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ABSTRACT The privacy preservation has received considerable attention from organizations as the growing
population is apprehensive regarding personal data being preserved. Smart Parking is a parking strategy
that combines technology and human innovation in an effort to use as few resources as possible (such
as time and space) to achieve faster and easier parking spots of vehicles. Smart parking systems utilize
third-party parking recommender systems to offer customized parking space recommendations to its users
based on their past parking experience. However, indiscriminately sharing a user’s data with a third party
recommendation system may expose their personal information. As their activity and node mobility can be
deduced from previous paring experience. There are several privacy and security issues in existing systems,
such as identity and location disclosure, availability and authenticity issues. Another problem with existing
solutions is that most distributed systems need a third party to anonymize user data for privacy preservation.
Therefore, this article fills the described research gaps by introducing parking recomender systems using
Local Differential Privacy (LDP) and Elliptic Curve Cryptography (ECC). Based on ECC we proposed
the mutual authentication mechanism using Hash-based message authentication code (HMAC) to provide
anonymity and integrity during communication. Moreover, given the risks to security and privacy posed
by untrustworthy third parties. We used LDP which uses the Laplace distribution technique to add noise
randomly and eliminates any necessity for a third party for data perturbation. In addition to LDP, we utilized
the IOTA distributed ledger technology (DLT) to provide a new level of security that ensures immutability,
scalability, and quantum secrecy and decentralized the system. Our experiments demonstrate that, in addition
to preserving the driver’s privacy and security, our proposed model has low storage overheads, computation,
and communication costs.

INDEX TERMS Elliptic curve cryptography (ECC), local differential privacy (LDP), IOTA ledger, parking
recommendation system.

I. INTRODUCTION
Since the recent evolution of the Internet of Things (IoT)
devices, the intelligent transportation system (ITS) in the
Smart city provides smart services to its users. One example
of this transition is Smart Parking System (SPS). SPS facil-
itate both its owners and the users. Many companies have
already invested, and many applications have already been
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proposed in this vital research area [1]–[6]. While sharing
parking lot information may benefit users, it also poses secu-
rity and privacy risks such as authentication, single point of
failure, location, and identity disclosure [2]–[7]. As with any
other companywith users/driver’s data in raw form, including
sensitive information, security must always come first. The
Privacy Act Policy has been published in accordance with
the General Data Protection Regulation (GDPR) and the Data
Protection Act 2018 in order to protect vehicle and user
information collected by parking services [8].
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FIGURE 1. Smart parking system using third-party parking recommender
system.

In the smart parking scenario, two different types of imple-
mentations are often discussed [9], [10]. In the first kind, it is
the responsibility of the smart parking application to receive
user’s requests then recommend the vacant parking lot for the
user by itself, this strategy is commonly utilized.

For the second kind, the smart parking application gathers
user requests. It sends these to a third-party recommender
system, which suggests parking lots based on various factors
such as traffic situations, proximity, parking quality, and user
experience. Because of the lack of access to a variety of
services, a smart parking application will have great diffi-
culty assessing the many factors that go into making parking
suggestions for users. Consequently, it is recommended that
use the services of third-party recommender systems that are
dedicated to achieving these services [11].

The second kind of implementation (recommendations
from a third party) mentioned above is the focus of this
research. Both implementations acknowledge that the smart
parking app is reliable for gathering client requests and estab-
lishing a parking database. The second kind of solution,
on the other hand, includes a third-party parking recom-
mender system as shown in Figure 1. Since we don’t know
much about the third-party parking recommender system,
we can’t say if it’s trustworthy; it might be trusted, semi-
trusted, or untrustworthy.

The parking database stores the UID (User’s Id) and
location information (acquired from the customer’s query),
parking space (collected from the recommendation systems),
recent timestamp (the timestamp of the user’s request), and
user rating (feedback of client after the parking). The pur-
pose of keeping this data in the parking database is to offer
users customized parking recommendations based on their
previous parking experiences. The parking service provider
is trustworthy but curious and can also infer into the user’s
database to know its mobility patterns.

In the literature, many approaches to address the secu-
rity and privacy concerns associated with smart parking
have been suggested [12]–[14]. Various anonymization tech-
niques also have been developed in the literature, including

generalization, suppression, anatomization, pseudonymiza-
tion, and data masking to protect user’s privacy [15], [16].
These data anonymization techniques protect user privacy by
removing or modifying identifiers that are used to identify a
particular individual in the data. These methods have a high
computational and communication cost. In anonymization,
reidentification is possible through deanonymization, apart
from its high complexity [17], [18]. Due to the low compu-
tation overhead in distributed networks, the most appropriate
way out to the privacy issues posed by pseudonymization is
differential privacy. Noise is added onto raw data via pertur-
bation in differential privacy [19].

In all areas of large data gathering, ε-differential pri-
vacy is extensively used. The United States Census Bureau,
for instance, employs differential privacy for demographic
data [20]. Though, there is minimal control over third-
party service providers throughout the data collecting phase,
which results in regular privacy breaches, such as those that
occur on social media platforms such as Facebook [21] and
Snapchat [22]. Although such regular privacy disclosures
have piqued the public’s interest, finding a trustworthy third-
party aggregator has proven to be very challenging. The use of
conventional differential privacy is limited to a certain degree
because of this issue. As a result, where there is no trust-
worthy third-party service provider, it is essential to examine
how to guarantee that private information is not exposed.
Some parking service providers have adopted differential
privacy [23].

