS
functions are completed, we can release the resources used
by the cuBLAS library with the cublasDestroy()
function as written in line 37 of Code 5. In the cuBLAS
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example, we set CUBLAS_POINTER_MODE_DEVICE for
the pointer mode of the cuBLAS functions using the
cublasSetPointerMode() function.
The CUBLAS_POINTER_MODE_DEVICE only allows
device scalar variables as the arguments of the cuBLAS
functions. However, the CUBLAS_POINTER_MODE_HOST
supports the host scalar variables, which makes the imple-
mentation simple and concise. However, we found that the
CUBLAS_POINTER_MODE_HOST suffers from the unde-
sired numerical errors in the precision of the calculation when
we use the cuBLAS functions with single-precision floating
representation. Hence, in this paper, we provide cuBLAS
examples using CUBLAS_POINTER_MODE_DEVICE.
If readers consider implementing a target algorithm with the
double-precision, the CUBLAS_POINTER_MODE_HOST is
not problematic in terms of calculation precision.

To create a shared library from the code using the cuBLAS
library, we simply add an argument -lcublas in the com-
mand provided in Code 3 as shown below.

To conduct the implemented function with the cuBLAS
library in Python, several codes should be rewritten in Code 4.
First, we need to change the codes in lines 18–22 of Code 4
to the following codes.

This modification was required because the cuBLAS library
is conductedwith the column-major order (i.e.,order="F",
Fortran-style order). Second, we also needed to change the
codes loading the dynamic-link library at lines 10 and 11 in
Code 4 to the following codes.

There are several advantages of using the cuBLAS library.
First, we do not have to write a kernel function separated
from the host function. Second, we do not have to consider
about the dimensions and sizes of the thread blocks and grids.
The cuBLAS library handles the thread-block-grid hierarchy.
Third, although the functions provided by the cuBLAS library
are not always faster than the user-defined kernel functions,
they are well optimized and rapidly updated. Thus, imple-
menting the CUDA C using the cuBLAS library is a good
baseline implementation for the algorithms that consist of
many linear algebraic operations.

C. PyCUDA
In this section, we briefly introduce the PyCUDA library [14],
which enables the GPU run-time code generation (RTCG),
also known as just-in-time (JIT) compilation, and allows to

skip the compilation of the CUDA C source code on the
command line by the developer as shown in Code 3. To use
the PyCUDA library, the developers first need to install it in
their own system. If the developer’s system is Linux platform
and has the anaconda environment [20], the installation can
be done with the following simple command.

Note that the numpy library and the CUDA Toolkit
should be installed before PyCUDA is installed. For
the developers with a Windows system, we referred
to the installation guide provided in PyCUDA Wiki
(https://wiki.tiker.net/PyCuda/Installation/Windows/).

To use the PyCUDA library, we simply import the
PyCUDA library in Python. Based on the tutorial provided
in [21], the initialization of the PyCUDA is suggested by the
following codes.

Code 6. Example code for importing PyCUDA library.

In Code 6, pycuda.driver is a module that con-
tains all attributes and functions related to the CUDA
device interface. The code import pycuda.autoinit
automatically performs the initialization of the PyCUDA
library. The function SourceModule() is used to cre-
ate a pycuda.driver.Module class from the CUDA
C source code by the JIT compilation with the nvcc
compiler. For transferring the data from the host mem-
ory to the device memory, the PyCUDA provides a
simple function pycuda.gpuarray.to_gpu(numpy
array) that returns a GPUArray object, which is
a numpy.ndarray-like object stored in the device
memory.

With the PyCUDA library, we can directly call the
CUDA C kernel function by get_function() of
pycuda.driver.Module. We can also pass the spec-
ification of the thread-block-grid hierarchy defined by the
three-dimensional tuples of integers as arguments of the
CUDA C kernel function callable in Python. To describe
the usage of the PyCUDA, we consider the matrix-matrix
multiplication example as in Section II-A and assume that the
source code of the kernel function d_MatMul() is stored
in matmul_pycuda.cu. Furthermore, we assume that the
PyCUDA is initialized with the codes in Code 6 and the
data is generated by the codes in lines 4–8 of Code 4. Then,
we conduct the matrix-matrix multiplication with CUDA C
kernel function by the PyCUDA using the following codes.

The Python example code in Code 7 comprises four parts.
The first part is to load CUDA C d_MatMul() func-
tion into Python as mm_pycuda() by the JIT compila-
tion using SourceMoudle() and get_function() in
lines 2–5 of Code 7. The second part is to transfer the numpy
array on the host memory into the device memory using
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Code 7. Example of PyCUDA for the matrix-matrix multiplication.

gpuarray.to_gpu() function in lines 7–9 of Code 7.
The third part is to specify the thread-block-grid hier-
archy with TPB (thread per block) and BPG (block per
grid) in lines 10–12 of Code 7. The final part is to call
the mm_pycuda function at lines 13 of Code 7, where
block and grid are the arguments for the thread dimen-
sion per block and the block dimension per grid, respec-
tively. Note that the arguments block and grid should
be three-dimensional tuple of integers. The math.ceil()
function at line 11 of Code 7 is used to obtain a standard
Python integer value.

