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ABSTRACT The free-form deformation model can represent a wide range of non-rigid deformations
by manipulating a control point lattice over the image. However, due to a large number of parameters,
it is challenging to fit the free-form deformation model directly to the deformed image for deformation
estimation because of the complexity of the fitness landscape. In this paper, we cast the registration task as a
multi-objective optimization problem (MOP) according to the fact that regions affected by each control point
overlap with each other. Specifically, by partitioning the template image into several regions and measuring
the similarity of each region independently, multiple objectives are built and deformation estimation can
thus be realized by solving the MOP with off-the-shelf multi-objective evolutionary algorithms (MOEAs).
In addition, a coarse-to-fine strategy is realized by image pyramid combined with control point mesh
subdivision. Specifically, the optimized candidate solutions of the current image level are inherited by the
next level, which increases the ability to deal with large deformation. Also, a post-processing procedure
is proposed to generate a single output utilizing the Pareto optimal solutions. Comparative experiments on
both synthetic and real-world images show the effectiveness and usefulness of our deformation estimation
method.

INDEX TERMS Genetic algorithm, image deformation estimation, image registration, multi-objective
evolutionary algorithm.

I. INTRODUCTION
Estimation of the deformation parameters of a target (either
objects or texture) is a fundamental technique mainly for
computer vision applications such as registration [1]–[3] and
tracking [4]–[6]. If the geometric deformation model is con-
strained to only rotation and translation then the deformation
is rigid. Affine or projective transformations can express
more complex deformation, while practical applications, such
as medical image analysis [7], [8] and morphing [9], [10],
often involve non-rigid deformation with more degrees of
freedom. Furthermore, the deformation between two images
can be global, local, and even space-invariant, which makes
the problem more challenging because the movement vec-
tor of each pixel is required to be estimated independently
while preserving the smoothness. This technique can estimate
the deformation parameters by deforming a template image
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such that the similarity between the deformed template and
a target image is maximized. The procedure of similarity
maximization can be cast as an optimization problem by
treating deformation parameters as decision variables and the
similarity as the objective function.

As to the geometric deformation model, free-form defor-
mation (FFD) [11] models the deformation by manipulating
control points arranged in a regular lattice over the target.
Each pixel moves based on weights by basis functions and
displacements of surrounding control points. B-spline basis
functions are generally used to weigh displacements [12].
The larger the number of control points is, the more finely
the deformation can be modeled. In FFD, the influence of
a control point is limited to neighbor pixels, which brings
benefits with respect to ability inmodeling and computational
cost [13]. Due to these characteristics, FFD is allowed to
model highly free and subtle deformation. However, opti-
mization with FFD’s parameters is challenging since an opti-
mizer needs to treat the displacements of all control points as
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FIGURE 1. Problem setting and overview (group number is set to four here). Image deformation estimation can be regarded as an optimization problem
where the goal is to search the deformation parameters which maximize the similarity between the deformed template image and the target image.

decision variables, and it is obvious that the expressive power
of the deformation model is proportional to the number of
parameters. Moreover, because each control point can affect
multiple regions, an improvement of similarity in one region
may negatively make similarity in other regions worse, i.e.,
there exist conflicts between regions.

To alleviate the above issues, we introduce a new idea to
estimate the FFD parameters by casting the deformation esti-
mation problem as a multi-objective optimization problem
(MOP), which can be effectively solved by multi-objective
evolutionary algorithms (MOEAs). The overview of our algo-
rithm is shown in Fig. 1. A template is spatially divided into
several groups and the similarity measure over each group
is treated as a single-objective function and independently
computed. Each group consists of patches, and the pixels in
each patch are affected by the same control points. A MOP
requires simultaneous optimization of two or more objectives
that conflict with each other. In our problem setting, we aim to
find Pareto optimal solutions given none of the groups can be
improved without degrading some of the other groups, which
can be solved by certain off-the-shelf MOEAs. In addition,
we adopt a coarse-to-fine strategy using image pyramids to
improve the estimation capability, especially for large defor-
mations. Specifically, the optimization starts at the top of the
pyramid (i.e., the lowest resolution image) and is executed
at each level of the pyramid. The number of control points
is gradually increased as the resolution increases, and the
interpolation of control points is realized bymesh subdivision
to allow fine-grained deformation. Also, a post-processing
method is proposed to integrate Pareto optimal solutions
into a single output as the decision-making procedure. For

each group in Fig. 1, the group-wise deformation parameters
with the highest group-wise similarity are adopted. These
group-wise deformation parameters are aggregated into a
final solution. We perform comparative experiments using
both synthetic and real-world data to show the effectiveness
and usefulness of our method. In conclusion, our contribu-
tions are threefold.