However, these systems have a significant flaw: they need a
third party for data perturbation and rely on a centralized sys-
tem, which is vulnerable to the single point of failure (SPOF)
attacks and faces issues like availability. Local differential
privacy (LDP) is based on differential privacy protection and
was developed due to a significant study into differential
privacy [24]. LDP is a strategy that involves perturbing data
locally rather than sending it to an untrusted third party
(service provider) for aggregation.

In literature, Many authors also proposed blockchain-
based solutions to tackle the issues like availability,
transparency, and privacy in smart city scenarios such as
wireless sensor networks [25], intelligent transportation sys-
tems [26], smart grids [27], and eHealth systems [28] but
the problem faced by the blockchain network is ‘‘Scalability
Trilemma’’ [29] which is defined as the blockchain cannot
utilize the property of being ‘‘secure,’’ ‘‘decentralized’’ and
‘‘scalable’’ at the same time. It only can utilize two of the
three properties. Blockchain systems are also unsuitable for
heterogeneous networks such as IoT because of their design
issues like high processing time, high fees, and lack of scala-
bility [30]. However, assume the driver discloses the reserved
parking lot location to the blockchain. In that case, a system
still faces location privacy issues as blockchain cannot tackle
it [44].

Furthermore, blockchain validators might not even enable
cars to search for parking lots outside their zone [49]. Quan-
tum computers also challenge today’s security protocols [36].
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It is necessary to develop a model that can maintain data
integrity even after a reliable quantum computer has been
developed.

The challenges faced by blockchain technology are over-
come by IOTA technology. IOTA is a feeless and scalable
Distributed Ledger Technology (DLT) that is designed to
facilitate frictionless data and value exchange. It is specially
designed for microtransactions and Machine to Machine
(M2M) economy and is best suitable for IoT devices. IOTA
uses a directed acyclic graph (DAG), different from DLT
technology used in blockchain, known as Tangle [32].

To conclude, a model for preserving privacy must be
presented which assures data protection without the neces-
sity of a third party, maintains confidentiality and integrity
even when data remains in the service providers parking
database, offers quantum resistance, and distributes compu-
tational work across the many entities in the system while
retaining strong privacy guarantees.

In this article, motivated by the research gaps in existing
literature, we proposed Local differential privacy and ECC
based scheme enabled with IOTA DLT to address the privacy
and security issues mentioned above. The following are the
major contributions we made to this article:
• We proposed the anonymous authentication mechanism
for authentication and registration using HMAC to pro-
vide anonymity and integrity during the communication.
It is resistant against Man-in-Middle (MiM), disclo-
sure, and impersonation attacks, protect communication
between users and Key Distribution Center (KDC).

• LDP utilises the Laplace mechanism to change query
responses, which removes the need for a third party to
do data perturbation. This is because untrustworthy third
parties cause a significant threat to both the security and
privacy of the user.

• In addition to LDP anonymization techniques, we have
presented a model that utilizes the IOTA DLT to provide
a new level of security that ensures immutability, scala-
bility, and quantum secrecy throughout the database and
protects against a single point of failure issue.

• The trade-off between both privacy and utility is
assessed by experimental data drawn through actual
parkingmetrics, allowing users to get parking space sug-
gestions while preserving their privacy. Our experiments
demonstrate that, in addition to preserving the driver’s
privacy and security, our proposed model has low
storage overheads, computation, and communication
costs.

Following is the structure of this article, section II dis-
cusses the preliminaries and required background informa-
tion, whereas Section III describes related work. The system
model, as well as design goals for the system, are explained
in section IV. Section V is a detailed explanation of our
proposed system. Section VI covers the results of the perfor-
mance evaluation as well as the security and privacy analysis.
Section VII concludes with a conclusion and recommenda-
tions for future research.

II. RELATED WORK
Recently, there has been a lot of interest in SPS. Various
businesses have set up SPS in various locations across the
globe to make it easier to locate available parking spaces for
users [1]. For example, ParkMobile [2] and ParkWhiz [4]
manages more than 30,000 to 80000 parking lots in more
than 200-400 different locations, respectively, throughout the
United States. Furthermore, SFpark [5] provides its user’s
parking reservation services via an online parking system
and operates in more than twenty cities of the United States.
Many research projects have been undertaken to mitigate the
privacy concerns within these systems as they lack privacy
protection of its users, including [12]–[14].

The Lu et al. [12] suggested a public parking system for
large carparks that maintains the anonymity of its users.
Roadside units (RSUs) are put in the parking structure in
order to collect information from sensors set at parking spots.
To be more precise, when a car reaches the parking space,
it checks with the help of RSUs to determine if a parking
capacity is available. The RSUs will then direct the car to
the closest available parking space. The system is primarily
concerned with protecting driver’s privacy by masking their
true identities while communicating with RSUs. To protect
user privacy, they have used pseudonymity to obscure the
identity of the User. An attacker may still uniquely identify
the users via linkage and disclosure attacks. Thus, preserving
the explicit identity is insufficient.