PyCUDA offers several advantages. First, as provided
in Code 7, we can directly call the CUDA C kernel
function without writing a CUDA C host function that
calls the CUDA C kernel function as in Code 2. Thus,
we do not need to consider the host and device memory-
related functions and dim3 type. Second, we can skip the
command line compilation as in Code 3. However, there
is a limitation in using PyCUDA. The cuBLAS library
is not available with the PyCUDA library. This issue is
reported in the frequently asked questions in PyCUDA Wiki
(https://wiki.tiker.net/PyCuda/FrequentlyAskedQuestions/).

D. NUMBA
In this section, we briefly introduce the Numba library [17],
which provides the JIT compilation using low level virtual
machine (LLVM), that translates a general Python function
into a machine code. Although the Numba and PyCUDA pro-
vide the JIT compilation, the former is more versatile than the
latter. First, the Numba library supports the JIT compilation
for both Python functions running on CPUs and GPUs by
jit and cuda.jit decorators, respectively. Second, the
Numba library only requires a general Python function to
generate the optimized machine code, whereas the PyCUDA
needs a CUDA C kernel function, as in Code 1. The Numba
library can easily be installed into the developer’s system by
the following this simple command.

If the developer’s system has the anaconda environment [20],
the installation can be performed with the conda command
as follows.

Note that the CUDA Toolkit is required to use CUDA GPU
computation via the Numba library.

Even though the Numba library provides various options
for Python JIT compilation, we focus on the CUDA GPU
computation via cuda.jit decorator in this study. To use
the decorator cuda.jit, we first import the cuda module
from numba library as follows.

With the cuda.jit decorator, we implement a CUDA C
kernel function easily with a usual Python syntax. The fol-
lowing Code 8 provides an example of the matrix-matrix
multiplication using the cuda.jit decorator, which is from
the Numba documentation (http://numba.pydata.org/numba-
doc/latest/cuda/examples.html).

Code 8. Example of numba for the matrix-matrix multiplication.

The function cuda.grid(ndim) returns the thread
position in the thread-block-grid hierarchy, where ndim cor-
responds to the dimension of the thread structure declared
when instantiating the kernel function. For example, the code
in line 7 of Code 8 is equivalent to the following expression.

When invoking the kernel function, it requires the speci-
fication of the thread-block-grid hierarchy with [blocks
per grid, threads per block] between the ker-
nel function name and its arguments as used in line 24 of
Code 8. The cuda.jit uses the lazy compilation so that
the data types of the arguments are automatically recognized
when the function is invoked.

E. TENSORFLOW
This section introduces the implementation approach
for CUDA GPU computation using TensorFlow [12].
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TensorFlow is one of the main open-source platforms for
implementing deep neural network models and providing
various functions that support the CUDA GPU parallel com-
putation, including the basic linear algebraic operations.
Although we focus on the implementation of the matrix-
matrix multiplication on the CUDA GPU device in this
brief introduction, TensorFlow is flexible and applicable
for tackling common optimization problems. We provide an
implementation example for the FISTA in Section IV.

TensorFlow can easily be installed using Python’s pip
package with the following command.

It is also possible to build it from the source codes of Ten-
sorFlow. Additional information is provided in the Tensor-
Flow installation guide (https://www.tensorflow.org/install).
To use TensorFlow, we simply need to import the
tensorflow library into the Python process using the
following Python code.

Note that the alias tf is commonly used in the TensorFlow
community when importing the tensorflow library.
To conduct the matrix-matrix multiplication on a CUDA

GPU device, we provide an example of TensorFlow in
Code 9. Here, we assume that the codes at line 14–18
in Code 8 are executed before running the codes in
Code 9

Code 9. Example of TensorFlow for matrix-matrix multiplication.

In Code 9, we use with tf.device("/GPU:0") to
manually assign the CUDA parallel computation on the GPU
device whose device ID is "/GPU:0". The device IDs can
be found by running the following code.

Although we use the statement with tf.device() to
explicitly indicate the chosen GPU device in Code 9, Tensor-
Flow prioritizes the GPU device by default when it is avail-
able. TensorFlow automatically uses the GPU device when
variables are defined as tensorflow.Tensor object in
lines 2 and 3 of Code 9. The code C = dC.numpy() in
line 5 of Code 9 is not necessary in general; however, we use
the code to explicitly conduct the memory transfer from the
device memory to the host memory for a fair comparison.
Note that TensorFlow automatically handles memory transfer
between the host and device memories. For example, the
users can directly use tf.matmul() function without the
explicit memory transfer for the multiplication of two matri-
ces where one is stored in the device memory and the other is
stored in the host memory.

F. PyTorch
This section introduces the implementation approach for
CUDA GPU computation using PyTorch [13]. PyTorch is
a Python library based on Torch library [22] in Lua pro-
gramming language and is also one of the main open source
platforms for learning deep neural network models. Similar
to TensorFlow, PyTorch supports the CUDA GPU parallel
computation and is flexible and applicable to solve general
optimization problems.We provide an implementation exam-
ple for the FISTA in Section IV as well.

PyTorch can be installed with either Python’s pip package
or Anaconda environment with the following commands.

The torchvision and torchaudio libraries are
additional libraries for the computer vision and the
audio and signal processing using PyTorch, respectively.
It is also possible to build from the source codes
of PyTorch. Additional information is provided in the
PyTorch installation from the source code documentation
(https://github.com/pytorch/pytorch#from-source). To use
PyTorch, we simply have to import the torch library into
Python process using the following Python code.

