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ABSTRACT In this study, we investigate multi-player noncooperative minmax H∞ target tracking game
strategy with conflicting target strategies and cooperative H∞ target tracking game strategy with common
target strategy of nonlinear mean-field stochastic jump diffusion (MFSJD) system with external disturbance.
Due to the nonlinear terms and mean-field (average) behaviors in the stochastic nonlinear MFSJD system
and minmax H∞ payoff function, the multi-player noncooperative and cooperative minmax H∞ mean-field
game strategy of nonlinearMFSJD system are more difficult than the linearMFSJD system and conventional
nonlinear stochastic system. To avoid solving complex Hamilton Jacobi Isaacs inequalities (HJIIs) of multi-
player noncooperative minmax H∞ mean-field target tracking game strategy of nonlinear MFSJD system,
the nonlinear MFSJD system is interpolated by a set of local linearized MFSJD system through smoothing
functions by the global linearization method. Then the multi-player noncooperative minmax H∞ nonlinear
mean-field target tracking game strategy design can be transformed to a linear matrix inequalities (LMIs)-
constrained multi-objective optimization problem (MOP). The LMIs-constrained MOP could be efficiently
solved by the help of the proposed LMIs-constrained multi-objective evolution algorithm (MOEA). We can
prove that the Pareto optimal solution of LMIs-constrained MOP is the Nash equilibrium solution of
noncooperative minmax H∞ mean-field target tracking strategy of nonlinear mean-field MFSJD system.
Further, the cooperative minmax H∞ mean-field common target tracking strategy of nonlinear mean-field
stochastic system is reduced to an LMIs-constrained single-objective optimization problem (SOP). Finally,
two simulation examples of cyber-financial mean-field systems are given to illustrate the design procedure
and compare the efficacies of the proposed noncooperative and cooperative minmax H∞ mean-field target
tracking strategy of nonlinear MFSJD systems.

INDEX TERMS Noncooperative/cooperative minmax H∞ target tracking game, nonlinear mean-field
stochastic system, Hamilton Jacobi Isaacs inequalities (HJIIs), multi-objective optimization problem (MOP).

I. INTRODUCTION
The mean-field theory was proposed to model collective
behaviors which result from all interactions of individ-
uals in various physical and sociological stochastic sys-
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tems. Recently, the mean-field stochastic systems and their
researches have gained worldwide attention and become an
active research field [1]–[6]. One main feature of mean-field
stochastic system is that the mean terms of the system state
appear in its stochastic dynamic to represent the stochastic
system to be influenced by the present average (mean) behav-
ior. However, the mean terms, which appear in the stochastic
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mean-field system and cost functional, always make the
optimal control design problem of mean-field stochastic sys-
tem more difficult than the conventional stochastic system.
A large number of researchers have studied the mean-field
stochastic systems [7], [8] and their applications to diverse
areas like biological system [9], [10], social systems [11],
smart grids [12], etc. In [9], [10], the scale-free property
of biological molecular networks could be analyzed by
the mean-field algorithms. In [11], the financial resource
allocation problem in share market can be described by
multi-player stochastic mean-field game problem of linear
stochastic mean-field system. It is found that the share prices
of competitive firms with stochastic cooperative game strat-
egy are higher than those with stochastic noncooperative
game strategy. The competitiveness and strategy analysis of
electrical vehicles in the smart grid can be described as a
mean-field game strategy design problem of linearmean-field
stochastic system [12]. The Pareto H∞ game strategy in [13]
was introduced based on the weighting sum minimization
method for linear mean-field stochastic system in finite hori-
zon. The linear quadratic mean field stochastic differential
game is discussed based on an open loop Stackelberger
strategy in [14]. The Pareto game strategies of linear mean
field stochastic system in finite horizon are proposed in [15]
and ParetoH∞ game strategywas introduced for linear mean-
field stochastic system under external disturbance in [16].
From the above application examples, it can be marvelously
seen nowadays that individuals may consider the effect of
collective behaviors as mean-field (average) terms from
all individuals’ mutual interactions in the stochastic social
systems.

Stochastic game theory is another common method to
discuss the behaviors of all players in large population sys-
tems [17]–[20]. In [17], Nash minmax stochastic game strat-
egy was employed to treat mixed H2/H∞ control design of
linear and nonlinear stochastic system. In [18], the coop-
erative and noncooperative H2 and H∞ game strategies
were introduced for linear and nonlinear stochastic sys-
tems and their applications to control, communication and
social systems. In [19], some theoretical results of Nash
equilibrium solution were discussed for linear and nonlin-
ear stochastic systems. In [20], Takagi-Sugeno (T-S) fuzzy
interpolation method was employed to efficiently solve non-
cooperative and cooperative game strategy of nonlinear
stochastic system with Wiener process and Poisson pro-
cess. The stochastic game strategy is an efficient method
to analyze multiple players to make their decisions based
on their own interests and goals. Recently, stochastic game
theory has been widely applied to very diverse areas, for
example, stochastic evolutionary game strategies of a popu-
lation of biological network [21], noncooperative game strat-
egy of bandwidth allocation in 4G heterogeneous wireless
access networks [22], game theoretic approach to the optimal
scheduling of parking-lot electric vehicle charging [23], non-
cooperative game strategy in cyber-financial systems [24],
Stackelberg game for stochastic LPV systems [25], etc. From

the different strategies of players, the multi-player game
can be classified into multi-player noncooperative game and
cooperative game. The game strategy of m-players who are
competitive with each other to pursue their maximum ben-
efits is called multi-player noncooperative game strategy
[18]–[20]. The game strategy of m–players who reach a
compromise to pursue their common benefits is called coop-
erative game strategy. In general, multi-player noncoopera-
tive game strategy is more hard to design than multi-player
cooperative game strategy because it is not easy to achieve
multiple desired targets as possible for each player simul-
taneously for game strategies of a population of biological
network in [21] and game strategies of networkedmulti-agent
systems in [26].

Nash equilibrium is a crucial concept to validate the design
performance of noncooperative game strategy. A noncoop-
erative game strategy is with a Nash equilibrium solution
if each player has chosen a strategy, then no player can
profit by changing his own strategy while other players keep
their strategies unchanged [18], [19]. In general, it is very
difficult to find the Nash equilibrium solution for noncoop-
erative game of stochastic system, especially for nonlinear
stochastic systems because of the existence of many Nash
equilibrium solutions. A lot of iterative searching algorithms
such as extremum seeking method have been developed
to search for Nash equilibrium point for noncooperative
game strategies [27]–[29]. Some shortages of these itera-
tive searching algorithms are addressed as follows: (i) The
convergence time to a Nash equilibrium point may be quite
long if the initial approximation point is far away from
the Nash equilibrium point. (ii) These iterative searching
algorithms cannot search for all Nash equilibrium points,
especially for nonlinear multi-player noncooperative game
strategy. Based on the above discussion, it is more appeal-
ing to find a direct method to solve all Nash equilibrium
points of multi-player noncooperative game strategy of non-
linear stochastic system, especially for nonlinear MFSJD
system.

Even the game strategy design for MFSJD system has
gained a lot of attention in recent studies, it still remain some
problems to be dealt with. At first, the conventional game
design is to focus on the stabilization problem for MFSJD
system and the target tracking game strategy design is not
well considered. Also, to obtain the Nash equilibrium solu-
tion for noncooperative game strategy design, the iterative
method may cause a lot of computational complexity during
the design procedure. Further, it is not easy to obtain all Nash
equilibria.

In this study, to remedy the above shortage, we focus on
the M-player noncooperative and cooperative minmax H∞
mean-field target tracking game strategy design problems
of nonlinear MFSJD system with unknown external distur-
bance, continuous and discontinuous random fluctuations.
At first, an individual fractional payoff function based onH∞
mean-field target tracking performance is proposed for each
player to achieve one’s own desired target in the multi-player
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noncooperativeH∞ minmax mean-field target tracking game
strategy of nonlinear MFSJD system. Also, a common frac-
tional payoff function is proposed for all players to achieve
their desired common target in the multi-player cooperative
H∞ minmax mean-field target tracking game strategy of
nonlinearMFSJD system under external disturbance. In order
to avoid solving complicated M nonlinear partial differential
Hamilton-Jacobi-Isaacs inequalities (HJIIs) in the nonlin-
ear M-player noncooperative H∞ mean-field target tracking
game strategy, the global linearization technique is employed
to approximate the nonlinear MFSJD system by the inter-
polation of local linearized MFSJD systems at the multiple
vertices of the polytope of all global linearizationMFSJD sys-
tems. By the proposed indirect method, the design problem
of nonlinear M-player noncooperative H∞ mean-field target
tracking game strategy of nonlinear MFSJD system is trans-
formed to an equivalent LMIs-constrained multi-objective
optimization problem (MOP), which can be efficiently solved
with the help of the proposed LMIs-constrained reverse-
order MOEA method. We have shown that the Pareto opti-
mal solution of LMIs-constrained MOP is the solution of
noncooperative H∞ mean-field target tracking game strat-
egy of nonlinear MFSJD system. In general, the solution
of M-player noncooperative minmax H∞ mean-field tar-
get tracking game strategy of nonlinear MFSJD system is
not unique. There exist a lot of Pareto optimal solutions
for M-player noncooperative H∞ mean-field target tracking
game strategy of nonlinear MFSJD system, which can be
proven to be all the Nash equilibrium solutions. Further, the
similar indirect method is employed to treat the M-player
cooperative minmax H∞ mean-field common target tracking
strategy design problem of nonlinear MFSJD system. Based
on the global linearization technique [30], the M-player
cooperative minmax H∞ mean-field common target tracking
strategy design problem of nonlinear MFSJD system can be
transformed to a simple LMIs-constrained single-objective
optimization problem (SOP) which could be easily solved
with the help of LMI toolbox in Matlab. Finally two simula-
tion examples of cyber-financial system are given to illustrate
the design procedure and compared for the performance test
of the M-player noncooperative and cooperative minmaxH∞
target tracking game strategy in the nonlinear MFSJD finan-
cial systems.

The contributions of this study are summarized as follows:
(I) In this study, the nonlinear MFSJD system with mean

field terms, continuous Wiener process, jumping Poisson
process and external disturbance is considered to more realis-
tically describe phenomena in the cyber-physical mean-field
systems, especially economic and financial systems. Based
on nonlinear MFSJD system, the multi-player nonlinear non-
cooperative and cooperative minmax H∞ mean-field target
tracking strategy design problem are proposed for more prac-
tical applications. TheM-player noncooperative and coopera-
tiveH∞mean-field target tracking strategy are transformed to
an equivalent M-player H∞ stabilization game of augmented
mean-field systems to simplify the design procedure.

(II) At present, there exists no efficient method to effi-
ciently solve all Nash equilibrium solutions of multi-player
noncooperative game strategy of nonlinear MFSJD systems.
In this study, the global linearization and the proposed
indirect method are employed so that the nonlinear multi-
player noncooperative and cooperative minmax H∞ mean-
field target tracking game strategy design problems could
be transformed to equivalent LMIs-constrained MOP and
LMIs-constrained SOP for nonlinear MFSJD system, respec-
tively. Also, the Pareto optimal solutions of MOP are all
shown to be Nash equilibrium solutions of multi-player
noncooperative minmaxH∞ mean-field target tracking game
strategy.