• The deformation estimation problem is cast as aMOP by
spatially dividing an image into multiple groups accom-
panied by independent similarity measures.

• The estimation capability is improved by a coarse-to-
fine strategy, which is realized by building image pyra-
mids and conducting mesh subdivisions at each level.

• A post-processing method is proposed to integrate
Pareto optimal solutions into a final output.

The rest of this paper is organized as follows. We present
related works of deformation estimation and MOEAs in
Sec. II followed by a brief review of FFD model in Sec. III.
The overview of three off-the-shelf genetic algorithms (GAs)
are given in Sec. IV. In Sec. V, we describe the details of
the spatial multi-objective problem and the coarse-to-fine
optimization strategy. The experimental results are shown in
Sec. VI. Conclusion is given in Sec. VII.

II. RELATED WORK
A. DEFORMATION ESTIMATION BETWEEN TWO IMAGES
Many methods have been proposed to deal with deformable
surfaces, which can be roughly categorized as feature-based
methods and pixel-based methods. The former cate-
gory estimates deformation parameters by using feature
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correspondences commonly extracted from two images. The
latter category maximizes the similarity calculated using
dense pixels directly. Also, hybrid methods have been studied
to incorporate the advantages of both approaches [14]–[16].

Feature-based methods [5], [17]–[20] estimated deforma-
tion parameters based on the correspondences between fea-
ture points between the template image and the target image.
The accuracy largely depends on the quality of the corre-
spondences. Therefore, the elimination of outliers from the
extracted feature set is an essential process. However, the
large number of parameters in free-form deformation makes
it difficult to apply standard methods such as RANSAC [19].
Other limitations are: 1) In the case of feature-less images,
feature points are hard to be detected. Without inlier cor-
respondences, the parameters cannot be appropriately esti-
mated. Especially in the case of non-rigid transformations,
more corresponding points are required [21]. 2) Local fea-
tures such as SIFT [22] and ASIFT [23] are susceptible
to complex transformation, which may largely degrade the
confidence of correspondenceswhen complex transformation
occurs.

The purpose of pixel-based methods [1], [4], [21], [24]–
[28] is to solve the minimization problem of the cost func-
tion consisting of a data term and some restrictions such
as smoothness term calculated from pixel intensities. The
data term is usually defined as the sum of the intensity
differences between the pixels of the template image and
the corresponding pixels in the deformed target image. Such
methods are less dependent on image features compared to
feature-based methods. In addition, the capability of deal-
ing with self-occlusion is a notable point. Since only a
few features typically exist near the self-occlusion bound-
ary, the pixel-based methods are more reasonable in such
cases [1], [15]. In [1], a penalty term called shrinker is
incorporated into the cost function. The shrinker term acts
to shrink the displacement in order to make self-occluded
areas disappear. [15] employed a pixel-based approach to
refine the deformation parameters given by a proposed
feature-based method. When self-occlusion or strong defor-
mations are involved, the hybrid method shows better results
than only using the feature-based method. There also exist
researches to maximize the similarity under the framework
of evolutionary computation with a single-objective [27],
[28]. There also exist methods achieving the minimization
of the cost function by employing non-linear least squares
solvers, such as the Gauss-Newton algorithm [1], [15],
[21], the Levenberg-Marquardt algorithm [24], [26], and the
learning-based methods [4]. To the best of our knowledge,
exploiting evolutionary algorithms [29] or multi-objective
optimization approaches [30], [31] to deal with deformable
surfaces have been sparsely treated so far. Our previous work
appearing in GECCO2019 addressed this problem by using a
modified single-objective GA [32]. Different from the pre-
vious work, in this paper, we attempt to adopt evolution-
ary algorithms for solving this problem by casting it as a
multi-objective optimization problem.

B. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
(MOEAS)
EAs are optimization algorithms inspired by Darwin’s evo-
lutionary theory, such as the GA, evolutionary strategy,
and evolutionary programming. These algorithms share a
common framework in which many candidate solutions are
simultaneously dealt with and stochastic operations are iter-
atively applied. Because of the powerful exploration capa-
bility, EAs have been applied in a variety of computer
vision tasks. Interested readers can also refer to the sur-
vey [33]. EAs are also effective tools for solving MOPs.
The population-based search procedure provides the advan-
tage of finding the Pareto optimal solutions in a single run.
MOEAs use dominance relation to rank solutions in an objec-
tive space consisting of conflicting objectives. In particu-
lar, representative MOEAs, such as non-dominated sorting
GA-II (NSGA-II) [34], strength Pareto EA2 (SPEA2) [35],
and Pareto enveloped based selection algorithm-II (PEAS-
II) [36], include a mechanism that preserves non-dominated
solutions in every generation, called elitism, and hence these
algorithms can outperform non-elitist MOEAs by preventing
the loss of good solutions [37]. Since the goal of MOEAs is
to provide solutions that are widely distributed on the Pareto
front, MOEAs are also required to maintain the diversity of
solutions. In NSGA-II, a crowding distance was proposed
which is the sum of the distances between the two near-
est solutions for each objective. SPEA2 used the inverse
of the distance to the k-th nearest solution as the density.
PEAS-II divided the objective space into several hyperboxes
and counted the number of solutions within them. The den-
sity was assigned to each hyperbox as the number of solu-
tions contained. On the other hand, MOEAs are less effec-
tive for problems with four or more objectives, i.e., many-
objective optimization problems (MaOPs). The main reason
is that as the number of objectives increases, the condi-
tion of dominance becomes more complex. More objectives
lead to a greater proportion of non-dominated solutions, and
hence the ability of convergence toward the Pareto front
decreases [38]. There are several strategies to adapt MOEAs
to MaOPs [39], such as dimensionality reduction [40], [41]
and use of indicators [42], [43]. Among them, one represen-
tative strategy is via decomposition, e.g., MOEA based on
decomposition (MOEA/D) [44], where a MaOP was decom-
posed into single-objective sub-problems using weighting
vectors, and reference-point based many-objective NSGA-II
(NSGA-III) [45], where an objective space was divided by
reference vectors. There also exist various improved versions
of MOEA/D [46], [47] and NSGA-III [48], [49]. Combina-
tion of both merits is also shown in [50].

III. DEFORMATION MODEL
Deformation estimation is achieved by registering the tem-
plate image I to the target image I ′. In order to deform I ,
we employ FFD combined with cubic B-splines using control
point meshes. For I of W × H pixels, control points are
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FIGURE 2. The control point lattice configuration of FFD. Deformation of
the pixel coordinate x is determined by the 16 control points within/on
the dashed rectangle.

arranged on the nx × ny lattice with horizontal spacing sx =
dW/(nx−3)e and vertical spacing sy = dH/(ny−3)e (i.e., the
outmost control points are outside the region of I ), as illus-
trated in Fig. 2. Each control point is assigned a displacement
vector d representing the distance and direction from the
initial position, and the movement of a certain coordinate
x= (x, y)> on I is determined by surrounding control points,
which is defined as:

D(x) =
3∑

m=0

3∑
n=0

Bm(u)Bn(v)d i+m,j+n, (1)

where i = bx/sxc, j = by/syc, u = x/sx − i, v = y/sy− j, and
Bm,Bn are the cubic B-spline basis functions [51]. Then, the
pixel coordinate x′ on I ′ corresponding to x is given by the
transformation function T :

x′ = T (x) = x+ D(x). (2)

Since the transformation using Eq. 2 is a forward warping
procedure and x′ consists of real numbers, there is a problem
that rounding operation is necessary to obtain pixel inten-
sities. Such a process results in a large number of ‘‘holes’’
in the deformed template image, as illustrated in Fig. 3a
and Fig 3b. An alternative is to employ backward warping
that x corresponding to x′ is computed using the inverse
transformation T−1 and interpolation scheme can be used
to obtain the pixel intensity. According to [52], T−1 can be
defined using an approximation:

x = T−1(x′) ≈ x′ − D(x′). (3)

The deformation obtained in Eq. 3 and its difference from
Eq. 2 are illustrated in Fig. 3c and Fig. 3d, respectively.
In conclusion, Eq. 1 is employed for modeling geometric
deformation and Eq. 3 is employed as the image transforma-
tion for registration in this paper.

IV. REVIEW OF GENETIC ALGORITHM (GA)
To further explain how we use the multi-objective optimizer
in Fig. 1 to solve the optimization problem, we provide a

FIGURE 3. (a) Deformed Fig. 2 by forward warping. (b) A closeup view
around the center of (a). (c) Backward warping. (d) Shape comparison
between forward warping (green dots are sampled points) and backward
warping.

short review on GAs in this section. GA is one of the leading
algorithms in nature-inspired optimization methods. For a
population P consisting of a number of candidate solutions,
the GA gradually optimizes the P by iteratively applying
genetic operators. One of the unique features of the GA
is genotype representations for candidate solutions. Each
candidate solution, called individual p, is encoded into an
internal representation, such as a bit string or a real-valued
vector, in order to apply genetic operators. The genotype rep-
resentations can allow genetic operators to adapt to different
problems flexibly.