To proceed with the matrix-matrix multiplication by
PyTorch on a CUDA GPU device, we need to run the fol-
lowing codes in Code 10. Similar to the case of TensorFlow,
we assume that the codes in lines 14–18 of Code 8 are
executed before running the codes in Code 10

Code 10. Example of PyTorch for matrix-matrix multiplication.

In Code 10, we create three tensor objects with
torch.tensor() to store three matrices and trans-
fer these tensors into the device memory with the func-
tion torch.tensor.to(device), where the device
denotes the host memory if device="cpu" and the
device memory if device="cuda:0". We can explic-
itly specify the target device with the index in the name
"cuda:index" if the system has multi-GPU devices.
PyTorch only supports the explicit memory transfer between
the host and device memory transfer unlike TensorFlow.
For example, this code torch.matmul(dA,C) creates a
runtime error that the function expects the object of device
type cuda but the second argument has the device type cpu.

G. NUMERICAL COMPARISON FOR MATRIX-MATRIX
MULTIPLICATION
Wehave explored the existing implementation approaches for
the CUDA GPU parallel computation in Python. TensorFlow
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and PyTorch are easy to implement because of their sim-
plicity. The implementation with the Numba library is
also easier than other implementation approaches using
the low-level language syntax as the Numba library only
requires Python-syntax to implement the CUDA kernel func-
tion. However, the implementation approach that offers the
best computational efficiency for CUDA GPU computation
remains uncertain.

In this section, we numerically investigate the compu-
tational efficiency of the implementation approaches with
the matrix-matrix multiplication. The matrix-matrix multi-
plication is fairly simple, and then this comparison is still
restricted to cover the comparison of the CUDA C imple-
mentation for general problems. Section IV investigates the
computational efficiency of FISTA to deal with more general
problems. To measure the computational efficiency of the
implementation approaches, we use the execution time in
seconds for each implementation approach on a worksta-
tion (Intel(R) Xeon(R) W-2175 CPU (base: 2.50 GHz, max-
turbo: 4.30 GHz) and 128 GB RAM) with NVIDIA GeForce
GTX 1080 Ti. We consider the matrix-matrix multiplica-
tion of two square matrices whose dimensions are denoted
by n and n = 1000, 1500, 2000, 2500, 3000. Additionally,
the CUDA GPU device had different computing powers for
single-precision and double-precision operations. To address
this difference, we have measured the execution times for
both single-precision and double-precision operations. Since
the execution time could vary from the resources used by the
operating system, we repeat the matrix-matrix multiplication
11 times and average the execution times from the second to
the last repetitions (i.e., average of 10 execution times). The
first execution time is affected by the preparation procedures
of the implementation approaches. Here, we measure the
averages of the preparation time by the difference between
the first execution time and the average of the execution
times from the second to the last repetitions. As a result,
the Python with a dynamic-link library using the kernel
functions and cuBLAS library need 0.1190 and 0.2637 sec-
onds for the preparation of the CUDA computation, respec-
tively. TheNumba, TensorFlow, and PyTorch libraries needed
0.4006, 0.5350, and 1.9513 seconds, respectively. However,
PyCUDA has the first execution time similar to the other
repetitions. This observation might be from the initialization
of the PyCUDA library by import pycuda.autoinit.
PyCUDA seems to initialize the CUDA context when the
pycuda.autoinit is imported.
Figures 1 and 2 depict the averages of the execution times

of the implementation approaches with single-precision and
double-precision, respectively. We also report the average
computation times in Table 1. The standard errors of the
average computation times for all dimensions are less than
0.001. We omit the standard errors in Table 1.

From the comparison of the computational efficiency for
the matrix-matrix multiplication, we observe several patterns.
First, PyTorch is always faster than TensorFlow for both
single-precision and double-precision even if PyTorch needs

more preparation time than TensorFlow. From the docu-
mentation of Tensorflow and PyTorch, we found that the
matrix-matrix multiplication of PyTorch uses the cuBLAS
library and that of TensorFlow uses its own function.

Second, using Python, with a dynamic-link library using
the cuBLAS library (DLL-cuBLAS), is faster than using the
CUDA C kernel function (DLL-Kernel) for all cases except
n = 1000 with double-precision. Especially, DLL-cuBLAS
is much faster than DLL-Kernel with single-precision. Based
on this observation, the cuBLAS library is found suitable for
the implementation of Python with a dynamic-link library
than the user-defined kernel function if the target problem is
adequate with single-precision calculation. However, the dif-
ference between two implementations with double-precision
was only 0.0581 for 3000×3000-dimensional matrix-matrix
multiplication. Additionally, there remain several techniques
to accelerate the implementation using the user-defined ker-
nel function. For example, we can accelerate the user-defined
kernel function by considering the memory hierarchy of the
CUDAC programming model. From these points of view, we
recommend choosing the implementation approach, between
using the user-defined kernel functions and the cuBLAS
library, based on the familiarity of the developer when the
target problem requires double-precision calculation.

Third, there is no significant difference in the com-
putational efficiency between PyCUDA and DLL-Kernel
for single-precision operations; however, PyCUDA becomes
more efficient than DLL-Kernel for operations requiring
double-precision. When we need to solve a problem with
double-precision, PyCUDA is a better option for CUDAGPU
implementation than DLL-Kernel. For double-precision,
PyCUDA is one of the best implementation approaches in
terms of the computational efficiency.