The authors, Ni et al. [13] proposed a scheme to provide
information to drivers, via a cloud server, on where to park,
protecting their privacy. According to the method a driver
will submit encrypted request to the closest RSU, which
contains the driver’s current position, destination, and current
and arrival timings. Whenever a vehicle reaches an RSU,
it delivers an encoded query towards the cloud server, that
either decodes it and provides open parking area feedback
to the user. Finally, the driver contacts the parking lot using
an RSU. However, this method requires that the cloud server
knows the driver’s current location identities.

A method developed by the Huang et al. [12] enables
autonomous vehicle (AV) drivers to locate the closest parking
lot in real time while maintaining their privacy in their loca-
tion. The approach hides the identity of the user by the use
of pseudonyms that are only used once and cannot be linked
together. Also included is a location obfuscation technique,
which ensures that the exact location of the AV is generalised
over a wider radius, which protects the driver’s location
privacy. Double-reservation attack occur when a dishonest
person obtains numerous parking places without actually
parking in them, causing the parking owner financial loss.
In order to avoid these threats, the user should double-check
that he/she has parked in order to acquire a new pseudonym
that may be used for a future reservation request.

The authors of [14] suggest a parking management system
that uses group signatures to safeguard the privacy (identi-
ties) of its users. Cloaking methods are also employed as
an extra security measure to guarantee that a specific user’s
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location is not disclosed. In this model, parking space is
distributed over a large geographic area, known as the cell,
and service providers are given parking lot choices, which
are then passed on to drivers, who submit requests for parking
options from a particular location within the parking lot. The
service provider employs a HashMap method. According to
the scheme, all available parking spaces are kept in a hash
tree to ensure effective and rapid matching between driver
inquiries and parking owner’s offers. Furthermore, vehicles
pay parking costs using anonymous digital coupons gener-
ated by a third-party server and distributed by a centralized
server.

A blockchain-based parking system is proposed by the
authors in [34] and [47], which considers public parking with
a high number of accessible parking spaces while not taking
driver’s privacy into consideration.

A public-key encryption method known as ECC, devel-
oped by the authors in [1], is used to protect the smart
parking’s privacy. This scheme is platform-independent and
appropriate for resource-constraint devices. To ensure pri-
vacy, the authors utilized zero-knowledge proofs, which pre-
vent the sharing of sensitive information. The authors of [1]
and [12] examine the run-time and storage overhead to eval-
uate performance, but they did not consider the privacy and
utility trade off of the system they proposed. The smart
parking systems [2], [12], and [14] are all administered by a
centralized server, making them vulnerable to SPoF as well as
the issues related to limited transparency and accountability.
The smart system outlined in [7] does not safeguard drivers’
precise location privacy. However, it also discloses detailed
geo-location data, which may be useless if the coarse location
region just has a few parking lots. The location obfuscation
scheme used in [12] and [14] reduce the precision with which
nearby parking lots are picked.

W.A.Amiri et al. [42], [43] proposed a smart parking sys-
tem using blockchain in which the author used cloaking
technique to generalize the cars locations into cloaking area
to preserve the privacy of the drivers. Some parking ser-
vice providers have adopted differential privacy such that
Y. Saleem et al. [23]. However, these systems have a major
drawback that they need a third party for data perturbation
and rely on a centralized parking management system or
server, are prone to SPOF attacks, and face issues like avail-
ability. In [46] Tingting Fu et al. proposed vehicle assign-
ment in the Parking sharing system by using homomorphic
cryptography but it has significant issue of single point of
failure.

The above-mentioned privacy-protection schemes first
focus on the User’s actual location or even navigation details
and preserve privacy by only using encryption, cryptography,
or pseudonymity techniques that are susceptible to privacy
leakage via linking and disclosure attacks. While focusing
on privacy preservation via LDP, we also used ECC to offer
anonymous authentication with the IOTA DLT to guarantee
security and reliability.

III. PRELIMINARIES
This section provides background information on IOTA and
the other cryptographic primitives used in our system.

A. ELIPTIVE CURVE CRYPTOGRAPHY
Cryptography Using Eliptive Curves (ECC) is indeed a sort
of public cryptography employing elliptic curves and hence
requires fewer keys than non-elliptic curve encryption such
as RSA. Among public-key cryptosystems, it may be suit-
able for constrained settings. In various areas, the (ECC)
protocol is very useful in securing communication among
multiple entities. The interaction between many players in a
system involving several actors and interacting with them for
specific goals must be safe and efficient. Participants in the
data-sharing system may benefit from ECC’s secure mutual
authentication provided by the system. Various ECC proto-
cols, such as the EC-Diffi-Helman (ECDH) key exchange
protocol, are used to establish secure sessions between the
involved parties. It is necessary to first agree on domain
parameters that would subsequently be used in protocol
design. Because points a and b are located on the curve’s
coordinates eq (1), the points on the curve must fulfill the
corresponding elliptic curve eq (2).

