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ABSTRACT The work develops a network threat detection system, AI@NTDS, that uses the behavioral
features of attackers and intelligent techniques. The proposed AI@NTDS system combines data analysis,
feature extraction, and feature evaluation to construct a detection model, which supports a more straightfor-
ward strategy by which the operating system or its operators can defend against network attacks. The Linux
system interaction information of SSH (Secure Shell) and Telnet are obtained from the Cowrie Honeypot
and labeled according to Enterprise Tactics of MITRE ATT&CK to ensure dataset credibility. The proposed
AI@NTDS system has three levels, depending on the attacker’s attacks and the user’s risk of damage. Fifty-
two features are used to detect the network threat level. The features contain message-based features for
all kinds of Linux operating instructions, host-based features for all types of information in the network
connection process, and geography-based features are related to the attacker’s location. AI-based algorithms
LightGBM, Random Forest and the K-NN algorithm are used to verify the identification of the custom
features. Finally, the detection model that is trained using the best combination of features is used to predict
the test dataset. The accuracy of the proposed AI@NTDS system reaches 99%, 95.66%, and 94.08%with the
LightGBM, Random Forest, and K-NN algorithms, respectively. The mutual dependencies of features and
network threats are evaluated. Results of a performance analysis reveal that the proposed AI@NTDS system
has an accuracy of 99.20% and an F1-score of 99.80%. It is superior to existing detection mechanisms, which
it outperforms by 4% and 1% in accuracy and F1-score, respectively.

INDEX TERMS Honeypot, intent analysis, machine learning, remote shell access, threat detection.

I. INTRODUCTION
The Internet of Things (IoT) is utilized in various industries,
and more IoT devices are being connected to the Internet
every day. By 2021, 35 billion IoT devices had been installed
worldwide [1]. The global volume of data is increasing expo-
nentially as the IoT grows. Remote controls of the devices are
frequently used as they are convenient and support resource
sharing in the IoT environment. Most IoT devices are based
on Linux, and they are remotely controlled using Telnet or
SSH. The password authentication strategy is used to protect
these remote devices. However, hackers can use brute force
to search for passwords in insecure situations. Hackers can
break into a system through remote connections such as
Secure Shell (SSH) or Telnet. A hacker who enters a control
system will perform reconnaissance or download and execute
malicious files to obtain system permissions and, ultimately,
to steal sensitive information from an enterprise or organiza-
tion. Most devices communicate using SSH protocol remote
access services. Since this protocol provides encrypted
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communication between the SSH client and the server,
an attacker that is connected to the server can execute various
malicious services.

Venafi, Inc. collects real-world examples of SSH
threats [2]. For example, Sony Pictures was hacked in
2014 and SSH keys were stolen, leading to leaks of executive
salaries and copies of unreleased Sony movies. The 2019
Kinsing Malware included several shell scripts that down-
load and install, remove, or reinstall various services and
programs. The 2020 Kaiji malware detected poorly config-
ured SSH services and performed a brute force attack [3].
The above examples show that SSH attacks involve vari-
ous behaviors. Therefore, SSH security is critical and user
access to remote systems must be carefully monitored. Com-
mands that are executed by a remote connection must be
analyzed.

In this study, AI-powered techniques are used to solve the
command-based content problem and design a network threat
detection system, AI@NTDS. Since an enormous amount
of information is collected daily, the manual defense of the
remote connection threats may cause an irreversible situation.
The malicious command dataset for AI Model training is
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collected and organized by the Honeypot. Most importantly,
the problem of detecting malicious commands is solved
herein.

A. PROBLEM STATEMENT
Many researchers have presented solutions to protect users
against the command-line-based threat. The main task that
will be addressed in this work is the detection of the hacker’s
malicious intent; 52 features will be provided for the analysis
of the AI model. These include message-based, host-based,
and geography-based features.

