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ABSTRACT Gait stability indices that can be easily measured and computed are required in both clinical
and commercial applications. We established a novel gait stability index based on kinematic information
that was substantially correlated with the margin of stability (MoS); a popular kinetic stability index. The
novel index was computed using the time-series of triaxial velocities from the human body mass center. The
partial least squares regression method was extended to time-series data and applied to the velocity series
to compute the principal motions. These motions were elementary motions constructing the gait motions,
and their magnitudes in each gait motion were correlated with the MoS. Gait data from 60 participants
(30 males and 30 females; age: 67.6 ± 3.4 years (mean and standard deviation); height: 159.6 ± 7.6 cm;
weight: 60.6 ± 9.3 kg) were analyzed. The combination of three principal motions exhibited a moderate
correlation with the minimum MoS values in the mediolateral direction at r = 0.68, suggesting that the
novel kinematic index can be used as an easy-to-access alternative to the MoS. The established kinematic
index can be a substitute for the margin of stability.

INDEX TERMS Gait stability, partial least squares regression, principal motion analysis, margin of stability.

I. INTRODUCTION
To date, gait stability and stable walking have been inten-
sively studied by many researchers. It has been shown that
stable gait relies on gait parameters comprising stride length
and walking speed [1]–[6]. In particular, gait stability indices
are useful in judging the risk of falling [7], [8].

There exist two categories of gait stability indices:
kinetic and kinematic. Kinetic indices are computed based
on mechanical dynamics and indicate physical resistance
towards falls; however, they require the positions and angles
of multiple human body parts to be measured, and ground
reaction forces are necessary for some kinetic indices. There-
fore, the measurement of kinetic indices requires laboratory
settings. The margin of stability (MoS) [9]–[11], feasible
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stability region [12], and centroidal momentum [13]1 are
examples of kinetic gait stability indices. Meanwhile, kine-
matic indices are typically computed using kinematic infor-
mation from few body parts, which can be easily acquired
through inertial measurements. However, kinematic indices
may not be directly related to kinetic stability indices [6],
[12], [14]–[16]. For example, the maximum Lyapunov expo-
nent [17], [18], maximum Floquet multiplier [19], and har-
monic ratios [20], [21] are popular kinematic indices.

Kinematic stability indices can be invaluable for clinical
and commercial applications [22], [23] because of their rela-
tive ease of measurement outside laboratory environments;
hence, many studies have compared kinetic and kinematic
indices. For example, the short-term Lyapunov exponents
and minimum MoS values in the anterior and mediolateral

1This index is often applied to bipedal robots.
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directions were found to exhibit different properties [6], [14]
and do not exhibit substantial correlation [15]. In another
study [12], several kinetic and kinematic indices including
the MoS and Lyapunov exponent were compared to predict
falls, and it was concluded that these indices exhibited distinct
properties. In previous approaches, major kinetic and kine-
matic indices were compared. However, wewill employ a dif-
ferent approach by constructing a novel kinematic index that
exhibits a correlation with a major kinetic stability index. One
objective of this study is to find to what extent the value of
a kinetic stability index based on force information including
ground reaction forces can be estimated from motion infor-
mation including the velocities of body segments. Kinematic
indices can be a partial substitute for kinetic indices because
kinematics and kinetics are physically consistent with each
other.

We utilize the MoS as a referential kinetic index and estab-
lish a novel kinematic stability index such that the kinetic
and kinematic indices exhibit a correlation. This kinematic
index is based on the time-series of triaxial velocities at
the center of gravity of a human body. To construct the
proposed index, a partial least squares (PLS) regression [24]
is used to compute the principal motion analysis (PMA)
[25]–[27]. The PMA decomposes a sample of a multivariate
time-series into several principal motions (which are inde-
pendent multivariate time-series) to construct a gait motion.
In the case of normal gait, two to three types of principal
motions largely represent the variations of the motion sam-
ple set [25], [27], [28]. The combination of PLS and PMA
enables us to compute principal motions whose scores exhibit
a correlation with the MoS values and their meaning can
be interpreted by reviewing the principal motions. In our
previous work, we applied this method to the MoS in the
forward direction for a small sample of 20 people [29]. In this
study, we constructed a kinematic gait stability index that
correlated with the MoS in the mediolateral direction and
enhanced the validity of the index by using the gait data
of 60 elderly subjects and a cross-validation method. The
number of participants and cross-validation are important
aspects to investigate the generality of the new stability index.
Further, the principal motions were compared with represen-
tative gait parameters to validate their meanings.