4a3 + 27b2 6= 0 (1)

ECp(a, b) : y2 = x3 + ax + bmodP = 0 (2)

B. LOCAL DIFFERENTIAL PRIVACY
LDP may be used to a number of data collection settings,
including frequency estimation, heavy hitter detection, and
frequent item mining. Google [37], Apple [38], as well as
other companies in a variety of industries, have chosen LDP
techniques to collect clients’ default browser webpages and
search engine priorities, which can then be used to iden-
tify harmful or malicious interception of personal prefer-
ences [38] and thus to find the most commonly used emojis
or phrases. LDP adds noise to sensitive data locally before
transmission rather than sending it to a third party (typically
a service provider). Each User uses a randomized algorithm
for data value u to get u′ for a database D. A third party
cannot infer the input from the pair of values u and u′ for
any potential output value u *. Instead of getting raw data u
from each user, the service provider now receives perturbed
data u′. As a result, LDP offers privacy assurances, still, the
third parties that collect the data may conduct and disclose
statistical calculations (mean value, frequency distribution,
and so on) for data publishing [36].
Definition 1 (ε-Local Differential Privacy): A randomized

algorithm L ensures local ε-differential privacy, such that for
two dissimilar data input elements u, u′ ∈ D in addition to
any potential output u∗, we have

Pr[L(u) = u∗] ≤ eεPr[L(u′) = u∗] (3)

Using this concept of ε-LDP shown in eq (3), it can be
shown that LDP works with the outputs of the L algorithm
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FIGURE 2. IOTA ledger.

when two data inputs, u, and u′, are provided. Even after
viewing the result u∗, the adversary is unable to tell whether
the input to this output was the value u or the value u′.
The privacy and utility trad-off is defined by factor ε. The

term ε (privacy budget) is used in both the differential privacy
and the LDP. eε shows that a smaller value of ε, indicates
more privacy at the expense of utility, while ε = ∞ indicates
no privacy at the cost of maximum data utility.

In case ε = 0 :

eε = e0 = 1

As a result, ε = 0 offers perfect privacy.

C. IOTA
Distributed Ledger Technologies (DLT) without relying on
a central authority can provide scalability, privacy, and an
important facilitator for IoT. The Internet of Things Appli-
cation (IOTA) [36] uses its own DLT, known as Tangle. Its
primary focus is on microtransaction infrastructure for the
IoT universe with no transaction fee, high performance, and
instant transfer in a lightweight manner [36]. IOTA struc-
ture is different from Blockchain and tangle is a directed
acyclic graph (DAG) that stores various kinds of information
in the form of transactions connected by edges, rather than
sequential blocks. An instance of such a graph is illustrated
in Figure. 2. In IOTA, every new transaction has to verify two
previous transactions to compute a small amount of proof of
work (computational work). Verification process In Tangle is
different from Blockchain as it has no miners, but members
operating on it are, and a verified transaction is transmit-
ted to the entire network. IOTA is more decentralized than
Blockchain because all members receive the same rewards
and incentives, and there is no hierarchy of responsibilities
in Tangle. When using a weighted random walk, cumula-
tive weight is utilized to calculate the number of approvals,
and hence higher the cumulative weight, the more approvers
there are. Furthermore, in the network, all members use the
Markov Chain Monte Carlo (MCMC) protocol to choose
which path to take. The network becomes stable, more scal-
able, and quicker with time, and the path becomes secure over
time because as long as more members add more Proof of
Work (PoW) from added transactions, most members follow
the same path.

IV. NETWORK/THREAT MODELS AND DESIGN GOALS
The network model, threat framework, and project goals of
this system are described as follows.

A. NETWORK/SYSTEM MODEL
Our network architecture, as shown in Figure 3, is comprised
of four entities: a key distribution centre (KDC), a smart park-
ing system (SPS), also known as a parking service provider,
a recommendation system, and users/drivers.

• Key Distribution Center (KDC): The KDC initial-
izes the whole system, including the registration of
drivers and parking providers, creating public parame-
ters for cryptography, and distributing keys. The KDC
serves only as a system initializer but does not han-
dle parking facilities. Thus its function does not clash
with the system’s decentralization. In practice, the KDC
might be the government authority (Ministry of Trans-
port, Metropolitan Corporation, or Capital Development
authority)

• Users:Users are drivers which uses smartphone applica-
tion, registered with KDC, perturbed its data (location,
timestamp, parking ID, Rating) before communicating
with SPS and retrieve parking recommendations from
the parking service provider.

• Smart Parking System (SPS): The parking service
provider, commonly known as SPS, is responsible for
managing parking services such as recommendations,
aggregates users perturbed data share it with the third-
party recommendation system to get the personalized
parking recommendations andmaintainUser’s historical
data on IOTA DLT. SPS is trusted but curious, which
may or may not infer the sensitive information of the
user/driver.

• Parking Recommender System: It is a semi-trusted or
untrusted third-party recommendation systems system
whichmakes suggestions based on a range of parameters
(such as parking and traffic statistics, as well as sensor
quality).

B. ADVERSARY MODEL & SECURITY THREATS
It is safe to trust the KDC since it is owned and managed
by the government, which is concerned about the security
and privacy of the users and owners of the smart parking
system. So in our scenario, KDC is assumed to be trusted.
However, external attackers may try to get system access in
order to receive parking recommendations without registra-
tion. Additionally, attackers may eavesdrop upon conversa-
tions in the system in order to know sensitive information
about drivers, or they could perform impersonation or forgery
attacks against drivers to obtain information about them.
Users may also try to misuse the system while remaining
anonymous and try to pollute the reputation rating by evaluat-
ing events that did not happen. The primary adversary in our
system as shown in Figure 4 is a third-party recommendation
system which is not trusted because we know very little
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FIGURE 3. Proposed system model.