The genetic operators mainly consist of parents selection,
crossover and mutation. The procedure of the simple GA [53]
is briefly listed as follows:

Step 1: Set t = 0 and generate nP individuals in P t
randomly.

Step 2: Select individuals as parents from P t with parents
selection operator.

Step 3: Generate an offspring population Qt from parents
by crossover and mutation operators.

Step 4: Evaluate all individuals in Qt .
Step 5: Select nP individuals from Qt as P t+1.
Step 6: Set t = t + 1 and return to Step 2 until the

termination criterion is satisfied.
Parent selection is typically implemented as probabilistic
selection biased by evaluation values (i.e., individuals with
better evaluation values are assigned higher probabilities.)
The crossover operation generates offspring through the
genetic recombination of multiple parents. The mutation
operation randomly changes genes of offspring with low
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probability. Step 5 is also known as survivors selection, that
is, all individuals in P t and Qt compete in order to become
members of P t+1 according to their evaluation values. The
simple GA directly adopts Qt as P t+1. Besides, the elitism
strategy, which preserves the best individual in the pool Rt =
P t ∪ Qt is often adopted.
NSGA-II [34] is a representative GA-based algorithm for

solving MOPs. The key idea of the NSGA-II is to introduce
the selection criterion using two sorting approaches. The first
one, called fast non-dominated sorting, iteratively extracts a
non-dominated set F from the population and assigns a rank
to each F according to the order in which they are extracted.
Another one, called crowding distance sorting, determines
the priority in F by the crowding distance which represents
the density of neighboring individuals in the solution space.
At last, nP individuals are selected from S consisting of F1 to
Fl−1, where |S| ≤ nP < |S| + |Fl |. Insufficient individuals
are taken from Fl according to the crowding distance. Fast
non-dominated sorting promotes convergence to the Pareto
front, while crowding distance sorting maintains diversity on
the Pareto front. Moreover, elitism is ensured by using R in
survivors selection.

NSGA-III [45] is a variant of NSGA-II which focuses
on solving MaOPs. Instead of crowding distance sorting,
reference lines connecting the origin with reference points
evenly distributed on the evaluation value space are used
to maintain the diversity of the population on the Pareto
front. Each p is associated with the closest reference line
in the perpendicular distance. After S is determined by fast
non-dominated sorting in survivors selection, the number of
individuals in S associated with each reference line, called
niche count, is logged. NSGA-III then iteratively selects
the individual in Fl which is associated with the reference
line of the lowest niche count. Reference points can relieve
the algorithm in adaptively maintaining population diversity.
In addition, users can obtain only a part of the Pareto front as
required by manually distributing reference points.

V. SPATIAL MULTIOBJECTIVE OPTIMIZATION
As described in Sec. III, the deformation of the template
image is determined by the displacement of each control
point. Therefore, the purpose of the optimization procedure
is to calculate the displacements where the deformed tem-
plate image matches the target in the target image most. The
principal contribution of this work is to cast this task as a
MOP by spatially partitioning the template into groups. Each
group is assigned a single-objective function of the similar-
ity measure. The overview of the optimization procedure is
shown in Fig. 4. The procedure starts from building pyramids
for both the template image and the target image, then the
optimization is performed with the pyramids in a coarse-to-
fine scheme. The key advantage of this framework is that the
population optimized at each level can be inherited as the
initial population of the next level. To ensure the consistency
of parameter inheritance from low-resolution level to high-
resolution level, a subdivision method considering control

FIGURE 4. Overview of the optimization procedure.

point mesh is employed to achieve a natural interpolation of
additional displacements, which allows the optimized popu-
lation to be directly inherited.

Final candidate solutions are obtained by optimizing the
population at the bottom of the pyramid (i.e., the image in
the original resolution). The subsequent effort lies in how to
determine a final solution as output from multiple solutions
on the Pareto front. In addition to a direct selection approach,
a post-processing approach using multiple candidate solu-
tions is also proposed.