Finally, the Numba library is better for ease of implementa-
tion but worse for computational efficiency than Python with
a dynamic-link libraries (DLL-Kernel and DLL-cuBLAS)
and PyCUDA. Furthermore, the Numba library is also slower
than TensorFlow and PyTorch that provide simpler imple-
mentations than the Numba library. Further investigation
reveals that this inefficiency is caused by the implicit memory
transfer between the host and device memories. The com-
parison of the matrix-matrix multiplication is done with the
naive implementation of CUDA C without consideration of
the memory hierarchy of the CUDAGPU device for fair com-
parison and simplicity of description. The readers can accel-
erate the matrix-matrix multiplication by using the shared
memory of the CUDA GPU device. We refer to the example
using the shared memory for the Numba library provided in
the Numba documentation (http://numba.pydata.org/numba-
doc/latest/cuda/examples.html).

In summary, considering both the ease of implementa-
tion and the computational efficiency, PyTorch is the best
implementation approach for the matrix-matrix multiplica-
tion. However, if the dimension of target problem is larger
than 3000 and the computational efficiency is more important
than ease of implementation, the Python with a dynamic-link

VOLUME 10, 2022 53331



Y. Cho et al.: Comparative Study of CUDA GPU Implementations in Python With FISTA for LASSO

FIGURE 1. Average computation times of the matrix-matrix multiplication
with single-precision.

FIGURE 2. Average computation times of the matrix-matrix multiplication
with double-precision.

library using the cuBLAS library emerges as the best option
for carrying out the matrix-matrix multiplication with single-
precision representation.

III. FAST ITERATIVE SHRINKAGE-THRESHOLDING
ALGORITHM
The previous section demonstrated an implementation guide-
line for matrix-matrix multiplications as a suitable example
of basic linear operations, as well as a comparison result
for computational efficiency. As previously mentioned, the
existing implementation approaches are adequate for com-
mon optimization problems. We now explore an optimiza-
tion problem that exploits a general iterative algorithm for
minimization problems and fully consists of the basic linear

algebraic operations. In this section, we briefly introduce the
FISTA and LASSO regressionmodels, and provide the details
of the FISTA for LASSO as well.

A. FISTA
The FISTA [15] considers the minimization of the following
problem: for x ∈ Rp,

x̂ = argmin
x

f (x)+ g(x), (2)

where f (x) is a differentiable convex function of x and g(x)
is convex but possibly non-differentiable function of x. The
FISTA, adopting Nesterov’s acceleration [24], is an acceler-
ated version of the iterative shrinkage-thresholding algorithm
(ISTA) [23].

To describe the FISTA, consider a quadratic approximation
QL(x|y) of f (x)+g(x) at a given point ywith L > 0 as follows:

QL(x|y)= f (y)+∇f (y)T (x−y)+
L
2
‖x−y‖22+g(x), (3)

where ‖x‖22 =
∑p

j=1 x
2
j . Furthermore, it is easy to demon-

strate that the minimizer of (3) depending on y is equivalent
to the solution of the following problem:

qL(y)=argmin
x

{
g(x)+

L
2

∥∥∥x−(y−L−1∇f (y))∥∥∥2
2

}
. (4)

The ISTA algorithm iterates xk = qL(xk−1) with an initial
point x0 and a constant step size L−1 with a Lipschitz constant
L of ∇f . Note that the backtracking procedure is adopted for
choosing step size L−1 by repeatedly checking the inequality
(5) with Lk = Lk−1ηik for η > 1 and ik ≥ 0 even when the
Lipschitz constant L of∇f is not available or it has enormous
computational cost. The backtracking procedure finds a value
L that satisfies the following inequality:

f (qL(xcur))+ g(qL(xcur)) ≤ QL(qL(xcur)|xcur), (5)

where xcur is the iterative solution at the current itera-
tion. After finding L in (5), the next iterative solution is
defined as

xnext = qL(xcur). (6)

By Theorem 3.1 in Beck and Teboulle [15], the rate of conver-
gence to the optimal function value is no worse than O(1/k),
where k is the number of proceeded iterations.

Motivated by Nesterov’s acceleration [24], the FISTA
additionally considers a sequence of p-dimensional vectors
(zk )k≥1 and a sequence of scalars (tk )k≥1 such that for k ≥ 1,

tk+1 =
1+

√
1+ 4t2k
2

,

zk+1 = xk +
( tk − 1
tk+1

)
(xk − xk−1), (7)

where t1 = 1 and z1 = x0. The difference between the
FISTA and the ISTA is that the next iterative solution xk+1
is updated by xk+1 = qL(zk+1) instead of xk+1 = qL(xk )
at the kth iteration, where L is either a Lipschitz constant of
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TABLE 1. Summary of average computation times for the matrix-matrix multiplication.

∇f or a value satisfying (5). By Theorem 4.4 in Beck and
Teboulle [15], the rate of convergence to the optimal function
value is no worse than O(1/k2), where k is the number of
proceeded iterations.