B. CONTRIBUTIONS
This work contributes to the field by developing an
AI-powered network threat detection system, AI@NTDS,
which has three levels. The system provided 52 features for
the AI-based threat detection datasets. The three main types
of features are message-based, host-based, and geography-
based. A feature importance analysis demonstrates that Mes-
sage_Length, Execution_File, and Received_Size features
for the malicious behavior are more critical than other fea-
tures. The features proposed herein are effective in detecting
remote network connection threats. The performance analysis
results herein were much better than those in other studies,
revealing that the model in this study had an accuracy of
99.2% and a performance of F1-score of 99.8%.

II. RELATED WORK
The section will review the latest SSH-based intrusion sys-
tems, techniques, and experiments. Descriptions of the exper-
iments have been published in different scientific articles, and
various threats have been detected.

A. THREAT INDICATOR WITH THE HONEYPOT
Fraunholz et al. [4] found that criminal activity on the Inter-
net is becoming more sophisticated. Traditional information
security technologies can barely cope with recent trends in
such activity. In this investigation, several Honeypots are
combined to form a honeynet. TheHoneynet ran for 222 days,
and 12 million attack attempts were captured. The captured
data are examined and evaluated herein. The experimental
results can identify and quantify the dependences and dis-
tributions of the data. New threats are constantly emerg-
ing, so capturing the features of attacks and analyzing them
effectively is essential [5]. Several Honeypot sensors were
deployed to monitor and study (the attackers’ behavior. Hon-
eypots type are in Cowrie, Dionaea, and Glastopf, in Linux
hosts, Windows host, and web application environments.
The above Honeypots attract various attacks from different
environments.

Kumar et al. [6] improved the deployment and
maintenance of tight tanks for various IT systems and inten-
sive resource requirements. Security researchers and secu-
rity companies extensively use Honeypot because it traps
and understands attackers’ tools and strategies. The deep
learning-based analysis that is inspired by neural networks

is integrated into classifying threat events. Jason et al. intro-
duced a tool for evaluating Honeypot [7]. Honeypots are used
to capture traces of malicious activity. They can be used to
study an attacker’s behavior, but they can be challenging
to implement and maintain. This study outlines a complete
Honeypot design, conducts experiments in data, and presents
results thus obtained. The evaluating tool’s design is outlined,
and the results are provided as quantitative calibration data.

B. ANALYSIS OF ATTACKERS’ BEHAVIORS BASED ON SSH
SESSIONS
Following the above definition of Honeypot, this subsection
will discuss the use of the information collected for analy-
sis of the collected information. The definition and analy-
sis of the behavior in Honeypot using previously developed
research methods are described.

Esmaeil et.al. proposed a Honeypot technique to inves-
tigate violent SSH attacks on academic networks [8]. The
most common attack is the strong guess-password attack that
targets SSH, FTP, and Telnet servers. Experimental results
demonstrate that preset lists of user names and passwords
are widely shared and form the basis of violent attacks.
Valli et al. [9] used the Kippo SSH Honeypot system to
identify the activity in the Honeypot. The system runs on
the same hardware and software configuration as above. Data
over 75 days were collected as experimental data. An analysis
yields the attackers’ behaviors and patterns. The experimental
results show that the number and range of attacks are different
so that the content can be further discussed.

Kambourakis et al. [10] discusses the current state of
botnets affecting the Internet of Things and the reasons for
causes of the success of attacks. They provided detailed
information on the operating principles of malware in the
Internet of Things, examined their interrelationships, and pro-
posed preventative strategies against malware. Critical steps
concerning the operation and communication of botnets have
been proposed and six sets of features of Mirai botnets have
been identified [11]. That study used the above features to
secure IoT devices and protect Internet infrastructure from
destructive distributed denial-of-service attacks.

Bajtos et al. [12] observed botnets and described the behav-
ior of the first two stages of their life cycle, which are initial
infection and secondary infection. They resolved identified
the behavioral attributes in each stage and designed amodel to
determine whether a threat is a botnet. They found that some
network sessions and credential guesses are easily collected
and usable attributes of the features in profiling threat agents.