(III) Unlike the conventional iterative searching algorithm
to search out one Nash equilibrium solution, the pro-
posed reverse-order LMIs-constrained MOEA-based algo-
rithm for LMIs-constrained MOP can search in parallel
for the Pareto front of MOP in a single run to efficiently
obtain all Nash equilibrium solutions of multi-player non-
cooperative minmax H∞ mean-field target tracking strat-
egy of nonlinear MFSJD system, from which the designer
could select one’s own preferable solution. Therefore, the
proposed multi-player noncooperative and cooperative game
strategy can be applied to solving the financial invest-
ment strategy in cyber-financial systems and financial con-
tagion problem due to the global impact of financial
crisis.

This study is organized as follows: The problem for-
mulation of M-player noncooperative minmax H∞ mean-
field target tracking game strategy of nonlinear MFSJD
system is given in Section II. In Section III, based on the
global linearization method, M-player noncooperative min-
max H∞ mean-field game strategy is transformed into an
equivalent LMIs-constrained MOP, which could be solved
with the help of LMIs-constrained MOEA. A design pro-
cedure of multi-player noncooperative nonlinear H∞ mean-
field target tracking game strategy via LMIs-constrained
MOEA is proposed in Section IV. In Section V, the design
of multi-player cooperative H∞ mean-field target tracking
game strategy is given for nonlinear MFSJD system. In
Section VI, two design examples of cyber-financial mean-
field systems with noncooperative and cooperative target
tracking game strategies are given to illustrate the design
procedure and validate their target tracking performance
with comparison. Some concluding remarks are made in
Section VII.
Notation: AT : the transpose of matrix A; A ≥ 0

(A > 0) : the positive semi-definite (positive definite)
matrix;E {·} : the expectation operator; In : n × n iden-
tity matrix; L2

F (R+,Rn) : the space of nonanticipative
stochastic processes y(t) ∈ Rn with respect to an increas-
ing σ–algebras Ft (t ≥ 0) satisfying ‖y(t)‖L2

F (R+,Rn) ,

E
{∫
∞

0 y(t)T y(t)dt
} 1
2 < ∞; C2: the function is in class C2

if the first and second derivative of the function both exist
and are continuous.
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II. PROBLEM DESCRIPTION OF M-PLAYER
NONCOOPERATIVE MINMAX H∞ MEAN-FIELD TARGET
TRACKING GAME STRATEGY OF NONLINEAR MFSJD
SYSTEM
Consider the following more general nonlinear MFSJD sys-
tem with M-players (M-person decision makers):

dx(t) = {f (x(t),E{x(t))})

+

M∑
m=1

gm(x(t),E{x(t)})
[

um(t)
E{um(t)}

]
+ h(x(t),E{x(t)})

[
v(t)

E{v(t)}

]
}dt

+ l(x(t),E{x(t)})dw(t)

+ n(x(t),E{x(t)})dp(t) (1)

where x(t) ∈ Rn denotes the state vector of the nonlinear
MFSJD system, E{x(t)} is the expectation of x(t), um(t) ∈
RMm denotes the control strategy of the mth player with
its expectation E{um(t)}, v(t) ∈ L2

F (R+,Rn) and E{v(t)}
are the external disturbance and its expectation, respectively,
w(t) is the 1-D standardWiener process, l(x(t),E{x(t)})dw(t)
denotes the continuous random fluctuation of system func-
tion, p(t) denotes Poisson counting process with mean λ >
0 in an unit time and n(x(t),E{x(t)})dp(t) is regarded as the
intrinsic discontinuous random fluctuation (jumping process)
of system function. The nonliear functions f (x(t),E{x(t)}),
{gm(x(t),E{x(t)})}Mm=1, h(x(t),E{x(t)}), l(x(t),E{x(t)}) and
n(x(t),E{x(t)}) are Borel measureable functions with Lip-
shitz continuity. Two stochastic processes in (1) are assumed
to be mutually independent.
Remark 1 [18], [40]: Some properties of stochastic pro-

cesses w(t) and p(t) are given as follows: (I) E{dw(t)} =
0, (II) E{dw(t)dw(t)} = dt , (III) E{dp(t)} = λdt , (IV)
E{dw(t)dp(t)} = 0.
Recently, the nonlinear MFSJD system in (1) have been

widely employed to model the nonlinear stochastic system
with collective behavior resulting from all interactions of
individuals in various physical and sociological stochastic
systems, especially for the financial investment strategies in
financial indices system and control strategies of government
and international consortiums in the financial contagion prob-
lem due to the global impact of financial crisis. However,
at present, there exist no efficient method to solve all Nash
equilibrium for multi-player noncooperative target tracking
game strategy of nonlinearMFSJD system for practical appli-
cations. In this study, the global linearization and the pro-
posed reverse-order LMIs-constrained MOEA algorithm will
be employed to treat the multi-player noncooperative and
cooperative target tracking game strategies in the nonlinear
MFSJD system.

Before the further discussion, the global linearization
method is utilized to transform the nonlinear MFSJD system
into an interpolation-type nonlinear MFJDS. By choosing

suitable J vertices, we have [30], [31]

∂f (x(t),E{x(t))
∂x(t)

∂f (x(t),E{x(t))
∂E{x(t)}

g1(x(t),E{x(t)})

...

gM (x(t),E{x(t)})

h(x(t),E{x(t)})

∂l(x(t),E{x(t)})
∂x(t)

∂l(x(t),E{x(t)})
∂E{x(t)}

∂n(x(t),E{x(t)})
∂x(t)

∂n(x(t),E{x(t)})
∂E{x(t)}



∈ Ch



∪
J
i=1



Ai
AEi

[B1,i BE1,i]
...

[BM ,i BEM ,i]
[Di DEi ]
Li
LEi
Ni
NE
i





where Ch{•} denotes the convex hull and Ai,AEi ,Di,D
E
i ,

Li,LEi ,Ni,N
E
i ,Bj,i B

E
j,i are local linearized matrices at the ith

vertex, for i = 1, · · · , J , m = 1, · · · ,M .
Therefore the trajectory of nonlinear MFJD system in (1)

can be represented by the convex combination of the trajec-
tories of the following J local linearized MFJD systems of
the polytope if the convex hull consists of all local linearized
systems at all x(t) and E{x(t)} [30], [31]:

dx(t) = {Aix(t)+ AEi E{x(t)}

+

M∑
m=1

Bm,ium(t)+ BEm,iE{um(t)}

+Div(t)+ DEi E{v(t)}}dt

+ (Lix(t)+ LEi E{x(t)})dw(t)

+ (Nix(t)+ NE
i E{x(t)})dp(t), i = 1, · · · , J

(2)

According to the global linearization theory [30], [31], the
trajectory of nonlinearMFJD system in (1) can be represented
by the convex combination of the trajectories of J localMFJD
systems in (2) as follows:

dx(t) =
J∑
i=1

αi(x(t),E{x(t)}){{Aix(t)+ AEi E{x(t)}

+

M∑
m=1

Bm,ium(t)+ BEm,iE{um(t)}

+Div(t)+ DEi E{v(t)}}dt

+ (Lix(t)+ LEi E{x(t)})dw(t)

+ (Nix(t)+ NE
i E{x(t)})dp(t)} (3)

where {αi(x(t),E{x(t)})}Ji=1 denote the set of interpolation
functions which satisfy (i) αi(x(t),E{x(t)}) ≥ 0 and (ii)∑J

i=1 αi(x(t),E{x(t)}) = 1.
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Remark 2: Recently, there exist several interpolation
methods for the approximation of the nonlinear MFSJD sys-
tem in (1), e.g., T-S fuzzy interpolation method. In this study,
the global linearization method is adopted. Theoretically,
if all the local linearized systems are inside a compact set
C, the global linearization method is to interpolate the local
linearized systems at the J vertices of compact set C in (3)
to approximate the nonlinear MFSJD system in (1) with
the interpolation functions. In general, compared with other
interpolation methods, the global linearization method can
approximate the nonlinear MFSJD with less local linearized
systems and simpler interpolation functions.

Taking the expectation of nonlinear MFSJD system in (3)
with the fact E{dp(t)} = λdt and E{dw(t)} = 0 in Remark 1,
we get the mean subsystem of nonlinear MFSJD system as:

dE{x(t)} =
J∑
i=1

αi(x(t),E{x(t)}){{(Ai + AEi

+ λ(Ni + NE
i ))E{x(t)} +

M∑
m=1

(Bm,i + BEm,i)

×E{um(t)} + (Di + DEi )E{v(t)}}dt (4)

Let us denote x̃(t) = x(t)− E{x(t)}. The variation subsys-
tem of mean-field system can be obtained by subtracting the
nonlinear MFSJD system in (3) by the mean subsystem in (4)
as:

dx̃(t) =
J∑
i=1

αi(x(t),E{x(t)}){{Aix̃(t)

+

M∑
m=1

Bm,iũm(t)+ Diṽ(t)

− λ(Ni + NE
i ))E{x(t)}}dt

+ (Lix̃(t)+ (Li + LEi )E{x(t)})dw(t)

+ (Nix̃(t)+ (Ni + NE
i )E{x(t)})dp(t)}} (5)

where ũm(t) = um(t)− E{um(t)} and ṽ(t) = v(t)− E{v(t)}.
Let us denote competitors of the mth player as

u−m(t) = [uT1 (t), · · · , u
T
m−1(t), u

T
m+1(t),· · · , u

T
M (t)]T where

the unavailable external disturbance v(t) is also considered
as one kind of competitor to each player. Then the mean
subsystem w.r.t. the mth player in (4) can be rewritten as:

dE{x(t)} =
J∑
i=1

αi(x(t),E{x(t)}){{(Ai + AEi

+ λ(Ni + NE
i ))E{x(t)}

+ (Bm,i + BEm,i)E{um(t)}

+ (B−m,i + BE−m,i)E{u−m(t)}

+ (Di + DEi )E{v(t)}}dt (6)

where B−m,i = [B1,i, · · · ,Bm−1,i,Bm+1,i,· · · ,BM ,i] and
BE
−m,i = [BE1,i, · · · ,B

E
m−1,i,B

E
m+1,i,· · · ,B

E
M ,i].Moreover, the

variation system in (5) w.r.t. themth player can be formulated

as follows:

dx̃(t) =
J∑
i=1

αi(x(t),E{x(t)}){{Aix̃(t)

+Bm,iũm(t)+ B̄−m,iũ−m(t)

+Diṽ(t)− λ(Ni + NE
i ))E{x(t)}}dt

+ (Lix̃(t)+ (Li + LEi )E{x(t)})dw(t)