II. KINETIC GAIT STABILITY INDEX: MARGIN
OF STABILITY
The MoS [9] is a major kinetic index for gait stability with
good validity [7], [31] and experimental demonstration [32].
A larger MoS value indicates a greater resistance to falls
during normal walking. In the present study, we evaluated
the MoS values along the mediolateral direction of partici-
pants on the basis of the extrapolation of the center of mass
(XCoM) [9]. As shown in Fig. 1 (a), the human body was
regarded as an inverted pendulum with a constant leg length l
in a coordinate space defined by the x-axis (right for positive),
y-axis (anterior for positive), and z-axis (upward for positive).
The coordinate vector of XCoM (xcom) indicates the limits

FIGURE 1. Margin of stability (MoS) value and 100% gait cycle.
(a) Definition of the mediolateral MoS. x′com is the point corresponding to
xcom on the ground. bos is the coordinate of the support base edge. mos
is computed using bos and x′com. (b) Example of the variations in the base
of stability and center of mass in the x-direction (bos, xcom). The smallest
MoS value can be observed at approximately ∼10% and ∼60% of the gait
cycle. (c) Gait cycle starting from the left-heel contact (0%) and ending at
the following left-heel contact (100%)). Modified from [30].

of the center of mass (CoM) movement at each moment.
If the XCoM is outside the end of the base of support (BoS),
a fall will be induced unless a new leading foot touches the
ground. Since the MoS indicates walking stability at each
instant, it is also used for evaluating perturbation responses
during walking [33], [34] and walking stability in people with
musculoskeletal abnormalities [35], [36].

The position and velocity vectors of the CoM at any
given moment are com and vcom, respectively. xcom is then
defined as

xcom = com +
vcom
ω

, (1)
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where ω is the natural frequency of the pendulum. Here, ω is
calculated as

ω =

√
g
l
, (2)

where g is the gravitational acceleration and l is the dis-
tance from the floor to the CoM in an upright posture
from [6]. Details of the determination of the CoM position are
described in Section III. As x′com is the point corresponding
to xcom on the ground, the MoS (mos) is the distance vector
between the end of the BoS (bos) and x′com:

mos = bos − x′com. (3)

Following earlier studies [6], [9]–[11], we use the minimum
absolute value of mos within the period of a gait cycle as the
stability index. The minimum MoS is observed during the
double support phases at approximately 10% or 60% of the
gait cycle, as shown in Fig. 1 (b).

III. ANALYSIS OF GAIT MOTIONS
We analyzed a database of gait motion [38]. The analyzed
data included 60 elderly adults (mean age: 67.6 ± 3.4
(standard deviation) years; height: 159.6 ± 7.6 cm; weight:
60.6 ± 9.3 kg) without any gait-related abnormalities
declared. Participants walked on a 10 m line, and their two
steps near the center of the course were used for the analysis
described below. The comfortable gait speed was selected,
and five trials were analyzed per participant. The whole-body
motion of the participants was measured using a camera-
based motion capture system with a sampling frequency
of 200 Hz. A Butterworth low-pass filter with a cutoff fre-
quency of 6 Hz was applied to the marker positions. The
measurement details are elaborated in [38].

We defined a gait cycle as the steps starting from left-heel
contact to the next left-heel contact, as shown in Fig. 1 (c).
We analyzed three axial CoM velocities, which were com-
puted by differentiating the CoM position for each axis. The
CoM position was defined as the center of the sacral spine
and the two anterior superior iliac spines.

We calculated various gait parameters to understand
the physical meanings of the principal motions that were
obtained. The definitions of each gait parameter are presented
in Table 1. Note that these gait parameters are not necessary
to compute the kinematic index; however, they were used
to discuss the validity of the kinematic index established in
the present study. The parameters were calculated by using
software built in [37].

IV. GAIT STABILITY INDEX BASED ON
KINEMATIC INFORMATION
We established a kinematic gait stability index that corre-
lates with the kinetic gait stability index (MoS) using the
time series of three axial CoM velocities. For this purpose,
we adapted PLS [24] to PMA. In PMA, each gait motion is
approximated using a linear summation of several principal
motions, whereas PLS is a supervised multivariate analysis

method that extends PMA to find the principal motions whose
scores (such as magnitudes) exhibit correlations with the
MoS. The new kinematic stability index is then defined using
a linear summation of several principal motion scores.