B. LASSO REGRESSION MODEL
The LASSO regression model [16] is one of the most popular
penalized linear regression models. Especially, the LASSO
regression model is mostly used for high-dimensional and
low sample size (HDLSS) data for both the parameter estima-
tion and the variable selection. To bemore specific, let y ∈ Rn

and X ∈ Rn×p be a response vector and a design matrix,
respectively. The LASSO regressionmodel then considers the
following minimization problem:

β̂(λ) = argmin
β

1
2
‖y− Xβ‖22 + λ‖β‖1, (8)

where ‖β‖1 =
∑p

j=1 |βj| is the `1-norm of a vector β ∈ Rp.
Many algorithms have been developed to obtain the opti-

mal solution of the LASSO regression model. The origi-
nal paper on LASSO regression [16] considered quadratic
programming with linear constraints. Wu and Lange [25]
propose the coordinate descent algorithm that is efficient in
both computation and memory loads. Furthermore, there are
solution-path algorithms that provide whole solution path
along tuning parameter λ. Efron et al. [26] propose the least
angle regression (LARS) algorithm for LASSO regression
and Tibshirani and Taylor [27] propose the solution path
algorithm for the generalized lasso regression with a penalty
term λ‖Dβ‖1 instead of λ‖β‖1, where the definition of a
matrix D determines a target problem. For example, the
generalized lasso becomes the original lasso problem when
D = Ip, where Ip is p-dimensional identity matrix. How-
ever, theses algorithms are usually conducted in a sequential
manner that is not adequate for CUDA GPU parallel com-
putation. Computation scalability has become a challenging
task for LASSO, which deals with HDLSS as the quantity of
data in application domains increases exponentially. Parallel
computing techniques can be a good solution for fulfilling
the demand for these practical uses. Therefore, we consider
applying the FISTA to obtain the solution of the LASSO
regression in this study because it fully consists of the basic

linear algebraic operations that are well suited for CUDA
GPU parallel computation.

C. FISTA FOR LASSO REGRESSION
In this section, we provide details of the FISTA for LASSO.
From the descriptions in Sections III-A and III-B, we first
define the functions f (β) and g(β) in the FISTA as follows:

f (β) =
1
2
‖y− Xβ‖22, g(β) = λ‖β‖1.

Then, the local quadratic approximation Q(β|β ′) of the
LASSO objective function at a given point β ′ with L > 0
is defined as

Q(β|β ′) =
1
2
‖r(β ′)‖22 − r(β ′)TXd(β,β ′)

+
L
2
‖d(β,β ′)‖22 + λ‖β‖1, (9)

where r(β ′) = y− Xβ ′ and d(β,β ′) = β − β ′. We can also
represent qL in (4) as

qL(β ′) = argmin
β

{
λ‖β‖1 +

L
2
‖β − u(β ′,L)‖22

}
, (10)

where u(β ′,L) = β ′ + L−1XT r(β ′). The minimization
problem in (10) is equivalent to the LASSO regression model
with X = In and the tuning parameter λ/L. Thus, the optimal
solution qL(β ′) in (10) has the following explicit form:

qL(β ′) = Sλ/L
(
u(β ′,L)

)
, (11)

where Sλ/L(u) =
(
Softλ/L(u1), . . . ,Softλ/L(up)

)
and

Softλ/L(x) = sign(x) max{|x| − λ/L, 0} is the soft-
thresholding operator. This soft-thresholding operator is not
only simple but is also Sλ/L(u) is only needed for independent
element-wise operations, which are well suited for CUDA
GPU parallel computation. Moreover, the inequality in (5)
can be verified using the following conditions:

‖r(β1)‖22−‖r(β
0)‖22≤L‖d(β

1,β0)‖22−2r(β
0)TXd(β1,β0),

where β0 and β1 denote the current and next iterative solu-
tions, respectively. Thus, all operations in the FISTA for
LASSO can be expressed by the basic linear algebra opera-
tions, and then the FISTA for LASSO is well suited to parallel
CUDA GPU computation. Note that the smallest Lipschitz
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constant L of the LASSO regression problem is the largest
eigenvalue of XTX. For moderate-sized issues, we employ
L = λmax(XTX) and calculate L by using the backtrack-
ing procedure when the computational cost for calculating
the largest eigenvalue is high. We provide a summary of
the FISTA for LASSO with the backtracking procedure in
Algorithm 1.

Algorithm 1 FISTA for LASSO

Require: y ∈ Rn, X ∈ Rn×p, β̂
(0)
∈ Rp, λ, L0, η0,

max_iter, and δtol
1: t← 1, β̂

′

← β̂
(0)
, β̂

(prev)
← β̂

(0)
F initialization

2: for k = 1, 2, . . . , max_iter do
3: ymXbp← y− Xβ̂

′

F r(β̂
′

)
4: rbp← ‖r(β̂

′

)‖22
5: XTrbp← XT r(β̂

′

)
6: ik ←−1
7: repeat F start backtracking procedure
8: ik ← ik + 1
9: ηk = η

ik
0

10: Lk ← ηkLk−1
11: β̂ ← Softλ/Lk (β̂

′

+ L−1k XTrbp)
12: diff_beta← β̂ − β̂

′

F d(β̂, β̂
′

)
13: diff_beta_sq← ‖d(β̂, β̂

′

)‖22
14: XTrbpd← d(β̂, β̂

′

)TXTrbp
15: RHS← Lk*diff_beta_sq -2.0*XTrbpd
16: rb← ‖r(β̂)‖22
17: LHS← rb−rbp F ‖r(β̂)‖22 − ‖r(β̂

′

)‖22
18: until LHS ≤ RHS F end backtracking procedure
19: tnext← (1+

√
1+ 4t2)/2

20: diff_beta← β̂ − β̂
(prev)

21: β̂
′

← β̂ + (t− 1)/tnext*diff_beta
22: diff_beta_L2←

∥∥d(β̂, β̂(prev)
)
∥∥
2

23: if diff_beta_L2 < δtol then
24: break
25: end if
26: t← tnext
27: β̂

(prev)
← β̂

28: end for

IV. COMPARATIVE STUDY OF CUDA GPU
IMPLEMENTATION OF FISTA FOR LASSO
This section provides the implementation examples of the
FISTA for LASSO described in Section III-C along with the
implementation approaches introduced in Section II. After
exploring all the implementations, we compare their compu-
tational efficiency with the samples generated from themodel

y = Xβ + ε, (12)

where X ∈ Rn×p and ε ∈ Rn are generated from the standard
normal distribution and β = (β1, . . . , βp)T is defined as

βj =

{
1.0 for j = 1, . . . , 0.05p
0 for j = 0.05p+ 1, . . . , p.