C. DETECTION OF ATTACKS USING AI TECHNIQUES
Laurens et al. presented a stream-based SSH attack detection
system, SSH Cure [13]. The system uses a machine-learning
algorithm and observes network traffic to detect attacks and
find their targets in real time. A prototype, including a graph-
ical user interface, was implemented as a plugin for the pop-
ular NfSen monitoring tool. Sadasivam et al. [14] grouped
SSH attacks into two types - severe and non-severe. A severe
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attack is any attack that follows the successful corruption of
an SSH server. A non-severe attack is any attack that fails.
This study presents 14 features that are used in the real-time
classification of attacks using machine learning algorithms.
Bajtos̆ et al. [15] focused on the infection by botnets that are
grouped into nine series by the features of the collected sam-
ples. They experimentally identified dependencies between
commands and directories. Arifianto et al. [16] proposed the
SSH Honeypot architecture that uses an Intrusion Detection
System. Their work addressed SSH service attacks by observ-
ing the number of login attempts between twoHoneypots, and
the attack risk was determined using category weights and
port scanner detection results.

Shrivastava et al. [17] used virustotal.com and the relevant
literature to categorize attacks into four classes - malicious,
SSH, XOR DDoS, and spying. Dumont et al. [18] proposed a
fully implemented binary classifier that used machine learn-
ing algorithms to differentiate between malicious and benign
shell commands. The classification results thus obtainedwere
combined with the results obtained using the 1-Command
and n-Command classifiers. Udhani et al. [19] analyzed
an SSH-based Honeypot to identify automated and human
attackers. The method used the number of requests, the target
of the attack, the frequency of requests, and passwords.

Lee et al. [20] used the packet length in an SDN switch in
deep learning models to identify anomalous and malicious
packets. J. M. Jorquera et al. proposed a method for clas-
sifying threats that was based on Linux command’s prop-
erty [21]. They used machine learning algorithms to identify
and classify an attacker’s malicious intentions in execut-
ing a cyber threat based on the severity of the command.
Lingenfelter et al. [22] showed that the Cowrie Honeypot is
an effective system for collecting samples of malicious ses-
sions. The same loader session can be found by finding the
Edit Distance between command sequences Garre et al. [23]
designed an approach to detecting botnets that is based on an
SSH-based Honeypot. Their dataset contained 93 functions,
including commands, session status, and network statistics.
They used the random forest algorithm in experiments.

Wang et al. [24] used their previously obtained research
results to evaluate the threats and applied AI technique to the
Zenodo CyberLab Honeypot dataset and compared the Light-
GBM algorithm with random forest and K-NN algorithms.
With different feature sets in the SSH-based Honeypot for the
cyber-threat intelligence system. The system was found to be
superior to existing detection methods.

D. NETWORK INTRUSION DETECTION SYSTEM DESIGN
WITH AI
Alzahrani, A.O. et al. designed a machine learning-based
intrusion detection system for software-defined networking
(SDN). They used 41 features from NSL-KDD datasets for
multi-class classification, and detected four kinds of attack
DDoS, PROBE, R2L, and U2R [25]. S. Iranmanesh et al. pro-
posed a heuristic distributed scheme (HIDE) to validate the
falsification of traffic data. Their calculations were based on

FIGURE 1. Proposed AI@NTDS system architecture.

a homogeneous semi-Markov process that predicted the accu-
racy of mobility patterns. They used a cloudlet with a weight
factor to determine whether a vehicle is malicious [26].

M. Sewak et al. sought to fill the gap between AI-based
accomplishments and a comprehensive review of the cyber
security threat landscape. They proposed and reviewed a
machine-learning solution for threat detection and endpoint
protection using deep reinforcement learning [27].

III. PROPOSED NETWORK THREATS DETECTION
SYSTEM- AI@NTDS
An intelligent threats detection system, called the AI@NTDS
system, is designed to investigate network threats and ana-
lyze them using specific features and algorithms, primarily
for SSH sessions. This section describes the automatic data
acquisition process and defines the features. A multilabel
classification model will also be introduced.

A. SYSTEM ARCHITECTURE
The proposed AI@NTDS system architecture that is shown
in Figure 1 has five parts, which perform data collection,
data preprocessing, feature-based analysis, model training,
and model output.