A. OPTIMIZING DEFORMATION PARAMETERS VIA MOEAS
Three GAs described in Sec. IV are employed and compared
to optimize the displacements in the experiment. Since each
control point can move within the plane, the total number of
decision variables is 2nxny. To represent these variables as
genes, we use real-valued coding because each displacement
is a 2D vector of real values. For clarity, we denote the
displacement of a single point by d i,j = (di,j,x , di,j,y)>, and
an individual p is represented by the vector concatenating the
displacements of all the points as follows,

p = (d0,0,y, d0,0,x , d1,0,y, . . . , dnx−1,ny−1,x)
>. (4)

p can directly represent a candidate control point mesh. The
initial population is iteratively optimized by genetic opera-
tors. As to the evaluation of each p, for simplicity, a single-
objective function is firstly introduced, which is combined
with the simple GA and compared to multi-objective GAs
in the experiment. In the objective function, mean absolute
difference with respect to intensities is used as the similarity
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measure. As introduced in Sec. III, we use backward warping
to find the correspondences for the calculation of objective
function, hence sampling is performed on the target image.
Let � and �′ denote the entire region of the template image I
and the target image I ′, respectively, andwe can further define
the sampling region ω′ ⊆ �′ as:

ω′ = {x′ | T−1(x′) ∈ �}. (5)

The single-objective function for the simple GA is given by:

f (p) =
1
|ω′|

∑
x′∈ω′
|I ′(x′)− I (T−1(x′))|. (6)

Based on Eq. 6, spatial multi-objective functions can be easily
defined. We first define patch as a region consisting of pixels
affected by the shared 4× 4 control points, i.e., � consists of
(nx−3)× (ny−3) patches. The group partitioning is achieved
by dividing all the patches into nf groups, where nf is the
number of objective functions. We denote the region of i-th
group as ωi ⊆ �. One objective function is assigned over
each group, which can be written by modifying Eq. 5 and
Eq. 6:

ω′i = {x
′
| T−1(x′) ∈ ωi}, (7)

fi(p) =
1
|ω′i|

∑
x′∈ω′i

|I ′(x′)− I (T−1(x′))|, (8)

where i = 1, 2, . . . , nf . Therefore, multi-objective GAs eval-
uate individuals based on the following vector function:

f (p) = (f1(p), f2(p), . . . , fnf (p))
>. (9)

Because each control point affects multiple patches, their
similarity functions can ‘‘conflict’’ with each other, which is
also considered in the case of groups consisting of multiple
patches. This is an important motivation for adoptingMOEAs
because a single-objective optimizer can hardly solve such a
conflicting problem efficiently [34]. The number of regions
is adjustable as a hyper-parameter (increasing nf makes opti-
mization significantly more difficult). Pareto optimal solu-
tions are supposed to obtain more appropriate solutions than
optimizing a single-objective.

B. COARSE-TO-FINE STRATEGY
An iterative framework using image pyramids can be
employed to alleviate the difficulty of deformation estimation
with large displacements [1], [26]. Estimation starts from the
lowest resolution image for a rough estimation, and more
accurate estimations are achieved as the image resolution
increases. Specifically, we adopt Gaussian pyramid which
iteratively generates low resolution images through Gaussian
smoothing. The assignment of pyramid level indices follows
the order in which estimation is performed (i.e., the first and
the nl-th level images are with the lowest and the highest
resolution, respectively). Both the image width and height are
halved and hence the l-th level image has 1/4 resolution of
the (l + 1)-th level image.

FIGURE 5. Interpolation of control points by the subdivision algorithm for
the current level. The middle image is the previous level and the control
points of the current level (black) are computed based on the previous
level’s ones (white). The outermost control points (outside the dashed
rectangle) are discarded and will not be involved in deformation. Black
points will be further displaced to reflect the image deformation.

With the increase of image resolution, it is also necessary
to increase the resolution of the control point mesh to inherit
deformation parameters between different levels. To this end,
for a certain level, interpolating new control points without
destroying the mesh configuration of the previous level is
required. In this work, we adopt the Catmull-Clark subdivi-
sion [54] for the mesh subdivision. The purpose of subdivi-
sion is to update the nlx × n

l
y control point mesh with respect

to each individual from the optimizedP l to nl+1x × n
l+1
y mesh,

where nl+1x = 2nlx − 3 and nl+1y = 2nly − 3 (i.e., sx and sy are
fixed for all levels). The Catmull-Clark subdivision algorithm
generates a subdivided mesh by inserting new control points
and updating the existing control points. As illustrated in
Fig. 5, the points on the subdividedmesh can be classified into
three types: face points, edge points, and vertex points. A face
point is inserted to a patch. Assuming that the vertices of a
patch are d l1, d

l
2, d

l
3, and d

l
4, the face point d

l+1
F is computed

as their centroid,

d l+1F =
1
4

4∑
i=1

d li . (10)