FIGURE 4. Adversary model.

about it, and it may or may not infer the user’s sensitive
information or monitor its life habits and movement patterns.
The system is susceptible to a disclosure attack because of the
historical parking database that it has in a centralized server.
Thus, the parking system must protect its users’ privacy
by preventing an adversary from identifying them through
their unique parking id or reputation score.The smart park-
ing system is trusted but curious in our scenario, and an
internal user may also be interested in the User’s sensitive
information. We also assume that the attacker has access to
a stable quantum computer that can be utilized to break both
symmetric and asymmetric encryption protocols effectively.
Shor’s algorithm, when employed in combination with a sta-
ble quantum computer, has the potential to break conventional
cryptosystems. The system must preserve privacy and protect
users’ real identities and sensitive information.

C. DESIGN GOALS
• Decentralization: To prevent performance degradation
and a Distributed denial of service (DDoS) attacks, the
system should be decentralized and not governed by a
central authority.

• Preserving drivers privacy. To preserve users’ privacy,
we have set the following objectives for our system.
Driver anonymity. The actual identities of the drivers
should be secured from other entities such as SPS, park-
ing recommendation system, as well as external threats,
nobody should be able to deduce the driver’s true iden-
tification from the information he transmits.
User/Driver untraceability. Even if the driver’s true
identity is being preserved by masking it, it is feasible
to deduce the driver’s identity by following the driver’s
movements, reputation score or timestamp of the park-
ing. Therefore, our proposed scheme should be capable
of accomplishing the following objectives.
1) A smart parking application, a parking recommenda-
tion system, and external adversaries cannot access the
drivers’ previously visited places or parking information
(e.g., preferred parking destination, rating score).
2) Any system entity should not link the messages of
available parking inquiries and at different times.

• Anonymous Authentication: Only authorized users
can anonymously use the parking services (i.e., get rec-
ommendations and provide ratings) without disclosing
their real identities.
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• Accountability: The central authority (KDC) should
verify the registered User and parking service providers.
In the case of a disagreement, KDC ought to be autho-
rized to invalidate the drivers’ true identity.

• Man-In-Middle Attack: Message Authentication
Code (HMAC) is an authentication code that protects
the identity of the devices being authenticated. It is
impervious to Man-in-the-Middle (MiM) cyber-attacks
and can encrypt connections involving KDC and Users
throughout the registration process.

• Disclosure Attack: The keys for the sessions between
the entities should not be used for the next sessions
because and the KDC should generate the fresh keys
after each verification of the user so that the user can
not be uniquely recognized with any of its derivatives.
No entity can disclose users personal information in the
system and during the message exchange.

• Impersonation Attack:The adversary should not be
able to perform an impersonation attack to pretend as
a legitimate user to avail the system services illegally.
The anonymous credentials can not be used more than
once in the authentication process so that the adversary
can not use the credentials to impersonate himself.

• Background Knowledge Attack: The personal infor-
mation such as user ID and user mobility patterns such
as parking location should not be linked together on the
basis of historical database or background knowledge to
uniquely identify the user in the system.

• Quantum resistance: The system should be resistance
against the quantum computing attacks and the attacker
should not compromise the system even after the enough
resources such as quantum computer.

V. PROPOSED SYSTEM
In this section we present our ECC based anonymous authen-
tication protocol for smart parking recommender system with
privacy preservation through LDP and IOTA DLT.

A. OVERVIEW
In our proposed system,as shown in Figure 3 the entities
involved are KDC, users/drivers,SPS, and third-party recom-
mender system. The users have installed the SPS app on
their smartphones and have sufficient resources to perform
less computationally expensive tasks such as simple LDP
computation, but not enough to maintain the IOTA ledger.
A SPOFmight compromise the SPS also pose security threats
to all the user’s historic data if attacked or compromised.
So data should not be maintained in its raw form in parking
database. The IOTA ledger is utilized to avoid attacks such as
a SPOF and also provide quantum secrecy and decentralized
the system. Our system consists of registration and authen-
tication phases, data perturbation through LDP, and IOTA
DLTmaintenance phases. In the first step of the Initialization
and RegistrationPhase as presented in Figure 5, the user
will request the KDC for anonymous credentials FIDυi with

TABLE 1. Notations.

his real IDυi and KDC will initialize the system, which is
responsible for distribution of keys among users. The primary
notations and their description is given in table 1. Once the
user gets the anonymous keys FIDυi the user will request
for the parking services to the SPS with anonymous creden-
tials FIDυi. In the Authentication Phase, after successfully
authenticated, the user will be able to use the parking services
such as nearest parking recommendations. During the data
perturbation phase, each user/driver perturbs their sensitive
data individually in a local setting before submitting it to the
service provider for aggregation. Then after aggregation, the
statistical record or results are shared with the third-party rec-
ommendation system via IOTA DLT for recommendations.
The SPS will maintain IOTADLT; after the User successfully
rating the recommended parking lot, the User historical data
is stored in the database and shared to the IOTA ledger.