The dataset of Cowrie Honeypots was obtained from the
CyberLab Honeypot-Zenodo [28]. The various attack fea-
tures are identified from variations among attacks. Fifty-
two features were extracted from the Cowrie Honeypot
dataset and then grouped into message-based, host-based,
and geographic-based features. The data preprocessing part
ensures that the labels and contents in the samples are correct.
The algorithm is used to evaluate the importance of various
feature combinations. To ensure the stability of an AI model
and prevent overfitting, the model training process should not
learn too closely with the result of the training dataset. The
model is validated during the training process. The perfor-
mance of the presented model is determined at various times,
and the results thus obtained are presented in the following
section.

B. DATA COLLECTION
The Cyberlab Honeypot collected attackers’ data from June
2019 to February 2020 for use in this study. Cowrie
Honeypots, with approximately 50 nodes mostly at univer-
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FIGURE 2. Flow chart of data collection.

TABLE 1. Enterprise tactics in MITRE ATT&CK.

sities and companies in the European Union and the United
States were used. Each file in the dataset is based on reports
of daily intrusions. Sessions are grouped according to the
attacker invades and leaves. Each group of sessions con-
tains various events and explicit intentions. This goal of this
work is to reduce the complexity and automatically to collect
results daily. This system automates the process by applying
the concept of a crawler. The data collection program auto-
matically decompresses and converts the extracted JSON file
into a CSV file. Figure 2 presents the flow chart.

C. DATA PROCESSING
Data processing firstly removes irrelevant information from
the dataset to ensure data quality. The first step in this process
is the removal of data associatedwith failed intrusions. Empty
fields are deleted to save storage space and increase comput-
ing efficiency. Then, the cleaned data are labeled in a man-
ner consistent with Enterprise Tactics in MITRE ATT&CK
Enterprise Tactics comprise 14 groups of Tactics, of which
those used herein are indicated below.

Table 1 presents the results obtained using the indicated
Tactics. Nine tactics in the dataset are labeled with ‘‘no
intention’’. They include No Action, Execution, Persistence,
Privilege Escalation, Defense, Credential Access, Discovery,
Command and Control, Impact. These tactics are associated
with three malicious levels based on severity. Level 1 refers
to actions that may damage the system, such as the execution
of malicious files that stop the system. It is the most dan-
gerous and malicious intention for a system, such as when
a hacker inputs the command ‘‘kill’’, or ‘‘rm’’, or executes
some unknown executable binaries. Level 2 refers to setting
file permissions for personal accounts. For example, a hacker
may input the ‘‘chmod’’ command or ‘‘chattr’’ command to
change the file permission. Level 3 refers to the absence of

FIGURE 3. Data distribution of aggressive behavior.

TABLE 2. Training, validation and test datasets.

action or scouting actions. For example, if a hacker inputs
a command like ‘‘cat /etc/passwd’’ and ‘‘lscpu’’ to obtain
system information, the command will be assigned to level 3.

Figure 3 presents the tactics distribution of labeled data.
Defense Evasion is the most common tactics at Level 1. The
attacker’s purpose is not to leave records of the removal of
downloaded programs, to destroy files, and to obfuscate the
system.Malicious programs are commonly used to run scripts
to set permissions and perform other actions that are typical
of attackers in Honeypots. Themost common tactic in Level 2
is Persistence. The attacker’s purpose is to escalate privilege
to an account. When a connection break occurs, an attacker
maintains access to the system to support the malicious
operations, or change the system configuration. The figure
below shows that the most common attack following login
at Level 3 is Discovery because when an attacker accesses
the system, the first task is always to perform reconnaissance.
The distribution of the tactics of an attacker when he enters a
Honeypot can be identified from statistical data.

The data in our work were collected from the 4th
of June, 2019, to the 29th of February, 2020. The data
were automatically collected using a web crawler, which
grabbed 153,665,690 samples. After the invalid samples were
removed, 298,667 valid sample entries remained to undergo
the following process. The data from 4th June 2019 to 31th
December 2019 formed the training dataset, while those from
the 1st January 2020 to the 28th February 2020 formed the
test dataset. Of the training data, 15% were allocated to the
validation dataset that was used to evaluate the model. Table 2
presents the applications of the split dataset.