We consider solving the minimization problem in (8) with the
given observations y andX. Practically, we need to search for
the optimal tuning parameter λ∗ for the LASSO regression
problem. In this study, however, we just set λ =

√
2 log(p)/n

that controls the strength of the penalty term in order to focus
on investigating the computational efficiency of the CUDA
GPU implementations. Thus, we assume that the following
codes are executed before the implementation of the FISTA
for LASSO with the given n and p.

Note that we omit the data type conversion here. If users
require the single-precision (double-precision) representa-
tion, use the numpy.ndarray.astype() function with
the argument np.float32 (np.float64). The imple-
mentation guide is provided in the following subsections.

A. PYTHON WITH A DYNAMIC-LINK LIBRARY BY CUDA C
USING KERNEL FUNCTION
Here, we first provide CUDA C kernel functions required in
the FISTA for LASSO in Code 11.

The codes in line 1–9 of Code 11 are handled by C
preprocessor that includes the header files and substitutes
the preprocessor macros defined by the keyword #define.
The remainder of the Code 11 includes five CUDA C ker-
nel functions. First, the Sgemv() function at lines 11–31
in Code 11 conducts the matrix-vector multiplication of
either y = αAx + y or y = αAT x + y on CUDA GPU
device. In the Sgemv() function, the argument Bool deter-
mines the type of the matrix-vector multiplication, where
y = αAx + y and y = αAT x + y are conducted if
Bool=false and Bool=true, respectively. Second, the
function soft_thr() in lines 33–40 of Code 11 provides
the soft-thresholding operation Sα(x) defined in (11). Third,
the function Saxpy() provides the vector addition of two
vectors having the form y← αx+y like cublasSaxpy()
in the cuBLAS library. Fourth, the function vec_prod()
conducts the element-wise multiplication between two vec-
tors having the form z = x ◦ y, where x ◦ y denote
the Hadamard product of x and y. Finally, the function
reduce_sum() conducts additional demands of every two
elements that are apart with the distance mid_length in
parallel on CUDA GPU device, which is repeatedly called to
sum all elements of a given vector in the host function of the
FISTA for LASSO.

Here’s an implementation example of the host function of
the FISTA for LASSO in Code 12.
In Code 12, the codes in lines 3–64 contains the decla-

ration of variables and preparation of CUDA C device vari-
ables using the dynamic allocationwith thecudaMalloc()
function. The variable d_ymXbp stores the operation r(β ′) =
y−Xβ ′ and variabled_ymXbp2[0] stores ‖r(β ′)‖22 after the
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Code 11. CUDA C kernel functions for mathematical operations in FISTA
for LASSO.

reduced summation by the codes in lines 66–83 of Code 12.
The variable d_XTrbp also stores XT r(β ′) in lines 85–88 of
Code 12. The codes in lines 89–147 conducts the backtrack-
ing procedure described in lines 7–18 in Algorithm 1. The
codes in lines 149–157 correspond to the updating equations

Code 12. Host function of the FISTA for LASSO using the user-defined
CUDA C kernel function.

in (7). To check the convergence of the FISTA, we use the
`2-norm of the difference between the previous and current
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Code 12. (Continued.) Host function of the FISTA for LASSO using the
user-defined CUDA C kernel function.

iterative solutions, which correspond to the codes in lines
159–176 of Code 12. Finally, all the dynamically allocated

Code 12. (Continued.) Host function of the FISTA for LASSO using the
user-defined CUDA C kernel function.

memory spaces are freed by the codes in lines 183–197 of
Code 12.

To employ the implemented functions, we first need to
compile the codes in Codes 11 and 12 as given in Code 3,
where we use the name of the dynamic-link library as
fista_kernel.so. After compilation, we can conduct
the FISTA for LASSO on CUDA GPU device in Python with
the codes shown in Code 13.

The codes in Code 13 comprises three parts. The first part
is to load the dynamic-link library and define the types of the
arguments in lines 1–11. The second part involves setting the
parameters required in the FISTA for LASSO in lines 13–28.
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Code 13. Python code for FISTA for LASSO using the user-defined kernel
function.

Here, we set the convergence tolerance as 10−3 and η = 2 and
L0 = 10 for Lk = Lk−1ηik with ik ≥ 0 in the backtracking
procedure of the FISTA. The variable loss stores the con-
vergence criterion ‖β(k)

−β(k−1)
‖2 for k ≥ 1 and the variable

step_c stores the number of iterations needed to satisfy the
convergence criterion. Finally, we obtain the solution of the
LASSO regression with FISTA_Kernel() function in line
30 in Code 13. Our solution is stored in the variable beta
after running the function FISTA_Kernel().