B. AUTHENTICATION AND REGISTRATION PHASE
In this phase, an Elliptic Curve ECp is considered that pro-
duces a set of elliptic curve points ECp with the point Q(a, b)
upon that curve, which is a primitive element α. The order of
curve #E − 1 over the prime field is P− 1 which defines the
total number of points on the curve. The pointQ is a generator
of EC such that n.Q = 2,where2 is the point of infinity or
zero, which defines the order of the ECp. As both points a
and b lie on the co-ordinates of the curve, the condition in
eq 1 is satisfied for the given non-singular Elliptic curve in 4:

ECp (a, b) : y2 = x3 + ax + b mod P 6= 0 (4)
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FIGURE 5. Registration process.

1) SYSTEM INITIALIZATION AND REGISTRATION PHASE
The User υi first directly sends a request to KDC for anony-
mous credentials FIDυi. The KDC selects the Elliptic Curve
ECp of prime order with a primitive element or generator
Q(a, b) of the curve. The KDC chooses a random number or
secret key SKKDC as shown in eq (5) and computes the public
key PKKDC which is a shared secret between the User and
KDC.

PKKDC = SKKDC ∗ αMKDC = PKKDC ‖ ECp ‖ Z∗p (5)

Then KDC sends MKDC to User υi, now υi compute its
secret key let say SKυi from Z∗p then υi send Mυi encrypted
with KDC public key PKKDC which includes his real IDυi ,
secret key SKυi as well as Timestamp T and directs it toward
the KDC as shown in eq (6). The KDC computes the hash of
the IDυi here we assume that hash function H(.) is the same
on both sides.

Mυi = EPKKDC (IDυi ‖ SKυi ‖ T ) (6)

Upon receiving the parameters as illustrated in Figure 5,
the KDC first decrypt Mυi using its secret key SKKDC and
check the freshness of timestamp T , and extract the IDυi .
After extracting IDυi the KDC randomly assigns anonymous

credentials let say FID[1]
υi ,FID

[2]
υi ,FID

[3]
υi , to the υi, and KDC

sends the calculated FIDυi1,T , and SKυi with calculate an
HMAC of the message M ′KDC to the User which is shown in

FIGURE 6. Authentication process.

eq (7). The KDC stores {IDυi ,FIDυi ,T} in a tracker list and
then reverts back, this database is being used to determine the
signer whenever KDC verifies a signature.

M ′KDC = HMAC(FID[1]
υi
‖ ECp ‖ IDυi ‖ T ‖ SKυ ) (7)

The user receivesM ′KDC from KDC, now User has FIDυi

2) AUTHENTICATION PHASE
As shown in the Figure 6, the User sends M ′υi to SPS for
authentication.

M ′υi = EPKSP (FID
[1]
υi
‖ T ) (8)

The SP fetch FID[1]
υi and verifies it from KDC as represented

in eq (8) after verification the access for the parking service
is granted to the User. Note that the anonymous credentials
FID[1]

υi , are only used once for authentication/reservation to
avoid a linking attack. After each verification of FID[1]

υi , from

KDC, the User will get new FID[2]
υi ,and then FID[3]

υi , upto
FID[n]

υi , and this process goes on as presented in eq (9).

M ′KDC = HMAC(FID[n]
υi
‖ ECp ‖ T ‖ SKυi (9)

In case of any dispute, the SP will share the corresponding
FIDυi of the υi to KDC, and KDC will revoke the Mυi and
extract the actual IDυi and match User FIDυi from the tracing
list, the list gives plenty, such as negative points on his driving
license to the υi according to predefined rules.

C. LOCAL DIFFERENTIAL PRIVACY
In our proposed scheme, each user υi, when connected with
a Service Provider SP, in a specific timestamp T , has some
data value u. u consists of K number of attributes, Ai, which
include (Timestamp,Location,Rating,Parkingspace), etc as
shown in eq (10).

Ki = Ai,A(i+1),A(i+2), . . .Am (10)
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FIGURE 7. Client and server-side LDP process diagram.

When the user establishes a connection with SP at each
timestamp Ti. It produces some data µi, which is stored in
the SP database. This data µi has to be submitted to SP and
then perturbed before being transmitted to the third-party
aggregator. Under different distributions, we used the same
methodology as that proposed in [39] by employing the count
sketch [40] and Laplacemechanism [36] to reduce space-time
complexity and computational overhead while obtaining high
data utility. The protocol includes two parts: the client-side,
the local perturbator, and the other are server-side, which is
the aggregator. The process of encoding and perturbation is
done on the client-side, and the server performs the aggrega-
tion process on the server-side as shown in Figure 7.

1) CLIENT-SIDE ALGORITHM
The client-side performs the perturbation, and each tuple is
encoded to avoid data leakage by a randomly selected hash
function. Each piece of encoded value produces a perturbed
report by applying the Laplace mechanism, which fulfils the
concept of ε-local differential privacy. Algorithm 1 illustrates
the particular steps on the client side.