An edge point is inserted to the edge shared by two patches.
Assuming that two face points are d l+1F1 and d l+1F2 , and two
endpoints of the edge are d l1 and d l2, the edge point d l+1E is
computed as follow:

d l+1E =
d l+1F1 + d

l+1
F2 + d

l
1 + d

l
2

4
. (11)

A vertex point is the updated point of a vertex d l shared by
the four patches. Denoting that the average of the four face
points is d̄F , and the average of the midpoints of the four
edges which share d l as one of the endpoints is d̄M , the vertex
point d l+1V is computed as follows:

d l+1V =
1
4
d̄F +

1
2
d̄M +

1
4
d l . (12)
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FIGURE 6. An example of a control point subdivision. Red markers
represent the control points, and green dots represent the deformed
surface with sampled points. (a) An example mesh with 7 × 7 lattice.
(b) The subdivided mesh and enlarged surface with 11 × 11 lattice.

FIGURE 7. An example of control point aggregation under 7 × 7 lattice
with two groups. The control points surrounded by one dashed rectangle
are determined by the optimum solution which achieves the maximum
similarity with respect to the group region surrounded by the solid
rectangle of the same color. For shared control points (three columns in
the center), the average of their displacements is computed.

Note that the edge points and vertex points outside the dashed
rectangle are not calculated, as surrounding control points are
needed for calculation. After interpolation of control points,
all the displacements are doubled to fit the increase of reso-
lution in the image pyramid. An example of the subdivision
process is shown in Fig. 6. It can be observed that the subdi-
vided mesh in Fig. 6b can maintain the shape of the previous
mesh in Fig. 6a well. Therefore, this subdivision step is useful
for providing a good initialization for optimizing the image of
the next level in the pyramid.

C. DECISION OF THE FINAL OUTPUT
We introduce a post-processing procedure to decide the final
single solution as the output from the optimized population.
A natural idea is to define the best solution as the individ-
ual with the smallest sum of the objective function values
(i.e., maximum similarity). However, in MOEAs, such an
approach can lose most of the valuable information of the

FIGURE 8. Images used for generating template and synthetically
deformed target images: (a) plant, (b) sea, (c) rag, (d) alphabet, (e) toad.

Pareto optimal solutions. We propose a post-processed solu-
tion by exploiting these sub-optimal solutions, as illustrated
in Fig. 7. For each group, the solution with the smallest value
of the corresponding objective function is extracted, which
provides the control points that only affect the corresponding
group. The final output is created by aggregating control
points provided from all the groups. For shared control points,
the average of their displacements is computed.

VI. EXPERIMENTAL RESULTS
The effectiveness and usefulness of solving the deformation
estimation problem with the multi-objective scheme are ver-
ified using both synthetic data (Sec. VI-A) and real-world
images (Sec. VI-B). We compared the following four set-
tings: the simple GA with a single-objective, NSGA-II and
NSGA-III with two-objectives respectively, and NSGA-III
with four-objectives. In the two-objective setting, patches are
divided equally and vertically into two groups (e.g., for a
7 × 7 lattice including 4 × 4 patches, each group consists
of 2 × 4 patches). Similarly, patches are divided vertically
and horizontally into four groups in the four-objective setting
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TABLE 1. Comparative results of the best solutions with respect to the vertical wavy deformation. Each cell consists of three values which represent the
minimum, maximum, and average values based on five random trials from top to bottom. The best results in terms of RMSE and MEDE with respect to
each row are emphasized in bold.

(e.g., each group consists of 2× 2 patches for a 7× 7 lattice).
The number of pyramid levels nl is fixed to three in all
experiments. To reduce the computational cost, pixel sam-
pling is performed for individual evaluation by scanning the
target image at five pixel intervals. For the implementation of

three GAs, the Platypus package1 is used, which is an evo-
lutionary computation framework in Python which includes
many MOEAs. To ensure the correctness and fairness of the

1https://github.com/Project-Platypus/Platypus
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FIGURE 9. Examples of visual results achieved by multi-objective methods on vertical wavy images. The 1st∼2nd columns are ground truth and
3rd∼4th columns are results. Red markers represent the control points, and green dots represent the deformed surface generated by forward warping.
Images in the 4th column show the deformed template images with estimated deformation.
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FIGURE 10. Comparison of the results showing maximum MEDE for the sea image with the 11 × 11 lattice and [−10.0, 10.0] range.

experiment, we only manually set several essential param-
eters and fix other parameters following the default setting
throughout the experiment. Specifically, the number of eval-
uations is set to 10000 and the number of reference points
of NSGA-III is set to 100 for the two-objective setting and
120 for the four-objective setting. For fair comparisons, all
experiments are executed five times with different random
seeds considering probabilistic operations. The initial popu-
lation P1

0 for all settings is kept the same with respect to each
random seed.