D. FEATURE DEFINITION
This subsection introduces and describes in detail 52 groups
of features. These groups were divided into message-based,
host-based, and geography-based types groups, as shown in
Table 3. The algorithms that are used for machine learning
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TABLE 3. Fifty-two features.

focuses on the weights of feature data, so feature extraction
is crucial. In addition, the features proposed by the authors
are the use of red font marks.

1) MESSAGE-BASED FEATURES
Features of F1 to F4 are observed an invalid instruction is
generated. Features F5 to F7 are account-related instructions.
Features F8 to F13 are instructions concerning executing
files. Features F14 and F15 are directives concerning to pro-
mote permissions. Features F16 and F17 are instructions to
delete the attack history. Features F18 to F27 are information
about the attacker observing the system. Features F28 to F31
are the network-related instructions to download or transmit
files. Features F32 and F33 are instructions that affect the
state of the system. Features F34 and F35 are used to satisfy
the requirements of an attack by obfuscation. Features F36
and F37 calculate the number of URLs in messages and the
length of each messages, respectively. F38 is the number
of characters entered per second. This study propose eight
features. Features F11 to F13 are used to calculate the number
of keywords perl [file], python [file], and /bin/ [file], respec-
tively. The functions of Features F35 to F36were given above.
Features 34, 37 and 38 are described below.

F34 Count_base64: An attacker will always use base64
encoding to obfuscate malicious behavior. One of the most
common features is that attack scripts are encoded and
decoded at execution time. Therefore, this feature is used to
determine whether the command Base64 is present in mes-
sages. Figure 4 indicates the results of comparison between
Base64 encoding and decoding.

F37 (Message_length) and F38 (Messages/sec): These two
features are used to calculate the total length of a message.
A message without any intention is shorter in total than one
with a particular intention. The essential purpose of these
kinds of commands is to evade detection or to achieve mul-
tiple goals. The number of characters entered per second is
used to determine whether the attacker is a robot or script
execution.

Table 4 presents the details of the message-based features.

FIGURE 4. Comparison of base64 encoding and decoding.

2) HOST-BASED FEATURES
Features F39 to F41 are the communication protocol of the
connection, information about the connection, and the version
of the connection client, respectively. Features F42 and F43
are related to login information. Features F44 to F46 are
the duration, average string length of the response, and the
presence or absence of a file during the connection. The
authors proposed one feature, F45, in the file type.

F45 Received_Size (AVG): The attacker will always query
the content through the Linux command. For example, the
user types ‘‘uname’’ returning the string ‘‘Linux’’. The size
result is six. The act of stealing information is determined by
the length of the string returned. Feature 45 is evaluated using
Eq1.

ReceivedSize(AVG) =
TotalReceivedSize
NumberofCommands

(1)

Table 5 presents an example of the command calculation.
Table 6 presents the details of the host-based features.

3) GEOGRAPHY-BASED FEATURES
Features F47 to F50 are, city names that were analyzed glob-
ally. Latitude and longitude are used to determine the location
of an attack. The corresponding geographic location can be
used to determine whether an abnormal attack has occurred.
Table 7 presents the details of the geography-based features.

E. MODEL TRAINING
The proposed AI@NTDS system is designed using the
LightGBM algorithm. XGBoost and LightGBM are based
on the Tree Boosting mechanism [29]. The LightGBM algo-
rithm is well-known for its better training efficiency and
lowermemory usage than the XGBoost algorithm. The Light-
GBM algorithm differs from the traditional Gradient Boost-
ing Decision Tree (GBDT) algorithm and is optimized using
various strategies. It has the following four main charac-
teristics; a histogram algorithm, Gradient-based One-Side
Sampling (GOSS), Exclusive Feature Bundling (EFB), and
Leaf-Wise Tree Growth. The GOSS algorithm is described
below Algorithm 1.

When the feature data have many dimensions, other GBDT
algorithms have the greatest drawbacks like poor efficiency
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TABLE 4. Message-based features. TABLE 5. An example of feature F45.