+ (Nix̃(t)+ (Ni + NE
i )E{x(t)})dp(t)}} (7)

where ũ−m(t) = [uT1 (t) − E{uT1 (t)}, · · · , u
T
m−1(t) −

E{uTm−1(t)}, u
T
m+1(t) −E{u

T
m+1(t)},· · · , u

T
M (t)− E{uTM

(t)}]T .
Suppose the desired target of the mth player can be gener-

ated by the following reference model:

dxr,m(t) = (Ar,mxr,m(t)+ Br,mrm(t))dt (8)

where xr,m(t) denotes the desired trajectory to be tracked by
the mth player, rm(t) represents the reference input, Ar,m is
an asymptotically stable matrix which is specified by the mth
player and Br,m is the reference input matrix.
Remark 3: If we choose Br,m = −Ar,m for the reference

model in (8), it is clear that xr,m(t) = −A−1r,mBr,mrm(t) =
rm(t) at the steady state. Therefore, if the mth player selects
Br,m = −Ar,m and rm(t) as the desired target, then the target
tracking problem of each player will become a reference
model tracking problem of (8).
Based on the variation subsystem in (7), the mean subsys-

tem of MFJD system in (6), and the desired target system
in (8), M-player noncooperative mean-field target tracking
game strategy is formulated as the following M simultaneous
minimax H∞ reference target tracking design problems:

ρ∗m = min
ũm(t)

E{um(t)}

max
ṽ(t)

E{v(t)}
rm(t)

E{u−m(t)}
ũ−m(t)

E{
∫ Tf
0 [x̃Tm(t)Q1,mx̃m(t)

+ũTm(t)R1,mũm(t)
+(E{x(t)} − xr,m(t))TQ2,m
×(E{x(t)} − xr,m(t))
+E{uTm(t)}R2,mE{um(t)}]dt}
−x̃Tm(0)P1x̃m(0)− (E{x(0)}
−xr,m(0))TP2
×(E{x(0)} − xr,m(0))

E{
∫ Tf
0 [ũT−m(t)ũ−m(t)

+ṽT (t)ṽ(t)
+E{uT−m(t)}E{u−m(t)}
+E{vT (t)}E{v(t)}
+rTm (t)rm(t)]dt},

(9)

for m = 1, · · · ,M , where Tf > 0 denotes the final time,
ρ∗m denotes the performance of the mth player, Q1,m ≥ 0 and
Q2,m ≥ 0, R1,m > 0 and R2,m > 0 are the corresponding
symmetric weighting matrices. x̃Tm(0)P1x̃m(0) and (E{x(0)}−
xr,m(0))TP2(E{x(0)} − xr,m(0)) are the effect of initial con-
dition of variation system and tracking error with positive
definite matrices P1 and P2, respectively.
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Remark 4: The state variance x̃Tm(t)Q1,mx̃m(t), mean state
target tracking variance (E{x(t)} − xr,m(t))TQ2,m(E{x(t)} −
xr,m(t)), control variance ũTm(t)R1,mũm(t) and mean control
power E{uTm(t)}R2,mE{um(t)} of the mth player in the inte-
gral of numerator in (9) are to be minimized by the control
variation ũm(t) and mean control E{um(t)} of the mth player,
while control variance ũT−m(t)ũ−m(t) andmean control power
E{uT−m(t)}E{u−m(t)} of competitors of the mth player, the
variance of external disturbance ṽT (t)ṽ(t) and the power of
average external disturbance E{vT (t)}E{v(t)} and the power
rTm (t)rm(t) of arbitrary reference input in the integral of
denominator in (9) are to be specified by the competitors
of the mth player to maximize their effect on the mean-field
target tracking performance in the numerator of (9) from the
minmax H∞ game perspective.

The physical meaning of M -player noncooperative min-
max H∞ mean-field target tracking game strategy in (9)
is that the competitors ũ−m(t) and E{u−m(t)} to the mth
player as well as external disturbance v(t) and any desired
reference input rm(t) of the nonlinear MFSJD system want
to deteriorate the mean-field target tracking performance by
the deviation around the mean target of the mth player as
possible while the mth player tries to optimally track his
desired target xr,m(t) of the mean state E{xT (t)x(t)}, i.e.,
minimize E{x(t)} − xr,m(t))TQ2,mE{x(t)} − xr,m(t)) with
minimum variance x̃Tm(t)Q1,mx̃m(t) and minimum control
effort ũTm(t)R1,mũm(t) and E{u

T
m(t)}R2,mE{um(t)}. The terms

x̃Tm(0)P1x̃m(0) and (E{x(0)}−xr,m(0))
TP2(E{x(0)}−xr,m(0))

in the numerator of (9) are to extract the effect of initial
conditions on the multi-player noncooperative minmax H∞
mean field target tracking game.

III. DESIGN OF M-PLAYER NONCOOPERATIVE H∞

MEAN-FIELD TARGET TRACKING GAME STRATEGY OF
NONLINEAR MFSJD SYSTEM
From the above analysis, the M-player noncooperative H∞
mean-field target tracking game strategy design problem is to
solve M simultaneous minmax H∞ reference target tracking
design problem in (9). In order to simplify the design proce-
dure, let us augment twomean-field subsystems in (6) and (7)
with the desired reference model in (8) as one augmented
state X̄m(t) = [x̃T (t) E{xT (t)} xTr,m(t)]

T and the correspond-
ing augmented mean-field stochastic system can be given as
follows:

dX̄m(t) =
J∑
i=1

αi(x(t),E{x(t)})((Ām,iX̄m(t)

+ B̄m,iŪm(t)+ B̄−m,iŪ−m(t))dt

+ L̄m,iX̄m(t)dw(t)+ N̄m,iX̄m(t)dp(t))

for m = 1, · · · ,M (10)

where Ūm(t) = [ũTm(t) E{u
T
m(t)}]

T and Ū−m(t) = [ũT−m(t)
E{uT−m(t)} ṽ

T (t) E{vT (t)} rTm (t)]
T . The detailed systemmatri-

ces in (10) are given as

Ām,i =

Ai −λ(Ni + NE
i ) 0

0 Ai + AEi − λ(Ni + N
E
i ) 0

0 0 Ar,m


B̄m,i =

Bm,i 0
0 Bm,i + BEm,i
0 0


L̄m,i =

 Li Li + LEi 0
0 0 0
0 0 0


N̄m,i =

Ni Ni + NE
i 0

0 0 0
0 0 0


B̄−m,i =

B−m,i 0 Di
0 (B−m,i + BE−m,i) 0
0 0 0

· · ·

· · ·

0 0
(Di + DEi ) 0

0 Br,m


Based on the augmented mean-field stochastic system

in (10), the M minmax H∞ target tracking design problems
in (9) for M-player mean-field target tracking game strat-
egy of nonlinear mean-field stochastic system in (1) could
be rewritten in the following M simultaneous minmax H∞
stabilization design problems

ρ∗m = min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf
0 [X̄Tm (t)Q̄mX̄m(t)+ Ū

T
m (t)

×R̄mŪm(t)]dt − X̄Tm (0)P̄X̄m(0)}

E{
∫ Tf
0 ŪT

−i(t)Ū−m(t)]dt}
∀m = 1, · · · ,M (11)

where X̄Tm (0)P̄X̄m(0), with the positive matrix P̄, is the
effect of the initial condition to be deducted. The augmented
weighting matrices are defined as

R̄m = diag{R1,m,R2,m}

Q̄m =

Q1,m 0 0
0 Q2,m −Q2,m
0 −Q2,m Q2,m


Based on the above analysis, the M-player noncooperative

minmax H∞ mean-field reference target tracking game strat-
egy design problem in (9) of nonlinear MFSJD system in (1)
is transformed to how to solve M simultaneous minmax H∞
stabilization design problems in (11) for the M augmented
systems in (10) simultaneously. However, due to the frac-
tional payoff function in (11), it is not easy to directly solve
M simultaneous H∞ robust stabilization problems in (11) for
the M augmented mean-field systems in (10) simultaneously.
In this situation, the following indirect suboptimal method
is proposed to solve M simultaneous minmax H∞ robust
stabilization problems in (11) for M augmented mean-field
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systems in (10)

ρ∗m = min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf
0 [X̄Tm (t)Q̄mX̄m(t)+ Ū

T
m (t)

×R̄mŪm(t)]dt − X̄Tm (0)P̄X̄m(0)}

E{
∫ Tf
0 ŪT

−i(t)Ū−m(t)]dt}
≤ ρm,

∀ m = 1, · · · ,M (12)

where ρm denotes the upper bound of the mth minmax H∞
mean-field game strategy of the mth player with control
strategy Ūm(t).

Instead of directly solving M minmax H∞ robust stabi-
lization problem in (11) of M augmented stochastic systems
in (10) simultaneously, we solve M minmax H∞ mean-
field game design problem in (12) by an indirect suboptimal
method, i.e., to decrease ρm as possible to approach to ρ∗m
simultaneously from the suboptimal game perspective. Then
the M minmax H∞ stabilization problem in (11) can be
solved indirectly by minimizing their upper bounds in (12)
simultaneously as the following multi-objective optimization
problem (MOP):

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M )

= min(ρ1, · · · , ρm, · · · , ρM )

s.t. min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf
0 [X̄Tm (t)Q̄mX̄m(t)+ Ū

T
m (t)

×R̄mŪm(t)]dt − X̄Tm (0)P̄X̄m(0)}

E{
∫ Tf
0 ŪT

−i(t)Ū−m(t)]dt}
≤ ρm, ∀ m = 1, · · · ,M (13)

where (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) is called objective vector of

MOP in (13) and is to be also shown as the Nash equilibrium
solution ofM-player noncooperative minmaxH∞ mean-field
game strategy in (12) in the sequel.

The suboptimal M-player minmax H∞ mean-field game
strategy design problem in (12) of nonlinear MFSJD system
becomes how to solve MOP in (13) based on the Pareto dom-
ination of all feasible solutions. All solutions of MOP in (13)
are called Pareto optimal solutions and are not unique [6].
Some properties of MOP in (13) based on the Pareto domi-
nation are given by the following definitions:
Definition 1 (Pareto Dominance [18]): A feasible solu-

tion (Ū1
1 (t), · · · , Ū

1
m(t), · · · , Ū

1
M (t)) with objective vector

(ρ11 , · · · , ρ
1
m, · · · , ρ

1
M ) of MOP in (13) is said to dominate

another feasible solution (Ū2
1 (t), · · · , Ū

2
m(t), · · · , Ū

2
M (t))

with objective vector (ρ21 , · · · , ρ
2
m, · · · , ρ

2
M ) if {ρ1i ≤

ρ2i }
M
i=1with at least one of inequalities being a strict

inequality.
Definition 2 (Pareto Optimal Solution [18]): For theMOP

in (13), a feasible solution (Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) is

called Pareto optimal solution if there is no another feasible
solution that can dominate it.
Definition 3 (Pareto Optimal Set [18]): The Pareto opti-

mal set ofMOP in (13) is defined as σ ∗ ={(Ū∗1 (t), · · · , Ū
∗
m(t),

· · · , Ū∗M (t))‖ (Ū∗1 (t), · · · , Ū
∗
m, · · · , Ū

∗
M ) is Pareto optimal

solution in (13)}.

Definition 4 (Pareto Front [18]): The Pareto front is
defined for MOP in (13) as TF = {(ρ∗1 , · · · , ρ

∗
m,

· · · , ρ∗M )‖(Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) ∈ σ ∗}. It means

Pareto front collects all the objective vectors of Pareto opti-
mal solution.