B. PYTHON WITH A DYNAMIC-LINK LIBRARY BY CUDA C
USING cuBLAS LIBRARY
To use the cuBLAS library, we need to replace the codes in
lines 67–197 in Code 12 with the codes in Code 14. In the
implementation with the cuBLAS library, we only keep the
CUDA C kernel function soft_thr() in Code 11.
The roles of the variables in Code 14 are identical to those

in Code 12. As demonstrated in Code 14, we can simplify
the codes in 12 using the functions provided by the cuBLAS
library. For example, the codes in lines 71–83 of Code 12
are comparable to the code in lines 56 and 57 in Code 14.
In addition, the functions in the cuBLAS library are usually
well-optimized; thereby helping us achieve not only the con-
cise expressions but also the computational efficiency with
the cuBLAS library. A numerical comparison is provided in
Section IV-G.
To execute the implemented function with the cuBLAS

library, we have to apply the same procedure in the Python
with a dynamic-link library using the user-defined ker-
nel functions. In the compilation step, we need to add

Code 14. Host function of the FISTA for LASSO using the cuBLAS library.

the option -lcublas in the command of nvcc as pro-
vided in Section II. The name of the compiled library
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Code 14. (Continued.) Host function of the FISTA for LASSO using the
cuBLAS library.

is fista_blas.so. After compilation, we can con-
duct the FISTA for LASSO with the cuBLAS library in
Python by changing the file name fista_kernel.so to
fista_blas.so in line 1 and changing the code in line
15 to

in Code 13.

C. PyCUDA
This section provides an implementation example of the
FISTA for LASSO with the PyCUDA library. First, we sup-
pose that the codes of the CUDA C kernel functions in
Code 11 are stored in a file FISTA_kernel.cu. Then,
we define a Python function for FISTA using the PyCUDA
library, as shown in Code 15.
In Code 15, we first load the PyCUDA and Numpy

libraries and compile the user-defined kernel functions stored
in FISTA_kernel.cu using SourceModule() func-
tion of the PyCUDA library in lines 1–8. The function
Module.get_function() of the PyCUDA used in lines
9 and 10 makes the CUDA C kernel function callable in
Python platform, where Module is a Python class provided
by the PyCUDA library. In the PyCUDA example, we use the
Sgemv() and soft_thr() kernel functions. The codes in
lines 12–33 in Code 15 are used to declare the required vari-
ables in the host and device memories, where the gpuarray
is a Python class provided by the PyCUDA library to handle
the device variables and several linear algebraic operations.
The roles of the variables in Code 15 are also exactly same as
those in Code 11. We omit the explanation of the remaining
codes in Code 15 to avoid duplication.

To conduct theFISTA() function by the PyCUDA library,
we simply write the Python codes as shown in Code 16.
The advantage of the PyCUDA library is that we can write
the host function to call the CUDA C kernel functions with
Python-syntax and avoid the direct compilation of the CUDA
C source code by nvcc on the command line.

D. NUMBA
This section provides an implementation example of the
FISTA for LASSO using the Numba library. As shown in
Code 11, we first write the CUDAC kernel function using the
decorator numba.cuda.jit as given in Code 17, where
cuda.jit is used by from numba import cuda for
ease of use. With the numba.cuda.jit decorator, we can
write the CUDA C kernel function with Python-syntax. The
roles of the kernel functions in Code 17 are exactly same as
of those in Code 11, except the reduce() function. The
reduce() function is defined for the sum of all elements
in a given vector with the decorator numba.cuda.reduce
that supports a reduction algorithm running on a GPU device.

Utilizing the defined kernel functions, we write the Python
function for the FISTA for LASSO as given in Code 18.

In Code 18, we additionally consider an argument dtype
to cover the single-precision and double-precision rep-
resentations. Note that the Numba library supports the
Numpy data types and we simply use numpy.float32
and numpy.float64 for single-precision and double-
precision, respectively. The roles of the variables in Code 18
are exactly same as of those in Code 12. We omit the
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Code 15. Python function for FISTA for LASSO using the PyCUDA library.

explanation of remaining codes in Code 18 to avoid dupli-
cation. To conduct the FISTA() function by the Numba
library, we use the same codes in Code 16 with the additional

Code 15. (Continued.) Python function for FISTA for LASSO using the
PyCUDA library.

Code 16. Python code for conducting the FISTA for LASSO implemented
by the PyCUDA library.

argument dtype. The Numba library offers all the imple-
mentation advantages described in the PyCUDA library,
and provides the additional advantage of writing CUDA
C kernel functions with Python-syntax using the decorator
numba.cuda.jit.

E. TENSORFLOW
This section demonstrates an implementation example of
the FISTA for LASSO using the TensorFlow library. As the
TensorFlow library includes the functions for the basic linear
algebraic operations on a GPU device, we only write a func-
tion soft_thr() for the soft-thresholding operation in the
FISTA for LASSO as given in Code 19 with the decorator
tf.function, which is required to conduct operations
with tf.Tensor object.

In Code 19, we use a statement with tf.device() to
explicitly select the target GPU device. As the TensorFlow
library automatically selects the GPU device depending on
its availability, the statement related to with keywords can
be removed for conciseness of the implementation. We use
the tf.linalg.matvec() and tf.tensordot() for
the matrix-vector multiplication and the inner production of
two vectors, respectively. We omit the explanation of remain-
ing codes in Code 19 to avoid duplication. To conduct the
FISTA() function by the TensorFlow library, we use the
same codes in Code 16 with the additional argument dtype
as well. The TensorFlow library has the all implementation
advantages described in the Numba library, and provides
an additional advantage where we do not have to write
any CUDA C kernel function for the basic linear algebraic
operations.