Each axial component of the CoM velocities was dis-
cretized every 1% of the gait cycle and then normalized
(z-score) among all trials. The minimum MoS values were
also normalized among all trials. The samples whose nor-
malized minimum MoS values were greater than 2.58 or
smaller than−2.58 were excluded as outliers. At the k-th trial
(k ∈ {1, . . . , k ′}) for direction j (∈ {x, y, z}), the time-series
vector of the CoM velocity vcom,j,k (∈ R101×1) was defined
as comprising 101 discretized instances (one value for each
percentage of the gait cycle):

vcom,j,k = (vcom,j,k,1, vcom,j,k,2, . . . , vcom,j,k,101)T . (4)

Using this vector, a column vector bk (∈ R303×1) is extended
as follows:

bk = (vcom,x,k
T , vcom,y,k

T , vcom,z,k
T )T. (5)

The discrete time-series of all of the gait motions are
expressed by the matrix B (∈ Rk ′×303) as follows:

B = (b1, . . . , bk , . . . , bk ′ )T, (6)

where k ′ is the number of gait samples. k ′ = 291
(60 participants × 5 trials − 9 outliers) in this study.
The procedure of the PLS is now shown. The model

formulas of the PLS are

B =
s∑

l=1

t lpTl + E (7)

and

mos,min =

s∑
l=1

ql t l + e. (8)

Here, mos,min (∈ Rk ′×1) stores the minimum MoS values
computed from each of the k ′ trials. s is the number of
principal motions, t l (∈ Rk ′×1) is the score of all samples
for the l-th principal motion, pl (∈ R303×1) is the load of
the l-th principal motion, ql is the coefficient for the scores
of the l-th principal motion, and E and e are the regression
errors ofB andmos,min, respectively. Based on these formulas,
we determined t1 such that the covariance with mos,min is
maximized:

t1 = B

(
BTmos,min

‖BTmos,min‖

)
. (9)

Here, ‖ ‖ represents the L2 norm. p1 and q1 are determined
such that the sum of the squares of the elements of E and e
are minimized, respectively.

p1 =
BTt1
tT1 t1

(10)

q1 =
mT
os,mint1
tT1 t1

(11)
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TABLE 1. Definition of the gait parameters modified from [37]. The joint angles were determined at each instance of the toe-off and heel-contact. These
gait parameters were computed to interpret the principal motions. CoM refers to center of mass.

Next, we determined the scores of the second principal
motions t2, such that the covariance with mos,min − q1t1 is
maximized. For this computation, matrix B and mos,min are
updated as follows:

mos,min,2 = mos,min − q1t1, (12)

B2 = B− t1pT1 . (13)

Then, following (9)–(11), t2, p2 and q2 are computed by using
B2 and mos,min,2. In general, the l-th principal motion vector
pl and corresponding score vector t l are computed by using

mos,min,l = mos,min −

l−1∑
u=1

qutu, (14)

Bl = B−
l−1∑
u=1

tupTu . (15)

This process was repeated to compute the third and successive
principal motions.
Using the s principal motions, mos,min was predicted as

m̂os,min =

s∑
l=1

ql t l . (16)

We determined s on the basis of the two-fold cross validation
such that the correlation between the observed and estimated
mos,min became maximized. For this, the sixty participants
were randomly divided into two groups: learning and testing.
Each group included 15 males and 15 females.

V. RESULTS
Table 2 (a) shows the correlation coefficients between the
scores of the first to fifth principal motions and the minimum
MoS. The correlation coefficients ranged from 0.58 to 0.10.
Table 2 (b) shows the results of the two-fold cross-validation.

TABLE 2. (a) Correlation coefficients between the principal motion scores
and minimum MoS values in the lateral direction. ** and *** represent a
statistical significance at p < 0.01 and p < 0.001, respectively.
(b) Correlation coefficient between the estimated and observed minimum
MoS values by 2-fold cross-validation. All participants were randomly
classified into two groups. When the training data were group 1, those for
group 2 were tested and vice versa.

These values are the correlations between the observed and
estimated MoS values. The MoS was estimated as a linear
sum of the scores based on the multiple principal motions
computed from the learning group. The correlation between
the estimated and observed MoS was the largest when the
three principal motions were included in the analysis. There-
fore, we decided to use motions up until the third principal
motion (s = 3).
The estimated MoS for the 60 participants was calculated

using the linear combination of the three principal motions:

m̂os,min = 0.09t1 + 0.02t2 + 0.10t3. (17)

Fig. 2 shows a scatter plot of the estimated and observed
values of the minimum MoS. The correlation coefficient
was 0.68 (t(289) = 15.77, p < 0.001, two-tailed t-test),
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FIGURE 2. Scatter plot of minimum normalized MoS values (horizontal)
and their estimation using principal motions (vertical).

indicating that our index correlates with the minimum value
of the MoS.