A. COMPARISON WITH SYNTHETIC DATA
To only focus on verifying the estimation ability rather than
robustness against noises, we prepare five images in 400 ×
400 pixels for generating template images and deformed
target images, as shown in Fig. 8. The corresponding template
images are obtained by cropping 160 × 160 pixels regions
from the center of each image. Eight types of deformations
are used for generating a deformed target image, the param-
eters are:

• Deformation (2 types): an image is deformed into a
wavy shape by moving the control points according to
a sine curve. In addition to vertical-only displacements,
a combination of both vertical and horizontal displace-
ments is used.

• Lattice size (2 types): 7 × 7 and 11 × 11 lattices are
used for the bottom image of the pyramid.

• Ranges of decision variables (2 types): we use
[−5.0, 5.0] and [−10.0, 10.0] as the range of each deci-

sion variable. Ranges are limited to make sure that con-
trol points do not overlap with each other spatially.

As a result, there are 40 (i.e., 5 images× 8 types of parameter
settings) types of deformed target images in total. These
images are generated by using backward warping, and hence
the ground truth of displacements can be obtained. In this
section, we evaluate each result based on not only the root
mean square error (RMSE) but also the mean Euclidean
distance error (MEDE). RMSE is calculated from all the pix-
els between the deformed template image and the sampling
region ω′. MEDE is calculated based on all the ground truth
displacements.

1) RESULTS OF VERTICAL WAVY IMAGES
Comprehensive numerical results of the best solutions with
respect to the vertical wavy images are summarized in
Table 1. For each combination of image setting and algorithm,
the minimum, maximum, and average values based on five
random trials are investigated. As can be observed by com-
paring the four algorithms in terms of RMSE and MEDE,
it is clear that the two-objective algorithms can achieve better
results in most cases. Examples of visual results are shown in
Fig 9, fromwhich we can observe that these methods can esti-
mate deformation parameters correctly for all the test images.
By contrast, GAwith single-objective achieves the best result
only once in terms of the average RMSE and zero times in
terms of the average MEDE value. The accuracy of GA can
degrade significantly, e.g., 11× 11 lattice with [−10.0, 10.0]
range as illustrated in Fig. 10a. These observations verify the
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TABLE 2. Comparative results of the final solutions after post-processing with respect to the vertical wavy deformation. Each cell consists of three values
which represent the minimum, maximum, and average values based on five random trials from top to bottom. The values smaller than the corresponding
values in Table 1 with the same settings are shown in Italics. The minimum value in terms of RMSE and MEDE with respect to each row, including the
results in Table 1, is emphasized in bold.

effectiveness of the multi-objective approaches. In addition,
we can observe that four-objective NSGA-III gets poorer
results than two-objective algorithms. Focusing on average
values of both evaluation criteria, four-objective NSGA-III

outperforms others for zero times regarding the RMSE and
only once regarding the MEDE.

The final solutions after post-processing on Pareto opti-
mal solutions obtained by multi-objective algorithms are
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TABLE 3. Comparative results of the best solutions with respect to the vertical and horizontal wavy deformation. Each cell consists of three values which
represent the minimum, maximum, and average values based on five random trials from top to bottom. The best results in terms of RMSE and MEDE with
respect to each row are emphasized in bold.

compared in Table 2. As can be observed, the post-processing
successfully improves the estimation accuracy in many cases
comparing to Table 1. In particular, four-objective NSGA-III
benefits most from the post-processing. Focusing on the num-
ber of improved results on the average value, four-objective
NSGA-III performs the best 17 times on RMSE and 19 times

on MEDE, while two-objective NSGA-II performs the best
for 15 and 14 times, respectively.

2) RESULTS OF VERTICAL AND HORIZONTAL WAVY IMAGES
The results of the best solutions with respect to the vertical
and horizontal wavy images are shown in Table 3. Despite
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FIGURE 11. Examples of visual results achieved by multi-objective methods on horizontal and vertical wavy images. The 1st∼2nd columns are ground
truth and 3rd∼4th columns are results. Red markers represent the control points, and green dots represent the deformed surface generated by
forward warping. Images in the 4th column show the deformed template images with estimated deformation.
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FIGURE 12. Real-world template images (top row) and target images (bottom row). (a) texture, (b) sign, and (c) face.