TABLE 6. Host-based features.

TABLE 7. Geography-based features.

and scalability. In this study, LightGBM is used with GOSS
algorithms to solve this problem. GOSS maintains the ran-
dom sampling on the small gradient and introduces a small
gradient constant weight. The asymptotic approximation ratio
of GOSS is O( 1

nji(d)
+

1
njr (d)
+

1
√
n ),and the generalization

performance in GOSS is εGOSSgen (d) = |Vj(d) + V∗(d)|. For
fearure j, Vj(d) is the variance gain for a given decision tree
algorithm.

A sorting strategy can optimize the performance without a
graph in many features. EFB algorithms reduce the number
of dimensions consists two algorithms, which are Greedy
Bunding and Merge Exclusive Features (MEF) algorithms.
The MEF algorithms can merge multiple features in a bundle
by adding the offset parameter. The EFB algorithm reduces
the time complexly of original algorithms. It can reduce from
O(#data × #feature) to O(#data × #bundle) if #bundle �
#feature It accelerates the speed without reducing the
accuracy.
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Algorithm 1 Gradient-Based One-Side Sampling
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L : weak learner

1 models← {}, fact← 1−a
b

2 topN← a × len(I), randN← b × len(I)
3 for i=1 to d do
4 preds← models.predict(I)
5 g← loss(I,preds), w← {1,1,. . . }
6 sorted← GetSortedIndices(abs(g))
7 topSet← sorted[1:topN]
8 randSet← RandPick(sorted[topN:len(I)], randN)
9 usedSet← topSet + randSet
10 w[randSet] × = fact
11 newModel← L(I[usedSet], - g[usedSet], w[usedSet])
12 models.append(newModel)

TABLE 8. The learning parameters of LightGBM algorithm.

In LightGBM processing, feature analysis is performed
based on the parameter settings that are shown in Table 8.

The concept of GBDT is used to calculate the residuals as
a generation decision tree. The most effective learning rate in
this work is 0.1. The iterative process revealed that the best
number of LightGBM estimators was 100. Since LightGBM
grows leaf by leaf based on the tree model, the number of
leaves here is set to 31.

IV. PERFORMANCE ANALYSIS
This section concerns the performances of the machine learn-
ing (ML)mechanism, feature-based analysis, and AI@NTDS
system analysis. Features are analyzed and discussed. The
most effective detection model algorithm is identified. The
following section provides experimental proof of the result.

A. ANALYSIS OF ML MECHANISM
Tables 2, 3, and 8 presents the used dataset, features, and
learning parameters, respectively. The authors evaluate the
AI prediction model with different multi-classification algo-
rithms to assign malicious payloads to three levels.

Table 9 provides various evaluation indexes and the opera-
tion time of each machine learning mechanism.

Many machine learning classification algorithms in the
security domain use SVM and Random Forest [30], [31].
In previous works, a Decision Tree and naive Bayes algorithm
are used to detect this issue [14]. XGBoost and LightGBMare
also well-known classification algorithms. In this work, each
algorithm with default parameters are compared in terms of

TABLE 9. Performance of different ML mechanisms.

TABLE 10. Feature analysis with 4 studies.

accuracy, precision, recall, F1-score, and computation time
metrics.

Following a comprehensive evaluation, the LightGBMwas
used as the proposed AI@NTDS learning model because the
values of any indicator in this study measured were better
than average. It required the least computation time, making
it easier to deploy in various devices for real-time detection.

Naive Bayes and SVM perform poorly. Although these
two algorithms are widely used, they are not suitable for the
detection of malicious shell commands in this study.