Before the discussion of solving M-player noncooperative
minmax H∞ mean-field game strategy via MOP in (13),
Nash equilibrium solution (point) of M player noncoopera-
tive minmax H∞ mean-field game strategy in (11) is defined
as follows:
Definition 5 (Nash Equilibrium Point [3]): For the

M-player noncooperative minmax H∞ mean-field target
tracking game strategy in (11) of nonlinear MFSJD sys-
tem in (10), the M-player noncooperative minmax game
strategy (Ū∗1 (t), · · · , Ū

∗
m, · · · , Ū

∗
M ) with objective vector

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) constitutes a Nash equilibrium solu-

tion if and only if the following M inequalities hold:

(ρ∗1 , · · · , ρ
∗

m−1, ρ
∗
m, ρ

∗

m+1, · · · , ρ
∗
M )

≤ (ρ∗1 , · · · , ρ
∗

m−1, ρm, ρ
∗

m+1, · · · , ρ
∗
M )

∀m = 1, · · · ,M (14)
The meaning in (14) is that if each player has chosen

a strategy, then no player can profit by changing his own
strategy while other players keep their strategies unchanged.
In general, there exist a large number of Nash equilibrium
solutions to satisfy M inequalities in (14). Before solving the
MOP in (13) for the suboptimal solution of M-player nonco-
operative H∞ mean-field game strategy in (12), we need to
prove the solution of MOP in (13) will approach the solution
of M-player minmax noncooperative H∞ mean-field game
strategy of nonlinear MFSJD system in (10).
Theorem 1: The Pareto optimal solution (Ū∗1 (t), · · · , Ū

∗
m(t)

, · · · , Ū∗M (t)) of MOP in (13) with the corresponding Pareto
optimal objective vector (ρ∗1 , · · · , ρ

∗
m, · · · , ρ

∗
M ) by the indi-

rect suboptimal method is also the solution of M-player
noncooperative minmaxH∞ mean-field game strategy in (11)
for nonlinear mean-field stochastic system.

Proof: See Appendix A. �
According to Definitions 1-5 and Theorem 1, we need

to solve the Pareto optimal solution (Ū∗1 (t), · · · , Ū
∗
m(t), · · · ,

Ū∗M (t)) of MOP in (13) for the M-player noncooperative
minimax H∞ mean-field target tracking game strategy of
nonlinear mean-field stochastic system. In the minmax frac-
tional strategy in (13), since the minimization of numerator
by Ūm(t) is independent on Ū−m(t), the MOP in (13) is
equivalent to the following MOP with the followingM Nash
H2 quadratic game inequality constraints [11], [18], [20]:

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) (15)

= min(ρ1, · · · , ρm, · · · , ρM )

s.t. min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf

0
[X̄Tm (t)Q̄mX̄m(t)+ Ū

T
m (t)R̄mŪm(t)

− ρmŪT
−i(t)Ū−m(t)]dt ≤ X̄

T
m (0)P̄X̄m(0)}

∀ m = 1, · · · ,M (16)
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Let us denote

Jm(Ūm(t), Ū−m(t)) (17)

= E{
∫ Tf

0
[X̄Tm (t)Q̄mX̄m(t)+ Ū

T
m (t)R̄mŪm(t)

− ρmŪT
−i(t)Ū−m(t)]dt

Then we need two steps to solve M minmax H2 quadratic
game inequality constraints in (16) on MOP in (15). The
first step needs to solve the M stochastic minmax Nash H2
quadratic game problems

J∗m = min
Ūm(t)

max
Ū−m(t)

Jm(Ūm(t), Ū−m(t)) (18)

The second step needs to solve the followingM constrained
problems

J∗m ≤ E{X̄
T
m (0)P̄X̄m(0)} (19)

Before we solve (18) and (19) for M minmax H2 quadratic
game inequality constraints in (16) on MOP in (15)., the
following lemma is necessary.
Lemma 1 (Itô-Lévy Lemma [42]): Let V (X̄m(t)) denote

the Lyapunov function of the augmented mean-field stochas-
tic system in (10) such that V (X̄m(t)) ∈ C2, V (0) = 0,
V (X̄m(t)) > 0. For the M-player augmented MFSJD system
in (10), the Itô-Lévy Lemma formula of V (X̄m(t)) is given as
follows:

dV (X̄m(t)) =
J∑
i=1

αi(x(t),E{x(t)}){
∂V T (X̄m(t))

∂X̄m(t))

× ( Ām,iX̄m(t)+ B̄m,iŪm(t)+ B̄−m,iŪ−m(t)}dt

+
∂V T (X̄m(t))

∂X̄m(t))
L̄m,iX̄m(t)dw(t)

+
1
2
X̄Tm (t)L̄

T
m,i
∂V 2(X̄m(t))

∂2X̄m(t))
L̄m,iX̄m(t)dt

+ (V (X̄m(t)+ N̄m,iX̄m(t))

−V (X̄m(t))dp(t)} (20)
The following lemma is also necessary for solving MOP

in (15)-(16) for the augmented mean-field stochastic system
in (10):
Lemma 2 ([30]): Given a set of matrices {Gi}Ji=1, a

positive-definite matrix P and interpolation functions
{αi(x(t),E{x(t)})}Ji=1 which satisfy (i) αi(x(t),E{x(t)} ≥
0,∀i ∈ 1, · · · ,M, (ii)

∑J
i=1 αi(x(t),E{x(t)}) = 1, the

following inequality holds:(∑J

i=1
αi(x(t),E{x(t)})Gi

)T
P

×

(∑J

i=1
αi(x(t),E{x(t)})Gi

)
≤

∑J

i=1
αi(x(t),E{x(t)})GTi PGi (21)

Based on Lemma 1with the selection of Lyapunov function
V (X̄m(t)) = X̄Tm (t)PX̄m(t), for some positive-definite matrix

P, and Lemma 2, the MOP in (15)-(16) for M-player nonco-
operative minmaxH∞ mean-field game strategy of nonlinear
MFSJD system can be solved by the following theorem.
Theorem 2: M-player noncooperative minmax H2

quadratic game inequality constraints in (16) or (17)-(19)
on MOP in (15) can be solved by

Ūm(t) = −
∑J

i=1
αi(x(t),E{x(t)})R̄−1m B̄m,iP̄X̄m(t) (22)

Ū−m(t) =
1
ρm

∑J

i=1
αi(x(t),E{x(t)})B̄−m,iP̄X̄m(t) (23)

where P̄ and ρm are the common solution of the following
Riccati-like inequalities:

5i,i,m ≤ 0

5i,j,m +5j,i,m ≤ 0

∀i = 1, · · · , J , j < i, m = 1, · · · ,M ,

(24)

where 5i,j,m = Q̄m + ĀTm,iP̄ + P̄Ām,i − P̄B̄m,jR̄mB̄Tm,iP̄ +
1
ρm
P̄B̄−m,iB̄T−m,iP̄+L̄

T
m,iP̄L̄m,i+λ(P̄N̄m,i+N̄

T
m,iP̄+N̄

T
m,iP̄N̄m,i)

Proof: Please refer to Appendix B. �
Proposition 1: The MOP in (15), (16) for M-player non-

cooperative minmax H∞ mean-field game strategy can be
designed by

Ū∗m(t) = −
∑J

i=1
αi(x(t),E{x(t)})R̄−1m B̄m,iP̄∗X̄m(t) (25)

Ū∗−m(t) =
1
ρ∗m

∑J

i=1
αi(x(t),E{x(t)})B̄−m,iP̄∗X̄m(t) (26)

where P̄∗ and ρ∗m are the solution of following MOP

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) = min

P̄>0
(ρ1, · · · , ρm, · · · , ρM )

s.t. (24) (27)
Proof: Please refer to Appendix C. �

In general, it is still not easy to solve Riccati-like inequality
constraints in (24) due to the coupling of design variables. For
the simplicity of design, the Riccati-like inequalities in (24)
can be transformed to the following equivalent LMIs by
several times of Schur complement transformation [30] after
multiplying W̄ = P̄−1 to both sides of (24):[

51
i,i,m 52

i,i,m
∗ 53

i,i,m

]
≤ 0[

51
i,j,m +5

1
j,i,m 54

i,i,m
∗ 55

i,i,m

]
≤ 0

∀i = 1, · · · , J , j < i,

m = 1, · · · ,M , (28)

where51
i,j,m = W̄ ĀTm,i + Ām,iW̄ − B̄m,jR̄mB̄

T
m,i + λ(N̄m,iW̄ +

W̄ N̄T
m,i) +

1
ρm
B̄−m,iB̄T−m,i, 5

2
i,i,m = [W̄ (Q̄m)

1
2 W̄ L̄Tm,i

W̄ N̄T
m,i], 5

3
i,i,m = diag{−I ,−W̄ , − 1

λ
W̄ }, 54

i,i,m =

[W̄ (Q̄m)
1
2 W̄ (Q̄m)

1
2 W̄ L̄Tm,i W̄ L̄Tm,j W̄ N̄T

m,i W̄ N̄T
m,j], 5

5
i,i,m =

diag{−I ,−I ,−W̄ ,−W̄ ,− 1
λ
W̄ ,− 1

λ
W̄ }
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According to Theorem 2 and the above discussion, the
Riccati-inequalities-constrained MOP in (27) for M-player
noncooperative minmax H∞ mean-field game strategy
can be transformed to the following LMIs-constrained
MOP.
Proposition 2: M-player noncooperative minmax H∞

mean-field game strategy based onMOP in Proposition 1 can
be solved by

Ū∗m(t) = −
∑J

i=1
αi(x(t),E{x(t)})R̄−1m B̄m,iP̄∗X̄m(t) (29)

Ū∗−m(t) =
1
ρ∗m

∑J

i=1
αi(x(t),E{x(t)})B̄−m,iP̄∗X̄m(t) (30)

where P̄∗ = (W̄ ∗)−1 and ρ∗m are the solution of the following
MOP

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) = min

W̄>0
(ρ1, · · · , ρm, · · · , ρM )

s.t. LMIs in (28) (31)
Proof: The result can be immediately obtained by the

above discussion. �
In Proposition 2, the M-player noncooperative game strat-

egy (Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) is a Pareto optimal solu-

tion of MOP in (31) with the corresponding Pareto optimal
objective vector (ρ∗1 , · · · , ρ

∗
m, · · · , ρ

∗
M ). In general, Pareto

optimal solution is not unique but a set of Pareto optimal solu-
tions, i.e., σ ∗ in Definition 3. In the following proposition,
we will prove the set σ ∗of Pareto optimal solutions are the
Nash equilibrium solutions.
Proposition 3: The multiobjective Pareto optimal control

strategy (Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) in (29) with the

objective vector (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) and W̄ ∗ in (31) is

the Nash equilibrium solution of M-player noncooperative
minmax H∞ mean-field game strategy in (11).

Proof: Please refer to Appendix D. �

IV. DESIGN PROCEDURE OF MULTI-PLAYER
NONCOOPERATIVE NONLINEAR H∞ MEAN-FIELD
TARGET TRACKING GAME STRATEGY VIA MOEA
The M-player noncooperative minmax H∞ mean-filed tar-
get tracking game strategy design problem of nonlinear
MFSJD system is reduced to how to solve LMIs-constrained
MOP in (31). At present, the MOEA is a popular searching
algorithm to solve MOP. In detail, MOEA is a stochastic
algorithm inspired by biological evolution, i.e., reproduc-
tion, mutation, combination and selection, to search for the
global optimal solutions at the same time without dividing
the original problem into several sub problems for parallel
searching [8]. By the conventional MOEAs in [32], [33],
we need to search symmetric W̄ = P̄−1 > 0 for solv-
ing LMIs-constrained MOP in (31) for the M-player non-
cooperative minmax H∞ mean-field target tracking game
strategy Ū∗m(t) = −

∑J
i=1 αi(x(t),E{x(t)})R̄

−1
m B̄m,iP̄∗X̄m(t),

m = 1, · · · ,M , in (29) of nonlinear MFSJD system. How-
ever, it is very difficult to search all components of W̄ ∈

R3n×3n to approach W̄ ∗ of MOP in (31) by the conven-
tional MOEAs in the case of large n. For the simplicity

of solving MOP in (31), a reverse order LMI-constrained
MOEA is employed to simplify the solving procedure of
MOP in (31) by indirectly searching (ρ1, · · · , ρm, · · · , ρM )
instead.