VI. DISCUSSION
A. SEMANTIC VALIDITY OF PRINCIPAL MOTIONS
As described in Section V, the new kinematic index shows
concurrent validity regarding the correlation coefficient with
the minimum MoS, but the semantic validity of this index
is also important. The validity of the measurement index is
discussed frommultiple viewpoints, including the concurrent
and content validity [39]. Regarding the content validity,
semantic aspects of the index are discussed. In this section,
we interpret and discuss the meanings of the time-series char-
acteristics of the principal motions and discuss their validity.
Fig. 3 (a) shows the mean time-series variation of the CoM
velocity. Figs. 3 (b)–(d) show the content of the first to third
principal motion vectors. When the value of the principal
motion is zero at a moment, the CoM velocity is the mean
value among all samples due to the normalization. A positive
value for the principal motion indicates that the CoM velocity
is larger than the mean value. Table 3 shows the correlation
coefficients between the principal motion scores and gait
parameters, and these can be used to interpret the principal
motion.

1) FIRST PRINCIPAL MOTION
For the first principal motion, Fig. 3 (b) shows that the
velocity in the x-axis is large (positive) from the middle of
the right swinging phase to the right stance phase (30%–80%
of the gait cycle), and small (negative) from the middle of the
left swinging phase to the left stance phase (80%–30%). This
is in the same phase as the average CoMmotion. According to
Table 3, the scores of the first principal motion and the step
width are positively correlated (r = 0.43) indicating that a
gait with a large step width involves a greater mediolateral
CoM motion.

In the y-axis, the velocity was large (positive) during
the entire gait cycle, indicating a fast gait. Table 3 shows
that the first principal motion scores are positively correlated

FIGURE 3. Mean center of motion (CoM) velocity and obtained principal
motions. (a) Mean CoM velocity. (b)–(d) Substance of each principal
motion. (b) 1st principal motion. (c) 2nd principal motion.
(d) 3rd principal motion. A positive or negative load value at a moment
means that the velocity is larger or smaller than the mean velocity in all
trials, respectively.

with the step width and length, gait speed, and CoM position
in the forward direction, and negatively correlated with the
cadence and upper body pitch angle. A gait with a large first
principal motion score can be a fast walking motion with a
large step width and length, small cadence, and forward lean
of the upper body.

The positive correlation between the first principal motion
scores and minimum MoS indicates that the gait is the
most stable in terms of the MoS if the gait is performed
as described above. It is natural that a larger step width
will result in a larger fall margin in the lateral direction.
However, it is unclear whether other gait parameters, such as
the upper body angle and gait speed, directly affect the MoS.
In terms of the effect of the gait speed on the lateral MoS,
earlier studies are not fully consistent [6], [11], [40], [41].
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TABLE 3. Correlation coefficients between the principal motion scores
and gait parameters. Only significant values (p < 0.05) are shown. PM:
principal motion, CoM: center of mass, HC: heel contact, TO: toe off.

For example, Alamoudi et al. [11] and Gill et al. [40] repor-
ted positive correlation coefficients between the gait speed
and lateral MoS, whereas little correlation was found in
[6], [41]. Caderby et al. [41] thought that the increase in step
width associated with an increase in gait speed is a posture
adjustment to remain the lateral MoS. Following this idea, the
increase in step width and not in gait speed directly influences
the lateral MoS. The step width may become greater at gait
speeds higher than those preferred by individuals [42].

2) SECOND PRINCIPAL MOTION
Fig. 3 (c), which displays the second principal motion, shows
that the velocity in the y-axis was small (negative) for the
entire gait cycle. However, the CoM velocity in the z-axis was
at its minimum at toe-off (∼15% and∼65% of the gait cycle)
and maximum before heel contact (∼40% and ∼90% of the
gait cycle), which is the opposite of a normal CoM motion.
The second principalmotion canceled a change in the velocity
in the vertical direction.

According to Table 3, the second principal motion scores
were negatively correlated with step length and walking
speed, and positively correlated with cadence. The second
principal motion can be interpreted as a slow motion with
a large cadence and small step. Joint angles such the thigh
angles at heel-contact and toe-off also present the features
of small steps. When the step length is small, the CoM
movement in the lateral direction is small [41], [42]. In such
cases, XCoM and CoM are relatively similar, and the MoS
is large. Therefore, the gait motions with large scores for the
second principal motion exhibit reasonably largeMoS values.