TABLE 4. The RMSE results of best solutions and post-processed solutions with respect to the real-world images. Each cell consists of three values which
represent the minimum, maximum, and average values based on five random trials from top to bottom. The values of post-processed solutions which are
smaller than the values of the corresponding best solutions are shown in Italics. The best results in terms of RMSE with respect to each row are
emphasized in bold.

more complex deformations, the multi-objective approaches
can still achieve good estimation. Several qualitative results
are shown in Fig. 11. Comparingwith Table 1, we can observe
that the best results are irregularly distributed in terms of both
evaluation criteria. Nevertheless, two-objective NSGA-II and
NSGA-III are still better choices overall. In the case of 7 ×
7 lattice, GA can achieve the best result when the search space
is small (e.g., the sea image). Four-objective NSGA-III shows
good results in the case of 11 × 11 lattice setting, which
achieves the best average MEDE for six times out of ten
times. Although the number of groups is a hyper-parameter to
be handled carefully as mentioned in Sec. VI-A1, our results
show the trend that larger number of groups is more effective
when dealing with complex and subtle deformations.

B. COMPARISON ON REAL-WORLD IMAGES
The usefulness of the proposed method under real-world
scenarios is verified in this section. We use three dif-
ferent pairs of template and target images as shown in
Fig. 12.

• Texture (Fig. 12a): the images capture a part of the unde-
formed/deformed texture printed on a piece of paper.
The target image has two vertical bumps. We set the
lattice as 7 × 7 and the decision variable range as
[−20.0, 20.0].

• Sign (Fig. 12b): the images capture a sign with
undeformed/deformed text printed on a piece of
wrapping paper. The lattice and decision variable
range are set to 7 × 7 lattice and [−10.0, 10.0],
respectively.

• Face (Fig. 12c): the template image and the target
image show a frontal face with serious expression
and smile, respectively. The goal is to obtain defor-
mation parameters that express smiling. We use the
7 × 7 lattice and the [−20.0, 20.0] decision variable
range.

The sizes of the template images and target images are set
the same as Sec. VI-A. Fig. 12a and Fig. 12b are captured
by a web camera and Fig. 12c is extracted from the FEI face
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FIGURE 13. Target images (1st column) and estimation results (2nd∼4th columns). The 4th column shows the template deformed with estimated
deformation. Composite images in the 2nd column are created from the images in the 1st column and 4th column.

database2 [55] and cropped. Because the ground truth of the
real deformations is unknown, we evaluate results only using
RMSE.

The results of best solutions and post-processed solutions
are shown in Table 4. These results show that multi-objective
approaches can outperform the single-objective approach
in real-world situations. However, post-processing fails to
improve estimation accuracy in a number of cases (e.g., the
face image). The estimation results for each image are shown
in Fig. 13. It can be observed that the deformed texture image
contains some highlight areas and the eye area of the face
image is also shadowed. Hence, the deformation results for
these corresponding areas showworse accuracy than the other
areas. The groups including these areas cannot contribute to
the post-processing. As a limitation, the proposed method

2https://fei.edu.br/~cet/facedatabase.html

suffers from illumination changes due to the characteristics
of the similarity measure.

VII. CONCLUSION
In this paper, we proposed a novel deformation estimation
method using MOEAs to tackle the conflicts based on the
fact that each control point of the deformation model affects a
local region rather than a single pixel. Ourmethod casts defor-
mation estimation as a MOP by dividing a template image
into several groups consisting of patches with group-wise
similarity defined as group-wise objective functions, which
can be solved by off-the-shelf MOEAs. To handle large
deformations, optimization is run hierarchically following
a coarse-to-fine strategy powered by image pyramid and
control point mesh subdivision. Besides, a post-processing
procedure is proposed to integrate Pareto optimal solutions
into a single output, which can improve the estimation
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accuracy. The observations from experimental results can be
summarized threefold. First, our partitioning approach with
two-objective algorithms can obtain deformation parameters
more accurately than GA with a single objective. Second,
although the four-objective algorithm performs not as well
as expected due to a large number of objectives, it shows to
be effective in dealing with complex and subtle deformations.
Third, the post-processing procedure can improve estimation
accuracy in many cases. We can observe the usefulness of the
proposed method with real-world images.

The main limitation of our method is that high computa-
tional resources are required. As future work, we would like
to address this issue by further tuning the hyper-parameters
that can reduce the computational cost without degrading the
performance. We are also interested in the referenced point
distribution of the NSGA-III. A user-supplied setting may be
able to focus solutions on regions that are desirable for the
post-processing procedure.
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