After searching (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) based on MOEA,

we could obtain W̄ ∗ from LMIs in (28) indirectly via MAT-
LAB LMI TOOLBOX. This indirect method could signif-
icantly simplify the design procedure of LMIs-constrained
MOP in (31) for the M-player noncooperative H∞ mean-
field game strategy of nonlinear MFSJD system when
the dimension n of system state vector becomes large.
Consequently, the design procedure of reverse-order LMI-
constrained MOEA for M-player noncooperative H∞ mean-
field game strategy of nonlinear MFSJD system is proposed
as follows:
Step I: Give the searching region R = [ρL1 , ρ

U
1 ] × · · · ×

[ρLm, ρ
U
m ]× · · · × [ρLM , ρ

U
M ] to represent the lower and upper

bound of Pareto optimal solution (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ),

where {ρLi , ρ
U
i }

M
i=1 are positive numbers. Give the pop-

ulation number Np, iteration number NI , crossover rate
Rc and mutation rate Rm. Set the initial iteration
number I = 1.
Step II: Choose Np feasible individuals as the initial popu-

lation PI from the searching region R.
Step III: Use mutation operator and crossover operator

to generate Np another feasible individuals and add to the
population PI to check LMIs in (28) if their corresponding
(ρ1, · · · , ρm, · · · , ρM ) are feasible.
Step IV: Choose Np elite individuals from 2Np feasible

individuals in PI generated in STEP III via nondominated
sorting scheme and the crowded comparison method [32],
[33]. Place the iteration number I = I+1 and set the choosen
populations as PI .
Step V: Repeat STEP III and STEP IV until I > NI , and

then set the final population PI = TF as Pareto front and stop
the iteration.
Step VI: Choose a desired feasible objective vector

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) ∈ TF according to the designer

own preference with the optimal W̄ ∗, where W̄ ∗ is the
optimal solution of MOP in (31). Further, the corre-
sponding target tracking control strategy is Ū∗m(t) =

−
∑J

i=1 αi(x(t),E{x(t)})R̄
−1
m B̄m,iP̄∗X̄m(t), m = 1, · · · ,M ,

which for the M-player noncooperative minmax H∞ mean
field target tracking game strategy in (9) for nonlinearMFSJD
system in (1).
Remark 5: For the weighting sum method in [16], a single

Pareto optimal solution can be solved with a specific weight-
ing coefficients. In this case, to obtain all Pareto optimal solu-
tions, large design conditions w.r.t. all possible combinations
of weighting coefficients have to be solved. However, instead
of using weighting sum method in [16], the proposed multi-
player noncooperative H∞ is transformed to an equivalent
LMI-constrained MOP in (29)–(31), with which all Pareto
optimal solutions can be solved by the proposed reverse-
order LMI-constrained MOEA in a single run to save a large
amount of computation time.
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V. MULTI-PLAYER NONLINEAR COOPERATIVE H∞

MEAN-FIELD TARGET TRACKING GAME STRATEGY
DESIGN OF NONLINEAR MFSJD SYSTEM
For the nonlinearMFSJD stochastic systemwithM players in
(1), if these players have reached a consensus with each other
at a desired common trajectory xr (t). Suppose the desired
common target can be generated by the following reference
model,

dxr (t) = (Arxr (t)+ Brrr (t))dt (32)

where rr (t) is reference input, Ar is specific asymptotic
matrix and Br is input matrix.

In the M-player mean-field cooperative game, M-
players cooperate together with other players i.e., u(t) =
[uT1 (t), · · · , u

T
m(t), · · · , u

T
M (t)]T = ũ(t) + E{u(t)} to mini-

mize the desired mean tracking error E{x(t)} − xr (t)} and
the deviation x̃(t) = x(t) − E{x(t)} despite the external dis-
turbance v(t), continuous and discontinuous intrinsic random
fluctuations and any reference input rr (t). Therefore, the M-
player cooperative minmax H∞ mean-field target tracking
game of nonlinear MFSJD system in (1) is formulated as
follows:

ρ∗ = min
ũ(t)

E{u(t)}

max
v(t)
rm(t)

E{
∫ Tf
0 [(x(t)− E{x(t)})TQ1(x(t)

−E{x(t)})+ ũT (t)R1ũ(t)
+(E{x(t)} − xr (t))TQ2(E{x(t)}
−xr (t))+ E{uT (t)}R2E{u(t)}]dt
−x̃T (0)P1,cx̃(0)− (E{x(0)} − xr (0))T

×P2,c(E{x(0)} − xr (0))}

E{
∫ Tf
0 [vT (t)v(t)+ rTr (t)rr (t)]dt}

(33)

where Q1 = QT1 ≥ 0, Q2 = QT2 ≥ 0, R1 = RT1 ≥
0 and R2 = RT2 ≥ 0 are the corresponding weighting
matrices, ρ∗ denotes the performance of cooperative minmax
H∞ mean-field target tracking game and x̃T (0)P1,cx̃(0) and
(E{x(0)}−xr (0))TP2,c(E{x(0)}−xr (0)) are the effect of initial
condition of variation and tracking error to be eliminated
with positive definitematricesP1,c andP2,c, respectively. The
physical meaning of cooperative H∞ mean-field common
target tracking game in (33) is that the M players collaborate
with each other with less control effort ũ(t) and E{u(t)} to
optimally track xr (t) with the minimum random variation
under the worst-case effect of external disturbance v(t) and
any reference input rr (t).

To simplify the design, the augmented state X̄ (t) = [(x(t)−
E{x(t)})T E{xT (t)} xTr (t)]

T is introduced and the correspond-
ing augmented dynamic system can be given as:

dX̄ (t) =
J∑
i=1

αi(x(t),E{x(t)})((ĀiX̄ (t)+ B̄iŪ (t)

+ B̄−iV̄ (t))dt + L̄iX̄ (t)dw(t)

+ N̄iX̄ (t)dp(t)) (34)

where Ū (t) = [ũT (t) E{uT (t)}]T and V̄ (t) = [ṽT (t) E{vT (t)}
rTr (t)]

T . The detailed system matrices in (10) is given as

Ām,i =

Ai −λ(Ni + NE
i ) 0

0 Ai + AEi − λ(Ni + N
E
i ) 0

0 0 Ar



L̄i =

 Li
Li
+LEi

0

0 0 0
0 0 0



N̄i =

Ni
Ni
+NE

i
0

0 0 0
0 0 0


B̄−i =

Di 0 0
0 Di + DEi 0
0 0 Br


B̄i =

B1i · · · BMi0 · · · 0
0 · · · 0

· · ·

· · ·

0 0 0
Bm,i + BEm,i · · · Bm,i + BEm,i

0 · · · 0


Then, by using (34), theM-player cooperativeminmaxH∞

mean-field target tracking game strategy in (33) for the mean-
field nonlinear stochastic system in (1) is transformed to the
following minmax H∞ mean-field stabilization strategy of
the augmented mean-field stochastic system in (34).

ρ∗ = min
Ū (t)

max
V (t)

E{
∫ Tf
0 [X̄T (t)Q̄X̄ (t)+ ŪT (t)R̄Ū (t)]dt

−X̄T (0)P̄cX̄ (0)}

E{
∫ Tf
0 V̄ T (t)V̄ (t)]dt}

(35)

where

R̄ = diag{R1,R2}

Q̄m = diag{Q1,

[
Q2 −Q2
−Q2 Q2

]
}

However, it is not easy to directly solve theM-player coop-
erative minmaxH∞ mean-field stabilization game in (35) for
the augmented nonlinear mean-field system in (34). By using
the similar indirect approach, the M-player cooperative min-
max H∞ mean-field stabilization game strategy in (35) can
be solved by minimizing the upper bound

ρ∗ = min
Ū (t)

max
V (t)

E{
∫ Tf
0 [X̄T (t)Q̄X̄ (t)+ ŪT (t)R̄Ū (t)]dt

−X̄T (0)P̄cX̄ (0)}

E{
∫ Tf
0 V̄ T (t)V̄ (t)]dt}

≤ ρ (36)

Instead of solving cooperative minmax H∞ mean-field
stabilization game strategy in (35), we solve the suboptimal
minmaxH∞ mean-field stabilization problem by minimizing
the upper bound in (36) as the following SOP.
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Lemma 3: The M-player cooperative minmax H∞ mean-
field stabilization strategy in (33) is equivalent to the SOP
in (37) and (38), as shown at the bottom of the page.

Proof: It is a special case of MOP of Theorem 1. Hence
the proof is omitted. �

The cooperative minmax H∞ mean-field stabilization
game constraint in (38) is equivalent to the following con-
strainedminmaxH∞ quadratic mean-field stabilization game
constraint

min
Ū (t)

max
V (t)

E{
∫ Tf

0
[X̄T (t)Q̄X̄ (t)+ ŪT (t)R̄Ū (t)

− ρV̄ T (t)V̄ (t)]dt} ≤ E{X̄T (0)P̄cX̄ (0)} (39)

Let us denote

J (Ū (t),V (t)) = E{
∫ Tf

0
[X̄T (t)Q̄X̄ (t)+ ŪT (t)R̄Ū (t)

− ρV T (t)V (t)]dt} (40)

Following the two-step method in (17)-(19) to solve the
constrainedminmaxNash cooperativeH2 quadratic stabiliza-
tion game constraint problem in (39), the first step is to solve

J∗(Ū∗(t), V̄ ∗(t)) = min
Ū (t)

max
V̄ (t)

J (Ū (t), V̄ (t)) (41)

and the second step is to solve the following constraint prob-
lem

J∗(Ū∗(t), V̄ ∗(t)) ≤ E{X̄T (0)P̄cX̄ (0)} (42)

Consequently, we get the following main theorem for M-
player cooperative H∞ mean-field common target tracking
game strategy of nonlinear MFSJD system in (1).
Theorem 3: TheM-player cooperative H∞ mean-field tar-

get tracking game strategy in (33) of nonlinear MFSJD sys-
tem in (3) can be solved by

Ū∗(t) = −
∑J

i=1
αi(x(t),E{x(t)})R̄−1B̄iP̄∗c X̄m(t) (43)

V̄ ∗(t) =
1
ρ∗

∑J

i=1
αi(x(t),E{x(t)})B̄−iP̄∗c X̄m(t) (44)

where P̄∗c and ρ
∗ are the solution of the following SOP:

ρ∗ = min
P̄c>0

ρ (45)

s.t. 4i,i ≤ 0

4i,j +4j,i ≤ 0

∀i = 1, · · · , J , j < i (46)

where 4i,j = Q̄ + ĀTi P̄c + P̄cĀi − P̄cB̄jR̄B̄Ti P̄c +
1
ρ
P̄cB̄−iB̄T−iP̄c + L̄

T
i P̄cL̄i + λ(P̄cN̄i + N̄

T
i P̄c + N̄

T
i P̄cN̄i)

Proof: The derivation is similar to Theorem 2. �
From Theorem 3, Ū∗(t) and V̄ ∗(t) in (43 )–(44) are the

solution of N-player cooperativeH∞ mean-field target track-
ing game strategy in (37) for the nonlinear MFSJD system.
By the similar technique addressed in (28), the Riccati-like
constrained SOP in (45), (46) can be transformed to the
following LMIs-constrained SOP.