Interestingly, the correlation between the principal motion
scores and gait speed, and the scores and cadence, were
opposite in the first and second principal motions. For the first
principal motion, the scores exhibited a positive correlation
coefficient with the gait speed, and faster walking was more
stable than slower. As discussed above, greater step widths
accompanied by greater speeds may contribute to the increase

in the mediolateral MoS. In contrast, for the second principal
motion, the scores exhibited a negative correlation coefficient
with the gait speed, and slower walking was more stable than
faster. Gait samples with large scores of the second principal
motion involve greater cadences and small stride lengths
that may contribute to increase in the MoS. Earlier studies
[6], [11] also reported that gaits with high cadences tend
to exhibit large mediolateral MoS. If only the relationship
between the gait speed and mediolateral MoS is considered,
the two principal motions contradict each other. Note that
older people tend to adopt large step widths and small stride
lengths for lateral stabilization, which is a combination of the
first and second principal motions [43].

3) THIRD PRINCIPAL MOTION
Fig. 3 (d) shows the loads of the third principal motion. In the
first half of the gait cycle (0%–60%), the velocity along the
x-axis is positive, while in the second half it is negative. This
profile corresponds to the differential curve of the average
x-velocity, as shown in Fig. 3 (a). The large score of the third
principal motion leads to the forward phase of the x-velocity.
The z-velocity is at its maximum at the instance of toe-

off and minimum around the instance of heel-contact, which
is close to the characteristics of the average motion of the
z-velocity. This indicates a large CoM motion along the
vertical direction and large step lengths.

As listed in Table 3, the scores of the third principal motion
exhibit positive correlation coefficients with the step lengths,
kick-up angles, and minimum foot clearance. Furthermore,
a negative correlation was exhibited with the lower thigh
angle at the instance of toe-off. These correlations indicate
that the motions with large third principal motion scores
involve an intense kick at the instance of toe-off and large
step lengths. However, it is difficult to explain how these
characteristics pertain to the MoS values.

B. LIMITATIONS OF THE STUDY
Here, we address the limitations and concerns of the present
study. As mentioned in Section I, many representative gait
stability indices do not substantially correlate with each
other [6], [12], [14]–[16], [44]–[47]. This is because each
index evaluates a different aspect of gait. However, the index
based on the principal motion score showed amoderate corre-
lation with the MoS, possibly because both indices are based
on the CoM velocity. PMA and PLS can be applied to the
time-series of other body parts. It remains to be investigated
which body part’s velocity or acceleration information is best
in terms of the correlation with MoS. Further, it would be
possible to increase the correlation between the MoS and
kinematic index based on the principal motions by employ-
ing the velocities of multiple body segments. Although it is
understandable how the first and second principal motions
may increase the MoS values, it should be noted that the
characteristics of the principal motions are only correlated
with the MoS values and are not necessarily causally related.
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We estimated the position of the CoM from the marker
positions measured using a motion capture system and dif-
ferentiated it to obtain the CoM velocity. If we use the CoM
velocity measured by an inertial measurement unit, we may
not be able to obtain the same results that were obtained in
this study because of the influence of the sampling rate and
the integration of the error. Our method should be tested using
inertial measurement units because methods to assess gait
stability and performance using these units are currently pop-
ular, as indicated by previous studies [16], [45], [48]–[51],
and have promising accessibility.

Additionally, fall risks or abnormal walking may be more
related to gait variability than to mean gait features [8],
[22], [52]–[55]. For example, the variability of minimum foot
clearancemay be used to differentiate between those with and
without trip-related histories [54] and the variability of step
width can be related to fall history [55]. Our proposedmethod
is not for evaluating the variability of gait patterns; instead,
it evaluates the stability of individual strides.

The gait database we used in the present study [38]
included only healthy participants. To determine the clinical
validity of the kinematic index developed in this study, it is
important to test individuals with a history of falls and those
deemed at risk by clinical experts. Finding or establishing
stability indices that can accurately estimate fall risks is a
primary concern among the researchers.

VII. CONCLUSION
We developed a novel kinematic gait stability index that
is consistent with the MoS in the lateral direction. Many
earlier studies reported that no substantial correlation existed
between currently used kinetic and kinematic gait stability
indices. We applied PLS to PMA and statistically constructed
an index that was correlated with the minimum value of the
MoS using time-series data of the CoM velocity. Based on
the three principal motions, the constructed index showed
a moderate correlation coefficient of 0.68 with the MoS.
Although this correlation coefficient is not very high, it can be
further improved by involving the kinematic information of
multiple body segments, among other methods. Furthermore,
part of the principal motions can be reasonably linked with
the fall margin. These results suggest that this gait stability
index can be an easy-to-access alternative to the MoS.
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