F. PYTORCH
This section provides an implementation example of the
FISTA for LASSO using the PyTorch library. The PyTorch
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Code 17. CUDA kernel functions for mathematical operations in FISTA for
LASSO using the numba library.

library provides the functions for the basic linear alge-
braic operations on a GPU device similar to the Tensor-
Flow library. Thus, we write a function soft_thr() for
the soft-thresholding operation in the FISTA for LASSO as
given in Code 20 using the function torch.maximum(),
which conducts the element-wise maximum of given
torch.Tensor objects and is available from PyTorch
1.7.0.

In Code 20, we used torch.Tensor.to() function to
transfer data between the host and device memories, where
"cpu" and "cuda:0" denote the host and device memo-
ries, respectively. Unlike the TensorFlow library, we should
use the explicit memory transfer from the host to the device
memory to conduct the operations on a GPU device. We use
the torch.matmul() and torch.dot() for the matrix-
vectormultiplication, and the inner production of two vectors,
respectively. We omit the explanation of the remaining codes
in Code 20 to avoid redundancy as well. To conduct the
FISTA() function by the PyTorch library, we use the same
codes in Code 16 with the additional argument dtype. The

Code 18. Python function of the FISTA for LASSO using the numba library.

PyTorch library offers all the same implementation advan-
tages as those offered by the TensorFlow library.

G. NUMERICAL COMPARISON OF FISTA FOR LASSO
This section numerically compares the computational effi-
ciency of the implementation approaches provided in
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Code 19. Python function of the FISTA for LASSO using the tensorflow
library.

Section IV. As described in Section II-G, wemeasure the exe-
cution time in seconds for each implementation approach on
the same work station. We consider the number of variables p
as 1000, 1500, 2000, 2500, and 3000 with a sample size n =
p/2. We conduct all the implementation approaches to both
the single-precision and double-precision representations to
cover the difference of the computing powers between the
single-precision and double-precision operations on a GPU
device. With the same reason described in Section II-G, we
conduct the implementation approaches 11 times for each

Code 20. Python function of the FISTA for LASSO using the PyTorch
library.

case of p, and average the execution times from the second
to the last repetition. The preparation time of the implemen-
tation approaches are estimated by the difference between
the first execution time and the average of the execution
time from the second to the last repetition. The result of the
preparation time is given below.

DLL-Ker DLL-cuBLAS PyCUDA Numba TensorFlow PyTorch
0.2060 0.3081 0.5767 1.4245 1.3571 1.9152

The Python, with a dynamic-link library, needs the shortest
preparation time among all implementation approaches, and
the Numba, TensorFlow, and PyTorch relatively needs much
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TABLE 2. Summary of average computation times for the FISTA for LASSO with n = p/2 and λ =
√

2 log(p)/n.

FIGURE 3. Average computation times of the FISTA for LASSO with
single-precision.

more preparation time. These findings are based on the fact
that the Numba library requires the JIT compilation at the
first execution, and the TensorFlow and PyTorch require the
creation of computational graphs for operations.

Figures 3 and 4 depict the average computation times of
the implementation approaches except the Numba library
with single-precision and double-precision representations.
We omit the computation times of the Numba library in
Figures 3 and 4 as it requires significantly more computation
time than the others. To provide more precise comparison,
we report the average computation times of all implementa-
tion approaches in Table 2. As used in Section II-G, we denote
the Python with a dynamic-link library using the user-defined
kernel functions and the cuBLAS library as DLL-Kernel and
DLL-cuBLAS, respectively. For both single-precision and
double-precision operations, the DLL-cuBLAS outperforms
the others. This is because the DLL-based implementations
conduct the main iterations with the compiled codes, and
those defined by the Python-syntax conduct the main loop on
Python platform. The DLL-Kernel is also more efficient and
faster than the PyCUDA, Numba, and TensorFlow libraries.
Despite being slower than DLL-cuBLAS, the PyTorch is the

FIGURE 4. Average computation times of the FISTA for LASSO with
double-precision.

second or third best for the computation times and has an
edge in terms of simplicity of implementation. If the com-
putation time is the main issue of the target problem, the
DLL-cuBLAS is the best option for implementation. Oth-
erwise, the PyTorch is easy to implement while providing
enough computational efficiency.

V. CONCLUSION
In this study, we investigated various implementation
approaches for CUDA GPU parallel computation in Python
with implementation guidelines and comparison results. For
the ease of implementation, the existing GPU computation
libraries, such as PyCUDA and PyTorch, are found be more
convenient in comparison to implementing the dynamic-link
library. However, for implementing the iterative algorithms,
the Python with a dynamic-link library using the cuBLAS
library is the most efficient in terms of the computation
time. Especially, Numba is relatively restricted to implement-
ing the iterative algorithms compared to TensorFlow and
PyTorch. The implementation with PyTorch is comparable
to the Python with a dynamic-link library for computational
efficiency and better for ease of implementation. Although
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our numerical studies have been conducted only for the
FISTA for LASSO, and the comparison results could vary
from the target problems, we would recommend consid-
ering either Python with a dynamic-link library using the
cuBLAS library or PyTorch for CUDA GPU implementation
in Python.
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