ρ∗ = min
W̄c>0

ρ (47)

s.t.
[
41
i,i 42

i,i
∗ 43

i,i

]
≤ 0[

41
i,j +4

1
j,i 44

i,i
∗ 45

i,i

]
≤ 0

∀i = 1, · · · , J , j < i (48)

where 41
i,j = W̄cĀTi + ĀiW̄c − B̄jR̄B̄Ti + λ(N̄iW̄c +

W̄cN̄T
i ) +

1
ρ
B̄−iB̄T−i, 4

2
i,i = [W̄c(Q̄)

1
2 W̄cL̄Ti W̄cN̄T

i ], 4
3
i,i =

diag{−I ,−W̄c,−
1
λ
W̄c}, 4

4
i,i = [W̄c(Q̄)

1
2 W̄c(Q̄)

1
2 W̄cL̄Ti

W̄cL̄Tj W̄cN̄T
i W̄cN̄T

j ], 4
5
i,i = diag{−I ,−I ,−W̄c,−W̄c,

−
1
λ
W̄c,−

1
λ
W̄c}.

If we can solve LMIs-constrained SOP in (47) and (48),
the M-player cooperative minmax H∞ mean-field common
target tracking game strategy in (33) of nonlinear MFSJD
system in (1) could be obtained by in (43).

VI. DESIGN EXAMPLE
Recently, the nonlinear stochastic mean-field system theory
has become a pioneering issue in the financial investment
strategies and financial contagion problems due to the global
impact of financial crisis [34]–[41]. Since the individuals
may consider the effect of collective behaviors as mean-
field (average) terms from all individuals’ mutual interactions
in the stochastic financial system. The stochastic financial
systems become nonlinear stochastic MFSJD systems. In this
section, two simulation examples of multi-player noncoop-
erative and cooperative H∞ mean-field target tracking game
strategy in nonlinear mean-field MFSJD financial system are
given to illustrate the design procedure and compare with the
performance of their target tracking performance.

A. EXAMPLE 1: FINANCIAL INDICES SYSTEM
1) MODEL CONSTRUCTION
In this simulation, a financial system, which describes the
interaction of three indices (i) interest rate, (ii) investment
demand, and (iii) price index, is used as a design example for
the validation of the proposed multi-player cooperative and
noncooperative H∞ mean-field game strategy. To consider

ρ∗ = min ρ (37)

s.t. min
Ū (t)

max
V (t)

E{
∫ Tf
0 [X̄T (t)Q̄X̄ (t)+ ŪT (t)R̄Ū (t)]dt − X̄T (0)P̄cX̄ (0)}

E{
∫ Tf
0 V̄ T (t)V̄ (t)]dt}

≤ ρ (38)
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the continuous and discontinuous fluctuations caused by the
global event, the nonliear financial system should be revised
as follows [24]:

dx1(t) = [x3(t)+ 0.5E{x3(t)} + (x2(t)− a)x1(t)

+ 0.5E{x1(t)} + 0.4E{x2(t)}E{x1(t)}

+ u11(t)+ 0.5u21(t)+ 0.3u31(t)+ v1(t)]dt

+ 0.1x2(t)dw(t)+ 0.3x1(t)dp(t)

dx2(t) = [1− bx2(t)− x21 (t)+ 0.3E{x2(t)+ 0.2x22 (t)}

+ u12(t)+ 0.5u22(t)+ 0.3u32(t)+ v2(t)]dt

+ 0.1x2(t)dw(t)+ 0.3x2(t)dp(t)

dx3(t) = [−x1(t)− cx3(t)+ 0.5[E{x3(t)} + E{x1(t)}]

+ u13(t)+ 0.2u23(t)+ 0.2u33(t)+ v3(t)]dt

+ 0.1x3(t)dw(t)+ 0.3x3(t)dp(t) (49)

where x1(t), x2(t) and x3(t) denote the interest rate, the
investment demand and price index, respectively, the param-
eter a = 1.2, b = 0.5 and c = 0.3 are the sav-
ing amount, the per-investment cost, and the resilience of
demands of commercials, respectively, u1(t) = [u11(t)
u12(t) u13(t)]T denotes the investment strategy of govern-
ment, u2(t) = [u21(t) u22(t) u23(t)]T denotes the invest-
ment strategy of bank consortium, u3(t) = [u31(t) u32(t)
u33(t)]T denotes the investment strategy of public, {v1(t) =
0.1 cos t, v2(t) = 0.1 sin t, v3(t) = 0.1 sin t} are the exter-
nal disturbances which are used to represent the periodic
fluctuation in financial system. The initial value is given
as [x1(0), x2(0), x3(0)] = [3.15, 4.21, 1.09] and the corre-
sponding mean initial value is E{[x1(0), x2(0), x3(0)]} =
[3.2, 4.2, 1.1].

Fig. 1 shows the state responses of strategy-free nonlinear
mean field stochastic jump diffusion system and the corre-
sponding mean system. In Fig. 1-(a), three state variables
suffer from continuous fluctuations influenced by the floating
financial factors (e.g., uncertain saving rate) and discontinu-
ous fluctuations caused by the global emergent events (e.g.,
oil crisis). Besides, for the mean trajectories from Fig. 1-(b),
it can be noticed that three financial indices interact with one
another. For example, a low investment demand will lead to
a low price index.

2) NONCOOPERATIVE GAME STRATEGY DESIGN FOR
FINANCIAL SYSTEM
For the noncooperative game strategy design, three investors
want to regulate the financial system according to their
desired mean target as follows:

r1(t) = [4 5 2]T , r2(t) = [1 3 − 2]T

r3(t) = [2 2 0]T (50)

and the reference tracking models in (8) for three players are
given as

dxr,m(t) = (Ar,mxr,m(t)+ Br,mrm(t))dt (51)

FIGURE 1. The state and mean state trajectories of nonlinear mean filed
stochastic jump diffusion financial system of example 1 in (a) and the
corresponding three mean trajectories in (b).

where Ar,m = −0.8I2, Br,m = 0.8I2, for m = 1, 2, 3.
On the other hand, the weighting matrices of three investors
are specified as follows:

Q1,1 = Q1,2 = Q1,m = I3
Q2,1 = diag{1, 0.1, 0.1}

Q2,2 = diag{0.1, 1, 0.1}

Q2,3 = 0.5I3
R1,1 = R2,1 = diag{0.1, 1, 1}

R1,2 = R2,2 = diag{1, 0.1, 1}

R1,3 = R2,3 = diag{1, 1, 0.1} (52)

Remark 6: For the desired target r1(t) = [4 5 2]T of gov-
ernment, it reveals that the government aims to increase three
financial indices for the improvement of financial activity.
Beside, for the desired target r2(t) = [1 3 −2]T of bank
consortium, the desired interest rate and desired investment
demand are positive while the desired price index is negative.
Therein, if the price index can be regulated to negative, people
(i.e., the public) are more appealing to buy goods and to apply
loan from bank, which will benefit bank consortium. For the
desired target r3(t) = [2 2 0]T of the public, it considers
that the positive interest rate and positive investment demand
can increase market economy. Also, the desired price index
of public shows that the public aims to maintain the current
price index with zero fluctuation.

To utilize the global linearization technique in (3), the
16 vertices are chosen and the nonlinear mean field jump
diffusion financial system in (49) can be written as:

dx(t) =
16∑
i=1

αi(x(t),E{x(t)}){{Aix(t)+ ĀiE{x(t)}

+

M∑
j=1

Bj,iuj(t)+ BEj,iE{uj(t)} + Div(t)

+ D̄iE{v(t)}}dt + (Lix(t)+ L̄iE{x(t)})dw(t)

+ (Nix(t)+ N̄iE{x(t)})dp(t)} (53)
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FIGURE 2. The Paretor front w.r.t. 3- player noncooperative H∞

mean-field target tracking game strategy design in (13). Each red point
denotes the pareto optimization solution.

with 16 interpolation functions

αi(x(t),E{x(t)})

=

1
‖x(t)−xi‖

1
‖E{x(t)}−E{xE,i}‖∑16

j=1
1

‖x(t)−xj‖
1

‖E{x(t)}−E{xE,j}‖

where {xi,E{xE,i}}16i=1 denote the set of vertices.
Before solving the LMIs-constrained MOP in (31), the

detailed parameters for MOEA are given as: R = [2, 4] ×
[2, 4]×[2, 4],Np = 300,NI = 100, Rc = 0.8 and Rm = 0.2.
Then, by solving the LMI-constrained MOP in (31) with
the proposed reverse-order LMI-constrained MOEA for the
noncooperative mean-field game strategy design, the cor-
responding Pareto front is illustrated in Fig. 2. Each red
point in the figure denotes the desired Pareto optimization
solution. In this simulation example, we select the label point
(3, 3, 3) in Fig. 2 as a desired solution with the corresponding
positive matrix W̄ ∗ since it has the minimum Euclid norm
among other solutions. In this case, each investor will achieve
the balanced game performance in (15) during the tracking
process.

The state and mean trajectories of financial system con-
trolled by three noncooperative investment strategies are
shown in Fig. 3. The steadymean state of the financial system
is regulated to [3.3 2.7 − 0.6]T . For the three investors, due
to the conflicting desired targets in (50), three noncooperative
game strategies applied to the financial system are mutually
interfered and thus the system mean states reach a compro-
mised result instead of the desired target of one investor. How-
ever, according to the investors’ weighting matrices in (52),
it can be noticed that the first investor puts more attention
on the tracking of mean interest rate (i.e., the first mean
state) than other two investors. For example, the mean state
weighting matrix w.r.t. the first mean state of the first investor
is larger than others and the control weightingmatrix w.r.t. the
first control variable of first investor is lower than others. In
this situation, the first investor will use more control effort to

FIGURE 3. The state and mean state trajectories of nonlinear financial
system of example 1 controlled by the proposed noncooperative game
strategy design.

FIGURE 4. The state and mean state trajectories of nonlinear MFSJD
financial system of example 1 controlled by the proposed cooperative
game strategy design.

regulate the first mean state than others. Similarly, the second
investor puts more attention with more control effort on the
tracking of the mean investment demand (i.e., the second
mean state) than other two investors, and the third investor
puts more attention with more control effort on the tracking
of the mean price index (i.e., the third mean state) than other
two investors. As a result, the first mean state of the financial
system at the steady state is more close to the desired target
of first investor, the second mean state of financial system
at the steady state is more close to the desired target of the
second investor and the third mean state of financial system
at the steady state is more close to the desired target of third
investor.