In Algorithm 1, the H is the number of hash functions,
the privacy budget is ε, and m is the hash length of the
mapping value; these parameters must pass before deploying
the algorithm. The local sensitivity of adding Laplace noise in
the one-hot encoding vector v is at most 2 [41], meaning that
any two different bits of data will have at most two variations
in vector v. Algorithm one sends the perturbed report uij, x ′

that has randomly chosen index j of hash function and noise x ′

(hashedmap position) and by setting an all-zero vector of size
m in line 1. It, then in lines 2-4 it selecting the hash function
H and hash mapping on the vector v by randomly selecting v
and H , where vhj(u) denotes choosing the function j to hash
value u. Furthermore, it adds the Laplace noise in lines 5-7,
themapping vector has a length ofm, which is already known.
If the value of x ′ is higher than or equal to m, the noise
mapping position x ′ will equal x ′ − m; otherwise, the noise
mapping position x ′ will equal x ′+m if the value of x ′ <= 0.
In line 8, the algorithm sends a perturb data report υi.

Algorithm 1 Client-Side Laplace Count Mean Sketch Algo-
rithm

Input: u ∈ D, ε,m,H (R)
Output: Perturb Data u′i

1: Start
2: Vector Initialization v← {0}m.
3: Randomly select sample j from [k]
4: Set vhj(u)← 1
5: Represent position of mapping bit x
6: Laplacian noise addition x ′ = x + Lap

(
1s
ε

)
7: Round x ′

8: if (x < 0) then
9: x ′ = m+ 1

10: else if (x ≥ m) then
11: x ′ = x ′ − m
12: end if
13: return u′i

{
j, x ′

}
14: End

Each user will send its perturb data report υi to the smart
parking service provider SP for data aggregation with O(1)
time and O(k + m) space complexity.

2) SERVER-SIDE ALGORITHM
Once the server receives the perturbed reports υi from the
client, it performs aggregation and produces statistics for
the recommendation system. The aggregator creates a map-
ping matrix and keeps track of each value mapping location,
accumulating information under various hash functions. The
server gets the estimated frequency value by using count
mean sketch matrices. Algorithm 2 illustrates the particular
steps on the server-side.

Algorithm 2 Server-Side Laplace Count Mean Sketch Algo-
rithm

Input: report Ri =
{
j(1), x(1)

}
, . . .

{
j(n), x(n)

}
Output: Calculates the frequency of data values∫

(u)
1: Start
2: Initialization of Sketch S = {0}(k∗m)

3: for i in Range (0, n) do
4: S

[
j(i)
] [
x(i)
]
= 1

5: end for
6: for u in (0, |D|) do
7: for j in (0, k) do

8:
∫
(u) =

∑i
j S[J ]|Hj(u)|.

∫
∝

−∝

1se−|y|s
1s dy
2e∫ 1.5

−1.5
1se−|y|s

1s dy
2e

9: end for
10: end for
11: return

∫
(u)

12: END

In Algorithm 2 the parametersH , ε andmmust pass before
deploying the algorithm. On the server-side, algorithm two
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first creates an all-zero matrix of length k ∗ m, which is then
used to compute the result. Additionally, the system builds a
running index for each separate report location. In the first
step at line 1, the algorithm initializes all k ∗ m size of zero
matrices, and then in line 2, it adds 1 to the index position
of all collected n reports. In line 3 of the algorithm, each
data matrix value is recorded at the appropriate location of
each hash function, and also each attribute value frequency is
calculated using the count sketch.

In the server-side algorithm, the time complexity is
O(n+|D|∗k), whereas the space complexity isO(n+|D|∗k).

D. IOTA DLT
In IOTA, every new transaction has to verify two previous
transactions to compute a small amount of proof of work
(computational work). Verification process In Tangle is dif-
ferent from Blockchain as it has no miners, but members
operating on it are, and a verified transaction is transmit-
ted to the entire network. IOTA is more decentralized than
Blockchain because all members receive the same rewards
and incentives, and there is no hierarchy of responsibilities
in Tangle. When using a weighted random walk, cumulative
weight is utilized to calculate the number of approvals, and
hence higher the cumulative weight, the more approvers there
are. Furthermore, in the network, all members use theMarkov
ChainMonte Carlo (MCMC)method to choose which path to
take. The network becomes stable, more scalable, and quicker
with time, and the path becomes secure over time because
as long as more members add more PoW from added trans-
actions, most members follow the same path.Our proposed
IOTA network model is demonstrated in Figure 8.
When n number of users connect with an SP at a given

timestamp T , the data collected at one particular timestamp
are stored at the SP. When entering a new timestamp ti+ 1,
the perturbed data di collected from n number of Users stored
at an SP are concatenated together, resulting inD′. As demon-
strated in Figure 8, file producers must keep their seed files
in IOTA. The following describes the procedure:
• Create a seed file for the requested file by using the
Client application.

• Assemble the seed file and time stamp into the MAM
message and proceed to the transaction start phase.

• Using the prepareTransfers function, group transactions
together into bundles.

• Call getTransactionsToApprove to get an IRI, execute a
tip select to validate two tips, and provide the TX hashes
of both two transactions.

• Using the attachToTangle method, send the transaction
and its TX hash to the PoW node for workload proof.
The transaction is then saved and propagated by IRI,
using the storeTransactions and broadcastTransactions
functions respectively.