B. ANALYSIS OF FEATURE-BASED
The features of the AI@NTDS system are divided into host-
based, message-based, and geography-based groups. One of
the purposes of this group is to find the classification model
and identify the essential features. Four case studies were per-
formed, and the results of the relevant analysis are provided
in Table 10. In Case 1, message-based features alone resulted
in good performance of accuracy and precision. An attacker
may attack a target by such means as causing confusion,
recon, and deletion. These actions cause the attacker’s input
character to be more than a low-level threat. In Case 2, only
host-based features are used. This study contributed signif-
icantly to the returned strings and SSH-related information.
Case 3 identified the essential features by observing the dis-
tribution of attackers based on geographical features. Latitude
and longitude were the critical features, but the accuracy of
the model using these features and other indicators combined
with all of the features were not as high as in the preceding
two case studies The results show that risks and hazards
cannot be assessed using only the features that are associated
with geographical location. In Case 4, all of the features were
used, and the best values of all indicators were obtained.

Finally, 52 dimensions are used to analyze the three types
of features to obtain the best model of the detecting sys-
tem, based on the feature engineering with gradient boost-
ing machine, as shown in Figure 5. The message-based
features account for about 50% of the ten features; these
are Message_length (F37) and \.\w*(F5) features. The host-
based features account for 40% of the top ten features;
these are Received_size (F45) and duration (F41) features.
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FIGURE 5. Feature importance analysis.

TABLE 11. Performance of AI@NTDS system.

A 99.75% precision, 99.85% recall, and F1-score of 99.80%
are achieved. Therefore, the evaluation of AI@NTDS model
is based mainly on host-based and message-based features.
The proposed features are proved to be very effective.

C. ANALYSIS OF AI@NTDS SYSTEM
The test dataset comprises 23% of the data in all experiment
datasets. The training set comprises data from 2019, and the
test set consists of data from 2020. The AI@NTDS classifier
predicts the classification of each threat in the test dataset,
yielding the results in Table 11. From the confusion matrix,
the total misclassification ratio of the classifier for threat
level 1 is 0.17%; that for threat level 2 is 0.37%, and that
for threat level 3 is 0.86%. The F1-score reaches 99.80%,
indicating that the AI@NTDS effectively detected samples
of various threats. The AUC (Area Under the Curve) reaches
98.53%; the precision rate can reaches 99.75%, and the recall
rate reaches 99.85%. Therefore, the detection model that is
trained using the LightGBM algorithm can detect malicious
sample changes in various periods of attack and has excellent
efficiency and performance.

D. COMPARISON WITH OTHER STUDIES
Table 12 compares the performance of the proposed
AI@NTDS classifier with those of related methods and algo-
rithms in previous studies. Since previous studies have not
provided detailed parameter settings and features of each

TABLE 12. Comparison with different studies.

TABLE 13. Comparison with related works.

mechanism, the parameter settings of Random Forest and
K-NN were those used in their closest methods when they
were originally developed. These mechanisms were com-
pared using the same dataset. The accuracy of the AI@NTDS
model is 4% higher than those Random Forest and K-NN,
and the F1-score is 1% better. Therefore, the AI@NTDS clas-
sifier with the LightGBM algorithm is the most effective in
classifying threat levels and identifying the attacker’s intent.
The difficulties of implementation and the number of data
dimensions must be addressed are also compared. Although
the model herein yielded better results than both of the other,
it requires more features to be extracted from the dataset.
Therefore, the proposed mechanism requires more time to
spend in preprocessing data. All of the experiment datasets
used in Table 12 use the Zenodo dataset, based on the Cowrie
Honeypots. The proposed AI@NTDS in this study can be
applied to any real-world scenario involves IoT devices and
Linux server shell command analysis.

Many studies of related issues have bee performed.
Table 13 presents problem-solving mission with various fea-
tures. The mechanisms that are listed in the first, fourth, and
fifth columns have similar purposes and are analyzed in detail
Table 12 presents.

V. CONCLUSION
This study proposed an AI@NTDS detection system that
incorporates the LightGBM machine learning algorithm for
identifying and classifying threats. Attackers’ intentions are
analyzed using collected data, and the degree of harm that is
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caused by malicious instructions is determined. Three types
of attack are identified by threat levels of attack are identi-
fied using Enterprise Tactics of MITRE ATT&CK. A total
of 52 features of three types - message-based, host-based,
and geography-based features - are ultimately identified. The
results of an analysis demonstrate that our model performed
best when all features were used. Message-based features and
host-based features accuracy for the model are largest.
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