3) COOPERATIVE GAME STRATEGY DESIGN FOR FINANCIAL
SYSTEM
Different than the noncooperative H∞ mean-field tar-
get tracking game strategy design, three investors have
compromised a common mean target with one another as
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follows:

rr (t) = [5 3 1]T (54)

and the common reference tracking model for three players
is given as

dxr (t) = (Arxr (t)+ Brrr (t))dt (55)

with Ar = −0.8I3 and Br = 0.8I3. In this case, three
investors aim to regulate three financial indices according to
their common target.

The variation and mean state weighting matrices and con-
trol weighting matrices are chosen as follows:

Q1 = Q2 = I3, R1 = R2 = I9 (56)

By solving the LMI-constrained SOP in (47) and (48) via
MATLAB LMI TOOBOX, the positive matrix W̄ ∗c can be
obtained with ρ∗ = 2.92. The simulation result of cooper-
ative H∞ mean-field target tracking game strategy design for
financial system is shown in Fig. 4. Since the desired tracking
target is common for three investors, three mean states of
financial system can be successfully regulated to rr (t) = [5 3
1]T , i.e., E{x(t)} = rr (t) at the steady state. Moreover, from
Fig. 4, it can be seen that the effect of intrinsic random fluc-
tuations and external disturbances is efficiently attenuated
during the investment process by the cooperative H∞ mean-
field target tracking game strategy. Even three investors could
easily achieve their common mean target by the proposed
cooperative H∞ mean-field game strategy, however, it is a
very long complicated and time-consuming process for them
to sacrifice for their common target.

B. EXAMPLE 2: CROSS-BORDER CAPITAL FLOW SYSTEM
1) MODEL CONSTRUCTION
Consider the financial contagion problem due to the global
impact of financial crisis. While the impact of financial shock
is detected, it is found that the net capital flow in source
country of financial turbulence declines intensely to join to
the driving force. However, in the volatility-affected country,
the net capital flow diverges from the normal equilibrium
value point in order to respond to the infectious effect from
the source country of financial turbulence [41]. A nonlin-
ear MFSJD capital flow system of international capital flow
volatility between the source country of financial turbulence
and volatility-affected country under the control strategies
of source country of financial turbulence u1(t), volatility-
affected country u2(t) and international consortium u3(t) is
given as follows [41]:

dx1(t) = [a− csvx1(t)x22 (t)+ 0.2E{x1(t)}E{x22 (t)}

+ u11(t)+ 0.7u21(t)+ 0.4u31(t)+ v1(t)]dt

+ 0.1csvx1(t)dw(t)+ 0.1csvx1(t)dp(t)

dx2(t) = [b+ cvsx1(t)x22 (t)+ 0.4E{x1(t)}E{x22 (t)}

+ 0.7u12(t)+ u22(t)+ 0.4u32(t)+ v2(t)]dt

+ 0.1cvsx2(t)dw(t)+ 0.1cvsx2(t)dp(t)

FIGURE 5. The two state trajectories of nonlinear MFSJD capital flow
system of example 2 in (a) and the corresponding two mean trajectories
in (b).

x(0) = [3.2 4.2]T (57)

where x(t) = [x1(t) x2(t)]T is with historical trend of the
net capital flow for the source country of financial turbu-
lence x1(t) and historical trend of the net capital flow for
the volatility-affected country x2(t), u1(t) = [u11(t) u12(t)]T

denotes the control strategy of source country of financial
turbulence, u2(t) = [u21(t) u22(t)]T denotes the control strat-
egy of volatility-affected country, u3(t) = [u31(t) u32(t)]T

denotes the control strategy of international consortium, a =
1.5 is the inertial coefficient of the volatility-affected country,
b = 0.5 denotes the inertial coefficient of the source country
of financial turbulence, csv = 1 is the coupling coefficient for
the impact from the source country of financial turbulence
to the volatility-affected country, cvs = 1 is the coupling
coefficient for the impact from the volatility-affected country
to the source country of financial turbulence, v(t) = [v1(t)
v2(t)]T is the external disturbance with v1(t) = 0.1 cos 0.5t
and v2(t) = −0.1 sin 0.5t , w(t) denotes 1-D standard Wiener
process and p(t) is the Poisson counting process with jump
intensity λ = 0.5.
The strategy-free system response of nonlinear mean filed

jump diffusion capital flow system in (57) is shown in Fig. 5.
Without any control strategies, the net capital flow for the
source country of financial turbulence quickly approaches
to steady state 0.1 with small periodic oscillation while the
net capital flow of the volatility-affected country oscillates
around 5.5 with large amplitude 0.5. Thus, it shows that the
net capital flow in the source country of financial turbu-
lence will quickly reduce to avoid large financial disaster.
Due to the financial contagion from the source country of
financial turbulence to the volatility-affected country, the
volatility-affected country still maintain a large net capital
flow and it may cause severe financial disasters. However,
due to the low net capital flow in the source country of
financial turbulence, it will also reduce the commercial activ-
ities and investment demand of source country of financial
turbulence.
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2) NONCOOPERATIVE GAME STRATEGY DESIGN FOR
CROSS-BORDER CAPITAL FLOW SYSTEM
For the noncooperative game strategy design, three players
(two country governments and an international consortium)
want to regulate the capital flow system according to their
desired mean targets as follows:

r1(t) = [3 0]T , r2(t) = [0 3]T (58)

r3(t) = [0.5 0.5]T

and the reference tracking models for three players are given
as

dxr,m(t) = (Ar,mxr,m(t)+ Br,mrm(t))dt (59)

where Ar,m = −0.8I2, Br,m = 0.8I2, for m = 1, 2, 3.
On the other hand, the weighting matrices of three players

are specified as follows:

Q1,1 = Q1,2 = Q1,m = I2
Q2,1 = diag{1, 0.1}

Q2,2 = diag{0.1, 1}

Q2,3 = 0.5I2
R1,1 = R2,1 = diag{0.1, 1}

R1,2 = R2,2 = diag{1, 0.1}

R1,3 = R2,3 = diag{0.5, 0.5} (60)

To utilize the global linearization technique in (2), the 16
vertices are chosen and the nonlinear MFSJD capital flow
system in (57) can be written as:

dx(t) =
16∑
i=1

αi(x(t),E{x(t)}){{Aix(t)+ ĀiE{x(t)}

+

M∑
j=1

Bj,iuj(t)+ BEj,iE{uj(t)} + Div(t)

+ D̄iE{v(t)}}dt + (Lix(t)+ L̄iE{x(t)})dw(t)

+ (Nix(t)+ N̄iE{x(t)})dp(t)} (61)

with the following interpolation functions

αi(x(t),E{x(t)})

=

1
‖x(t)−xi‖

1
‖E{x(t)}−E{xE,i}‖∑16

j=1
1

‖x(t)−xj‖
1

‖E{x(t)}−E{xE,j}‖

where {xi,E{xE,i}}16i=1 denote the set of vertices.
Before solving the LMI-constrained MOP in (31), the

detailed parameters for MOEA are given as: R = [1, 3] ×
[1, 4]×[1, 5],Np = 300,NI = 100, Rc = 0.8 and Rm = 0.2.
Then, by solving the LMI-constrained MOP in (31) with the
proposed LMI-constrained MOEA design procedure for the
noncooperative game strategy, the corresponding Pareto front
is illustrated in Fig. 6. In this simulation example, we select
the label point (2.1, 1.5, 4.1) in Fig. 6 as a solution with the
corresponding positive matrix W̄ ∗ since it has the minimum
Euclid norm among other solutions.

FIGURE 6. The pareto front w.r.t. 3-player noncooperative H∞ mean-field
game tracking strategy in (13) of example 2. Each red point denotes the
pareto optimization solution.

FIGURE 7. The state and mean state trajectories of nonlinear MFSJD
capital flow system in example 2 by the proposed noncooperative H∞

mean-field game tracking strategy.

The state and mean state responses of nonlinear MFSJD
capital flow system are shown in Fig. 7. The steady mean
state response is at [1.8 2.4]T and it is a compromised result
of three players. Moreover, due to the selection of weighting
matrices of three players, the first player pays more attention
on the tracking of net capital flow for the source country of
financial turbulence, the second player paysmore attention on
the tracking of the net capital flow for the volatility-affected
country and the third player has same consideration for the
tracking of two countries’ net capital inflow. As a result,
the net capital inflow for the source country of financial
turbulence is more close to the desired target of the first player
and the net capital inflow for the volatility-affected country is
more close to the desired target of the second player.

3) COOPERATIVE GAME STRATEGY DESIGN FOR
CROSS-BORDER CAPITAL FLOW SYSTEM
For the cooperative game strategy design, three players have
compromised a common mean target with one another as
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FIGURE 8. The state and mean state trajectories of nonlinear MFSJD
financial system in example 2 by the proposed cooperative H∞

mean-field game tracking strategy.

follows:

rr (t) = [4 1]T (62)

and the reference tracking model for common target of three
players is given as

dxr (t) = (Arxr (t)+ Brrr (t))dt (63)

with Ar = −0.8I2 and Br = 0.8I2. In general, the mean-
field state Ex1(t) of source country of financial turbulence is
larger than the mean-field state Ex2(t) of volatility-affected
country. Therefore, three players have compromised the com-
mon steady state mean-field target rr (t) = [4 1]T to make a
relative large net mean capital flow in the source country of
financial turbulence with an acceptable net mean-field capital
inflow in the volatility-affected country. In this case, three
players aim to make a relatively large net capital inflow in
the source country of financial turbulence with an acceptable
net capital inflow in the volatility-affected country.

Furthermore, the state weighting matrices and control
weighting matrices are chosen as follows:

Q1 = Q2 = I2, R1 = R2 = I6 (64)

By solving the LMI-constrained SOP in (47) viaMATLAB
LMI TOOLBOX, the positive matrix W̄ ∗c can be obtained
with ρ∗ = 3.2. The simulation result of the cooperative game
strategy design for the nonlinear MFSJD capital flow system
is shown in Fig. 8. Since the desired tracking target is com-
mon for three players, two capital flows of the source country
of financial turbulence and volatility-affected country can be
successfully regulated at rr (t) = [4 1]T , i.e., E{x(t)} = rr (t)
at the steady state. Moreover, the effect of internal continuous
and discontinuous random fluctuations as well as external
disturbances on the common target tracking is effectively
reduced by the proposed cooperative H∞ mean-field game
tracking strategy. However, how to negotiate for two govern-
ments and one international consortium to compromise with a

common target of three-player cooperative mean-field game
is generally a complicated and time-consuming process.

VII. CONCLUSION
In this study, the multi-player noncooperative H∞ mean-
filed game tracking strategy design with conflict desired tar-
gets and cooperative H∞ mean-field game tracking strategy
design with a common desired target are investigated for the
nonlinear MFSJD system under external disturbance. Differ-
ent than the conventional game strategy designs in nonlinear
stochastic system, the players not only track their desired
targets but also attenuate the random variation between the
state and mean state. As a result, the novel H∞ noncoop-
erative mean-field game design performance and the novel
H∞ cooperative mean-field game design performance are
introduced. To avoid solving the corresponding nonlinear
partial differential HJII during the design of two game strate-
gies, the nonliear MFSJD is interpolated by a set of local
linearizedMFSJDswith the utilization of the global lineariza-
tion method. In the case of noncooperative game, the nonco-
operativeH∞mean-field target tracking game strategy design
of nonlinear MFSJD system is transformed to an equiva-
lent LMIs-constrained MOP which can be easily solved via
the proposed reverse-order LMI-constrained MOEA. Fur-
ther, we also prove the Pareto optimal solutions obtained by
the LMIs-constrained MOP are Nash equilibrium solutions
of nonlinear noncooperative H∞ mean-field target tracking
game. On the other hand, for the cooperative H∞ mean-
field game tracking strategy design of nonlinear MFSJD, the
design problem becomes solving LMIs-SOP. Two stochastic
financial mean-field systems are provided as design examples
to illustrate the design procedure and compare the target
tracking performance of the noncooperative and coopera-
tive H∞ mean-field target tracking game strategies. In the
future, due to the growth of plant number, this kind large-
scale system can be further reformulated as a noncooperative
mean-field system. As a result, the developed noncooperative
mean-field game strategy can be applied to various practical
mean-field systems. On the other hand, to improve the search-
ing efficiency of Nash equilibrium solutions of large-scale
noncooperative players, the proposed reverse-order MOEA
should be further improved.

APPENDIX A:
PROOF OF THEOREM 1
From (13), we only need to show that the inequalities
in (13) will disappear and become equality constraints
while MOP in (13) achieving Pareto optimal solutions.
It will be proven by contradiction method. Suppose there
exists a Pareto optimal solution (Ū∗1 , · · · , Ū

∗
m, · · · , Ū

∗
M )

with objective vector (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) and one of

inequality strictly holds for some m. Then, there exists
ρm such that ρm < ρ∗m and we immediately find
(ρ∗1 , · · · , ρm, · · · , ρ

∗
M ) dominates (ρ∗1 , · · · , ρ

∗
m, · · · , ρ

∗
M )

according to Definition 1 and 2. However, the Pareto optimal
objective vector (ρ∗1 , · · · , ρ

∗
m, · · · , ρ

∗
M ) of Pareto optimal
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solution (Ū∗1 , · · · , Ū
∗
m, · · · , Ū

∗
M ) of MOP in (13) cannot be

dominated by any other objective vector. This leads to the
contradiction to the assumption. Therefore, when the Pareto
optimal solution of MOP in (13) is achieved, the inequalities
in (12) or (13) disappear for all m = 1, · · · ,M .

APPENDIX B:
PROOF OF THEOREM 2
By selecting the Lyapunov function as V (X̄m(t)) =

X̄Tm (t)P̄X̄m(t) with some positive definite matrix P̄, the
stochastic minmax Nash H2 quadratic game problem in (18)
can be unfolded as:

J∗m = min
Ūm(t)

max
Ū−m(t)

Jm(Ūm(t), Ū−m(t))

= min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf

0
[X̄Tm (t)Q̄mX̄m(t)

+ ŪT
m (t)R̄mŪm(t)− ρmŪ

T
−i(t)Ū−m(t))dt]}

= min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf

0
[(X̄Tm (t)Q̄mX̄m(t)

+ ŪT
m (t)R̄mŪm(t)− ρmŪ

T
−i(t)Ū−m(t))dt

+ dX̄Tm (t)P̄X̄m(t)]+ X̄
T
m (0)P̄X̄m(0)

− X̄Tm (Tf )P̄X̄m(Tf )} (65)

Then, by utilizing Itô-Lévy Lemma in Lemma 1, (65) can
be written as:

J∗m = min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf

0

∑J

i,j=1
αi(x(t),E{x(t)})

×αj(x(t),E{x(t)})[(X̄Tm (t)Q̄mX̄m(t)+ Ū
T
m (t)R̄mŪm(t)

− ρmŪT
−i(t)Ū−m(t)+ X̄

T
m (t))P̄(Ām,iX̄m(t)

+ B̄m,iŪm(t)+ B̄−m,iŪ−m(t))+ (Ām,iX̄m(t)

+ B̄m,iŪm(t)+ B̄−m,iŪ−m(t))T P̄X̄m(t)

+ X̄Tm (t)L̄
T
m,jP̄L̄m,iX̄m(t)

+ λX̄Tm (t)(P̄N̄m,i + N̄
T
m,iP̄

+ N̄T
m,jP̄N̄m,i)X̄m(t)]dt

+ X̄Tm (0)P̄X̄m(0)− X̄
T
m (Tf )P̄X̄m(Tf )} (66)

By the completing the square approach, (66) can be repre-
sented as:

J∗m = min
Ūm(t)

max
Ū−m(t)

E{
∫ Tf

0

∑J

i,j=1
αi(x(t),E{x(t)})

×αj(x(t),E{x(t)})[(X̄Tm (t)Q̄mX̄m(t)

+ X̄Tm (t)P̄Ām,iX̄m(t)+ X̄
T
m (t)Ā

T
m,iP̄X̄m(t)

+ X̄Tm (t)L̄
T
m,jP̄L̄m,iX̄m(t)+ (Ūm(t)

+

∑J

l=1
αl(x(t),E{x(t)}R̄−1m B̄Tm,iP̄X̄m(t))

T R̄m

× (Ūm(t)+
∑J

l=1
αl(x(t),E{x(t)}R̄−1m B̄Tm,l P̄X̄m(t))

− ρm(Ū−m(t)−
1
ρm

∑J

u=1
αl(x(t),E{x(t)}B̄T−m,uP̄

× X̄m(t))T (Ū−m(t)−
1
ρm

∑J

l=1
αl(x(t),E{x(t)}B̄T−m,i

× P̄X̄m(t))− X̄Tm (t)P̄B̄m,jR̄
−1
m B̄Tm,iP̄X̄m(t)

+
1
ρm

X̄m(t)P̄B̄−m,jB̄T−m,iP̄X̄m(t)

+ λX̄Tm (t)(P̄N̄m,i + N̄
T
m,iP̄+ N̄

T
m,jP̄N̄m,i)X̄m(t)dt]

+ X̄Tm (0)P̄X̄m(0)− X̄
T
m (Tf )P̄X̄m(Tf )} (67)

By applying themaximum operator andminimum operator
in (67), we immediately get:

Ū∗m(t) = −
∑J

i=1
αi(x(t),E{x(t)})R̄−1m B̄m,iP̄X̄m(t) (68)

Ū∗−m(t) = −
1
ρm

∑J

i=1
αi(x(t),E{x(t)})B̄−m,iP̄X̄m(t) (69)

which are as same as (22)–(23), and thus (67) can be written
as:

J∗m = E{
∫ Tf

0

∑J

j,i=1
αi(x(t),E{x(t)})αj(x(t),E{x(t)}

× [(X̄Tm (t)[Q̄m + P̄Ām,i + Ā
T
m,iP̄+ L̄

T
m,jP̄L̄m,i

− P̄B̄m,jR̄−1m B̄Tm,iP̄+
1
ρm

P̄B̄−m,jB̄T−m,iP̄

+ λ(P̄N̄m,i + N̄T
m,iP̄+ N̄

T
m,jP̄N̄m,i) X̄m(t)dt]

+ X̄Tm (0)P̄X̄m(0)− X̄
T
m (Tf )P̄X̄m(Tf )} (70)

Furthermore, by applying Lemma 2, the following matrix
inequalities hold:∑J

i,j=1
αi(x(t),E{x(t)})αj(x(t),E{x(t)})

× [(X̄Tm (t)[Q̄m + P̄Ām,i + Ā
T
m,iP̄+ L̄

T
m,jP̄L̄m,i

− P̄B̄m,jR̄−1m B̄Tm,iP̄+
1
ρm

P̄B̄−m,jB̄T−m,iP̄

+ λ(P̄N̄m,i + N̄T
m,iP̄+ N̄

T
m,jP̄N̄m,i) X̄m(t)

≤

∑J

i,j=1
αi(x(t),E{x(t)})αj(x(t),E{x(t)})

× [(X̄Tm (t)[Q̄m + P̄Ām,i + Ā
T
m,iP̄+ L̄

T
m,iP̄L̄m,i

− P̄B̄m,jR̄−1m B̄Tm,iP̄+
1
ρm

P̄B̄−m,iB̄T−m,iP̄

+ λ(P̄N̄m,i + N̄T
m,iP̄+ N̄

T
m,iP̄N̄m,i) X̄m(t) (71)

As a result, if the Riccati-like inequalities in (24) hold,
we get

J∗m = X̄Tm (0)P̄X̄m(0)− X̄
T
m (Tf )P̄X̄m(Tf )}

≤ X̄Tm (0)P̄X̄m(0) (72)

which satisfies with the constraint in (19). The proof is done.

APPENDIX C:
PROOF OF PROPOSITION 1
M-player noncooperative minmax H∞ mean-field game
strategy design problem is shown to be equivalent to how to
solve MOP in (15) and (16). From Theorem 2, M minmax
H∞ quadratic stabilization game constraint problem in (16)
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is solved by Ūm(t) in (22) and Ū−m(t) in (23) under Riccati-
like inequalities in (24). Therefore, the MOP in (15), (16) for
the M-player noncooperative minmax H∞ mean-field game
strategy can be designed by Ū∗m(t) in (25) and Ū

∗
−m(t) in (26)

by solving theMOP in (27) under the Riccati-like inequalities
in (24).

APPENDIX D:
PROOF OF PROPOSITION 3
According to the Nash equilibrium solution by theM inequal-
ities in (14) in Definition 5, we will prove the propo-
sition by contradiction. Given a Pareto optimal solution
(Ū∗1 (t), · · · , Ū

∗
m(t), · · · , Ū

∗
M (t)) with the objective vector

(ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ) in (31). Suppose it does not sat-

isfy with the Definition 5 of Nash Equilibrium solution
in (14), i.e., there exists ρm such that ρm < ρ∗m and
(ρ∗1 , · · · , ρm, · · · , ρ

∗
M ) < (ρ∗1 , · · · , ρ

∗
m, · · · , ρ

∗
M ). In this

case, there exists a solution (Ū∗1 (t), · · · , Ūm(t), · · · , Ū
∗
M (t))

with objective vector (ρ∗1 , · · · , ρm, · · · , ρ
∗
M ) that dominates

Pareto optimal solution (Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) with

objective vector (ρ∗1 , · · · , ρ
∗
m, · · · , ρ

∗
M ). However, it violates

the fact that (Ū∗1 (t), · · · , Ū
∗
m(t), · · · , Ū

∗
M (t)) is Pareto opti-

mal solution of MOP in (31) and it cannot be dominated by
other solution in Definition 2. Therefore, we can obtain

(ρ∗1 , · · · , ρ
∗

m−1, ρ
∗
m, ρ

∗

m+1, · · · , ρ
∗
M )

≤ (ρ∗1 , · · · , ρ
∗

m−1, ρm, ρ
∗

m+1, · · · , ρ
∗
M )

∀ m = 1, · · · ,M (73)

Thus, the multi-objective Pareto control strategy (Ū∗1 (t),
· · · , Ū∗m(t), · · · , Ū

∗
M (t)) with the objective vector (ρ∗1 , · · · ,

ρ∗m, · · · , ρ
∗
M ) is the Nash equilibrium solution of M-player

noncooperative minmax H∞ mean-field strategy in (11) of
nonlinear MFSJD system.
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