VI. EVALUATIONS
A. SECURITY AND PRIVACY ANALYSIS
Theorem 1: The proposed algorithm LCS satisfies the defini-
tion of ε-local differential privacy.

FIGURE 8. Transaction publishing process.

Proof: Given any set of input values u and u′ and any
possible outcome u∗, p(u) is named as the probability density
function of A(u), and p(u′) is the probability density function
of A(u′); compare the probability of these two.

Pr[A(u) = u′]
Pr[A(u′) = u∗]

=
Pr[u+ v]
Pr[u′ + v]

=
pu(v)
pv(v)

= eε

= (

∣∣∫ (u)− ∫ (u′)∣∣
1s

) < eε

Because sensitivity is1s = 2, the highest difference between∣∣∫ (u)− ∫ (u′)∣∣ = 2; That is the value range of
∣∣∫ (u)− ∫ (u′)∣∣

[0, 2] and local differential privacy definition is satisfied

because ( |
∫
(u)−

∫
(u′)|

1s ) ≤ 1.

1) FORMAL SECURITY ANALYSIS
This section simulates our proposed system utilizing the
most generally recognized and used Automated Validation of
Internet Security Protocols and Applications (AVISPA) tool
to demonstrate that our scheme is safe against replay and
man-in-the-middle attacks.We perform a security evaluation
analysis of our proposed security protocol by simulating it
using AVISPA tool in SPAN version 1.6 installed in Virtual-
Box 6.0 with 2 GBRAM to verify our authentication protocol
based on a decentralized environment.

The tool is integrated with python language and works for
claims defined for security protocol. AVISPA is a high-level
language for defining protocols & associated security fea-
tures in a scalable and descriptive manner. A number of state-
of-the-art automated algorithms are implemented through a
range of back-ends which are integrated into the system [35].
Each participant role has a basic role, and composition roles
describe instances of basic roles.

The security protocols must be developed in HLPSL
(High Level Protocols Specification Language), which is a
role-oriented language. The Dolev–Yao model is used to
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represent an intruder(i) and protocol run can go onwithout the
intruder(i) knowing about it. Several sessions, principles, and
fundamental roles are specified in HLPSL. HLPSL is trans-
lated to the intermediate format (IF) using the HLPSL2IF
translator, and then the output format (OF) is produced using
one of four back ends that are OFMC,SAMTC,CL-AtSe and
TA4SP.

For analysis of our proposed protocol, we consider HLPSL
language, In HLPSLwe have defined three fundamental roles
for the key distribution centre KDC and the smart parking
system SP in reference to the registration and authentication
phases. In addition to these roles, our implementation also
requires the specification of session, goal, and environment
roles in HLPSL. Our analysis demonstrate that our proposed
ECC based anonymous authentication protocol is secure
against the man in the middle, disclosure and impersonation
attacks.

We have integrated three primary roles in our protocol: U ,
P, andKDC for User, Service Provider andKDC respectively.
The KDC in HLPSL is responsible for the registration and
authentication phases of our system. HLPSL has additional
roles that need to be established in order for our scheme to
work properly: session, goal, and environment roles. KDC
is critical in the formation of HLPSL, as seen in Figure 10.
KDC receives the start signal during the registration phase
and changes its state from 0 to 1, which is stored in the
variable State. KDC then securely transmits the registration
request (Kup,Uid ,Np) to the U through the SND() channel.
The channel type declaration (dy) indicates that the chan-

nel is intended for use with the Dolev–Yao threat model,
which assumes that an intruder(i) has the capability of inter-
cepting, analyzing, or altering communications transmit-
ted over an unprotected public network channel. Using the
RCV () channel, U is then able to safely receive the message
(U ,P,Fid , SKup) from KDC . The played by A declaration in
this role indicates that the agent stated in variable A performs
in the role. Declaration secret (Kup,Uid ,Np,Auth1, SkKDC )
implies that the information Uid and SkKDC are only known
to KDC .

In Figure 9, we have integrated the roles of the KDC and
SP throughout the registration and authentication stages in a
similar manner.

Our analysis demonstrate that our proposed ECC based
anonymous authentication protocol is secure against the man
in the middle, disclosure and impersonation attacks as shown
in the Figure 11.

2) INFORMAL SECURITY ANALYSIS
This section evaluated our security protocol informally
against various types of adversarial attacks and checked the
security feature. This analysis is based on the knowledge of
the analyst and author. Comparison of security feature with
existing approaches is given in Table 2.

• Resistant Against DDoS Attack We use IOTA DLT
to robust our system against a single point of failure

FIGURE 9. Role specification for user, and KDC in HLPSL.

(SPoF). The service provider will append the historical
parking records of the user to the IOTA ledger, which is
entirely decentralized and scale-able.
In this proposed framework, we have used IOTA DLT
platform instead of centralized platform (e.g, Cloud
Network). Due to the decentralized nature of plat-
form it reduces the probability of attack. As there is
no involvement of any third party for registration and
authentication of participants which largely decrease the
attack surface area. By using IOTA DLT, participants
(SPs,KDC) are distributed among different BAs that
minimize the attack probability on the system. In addi-
tion, Users do not need to get registered with the SP
whenever they want to send the data request (RoD). That
eliminate the changing secret (PKKDC , SKKDC ) for each
session and prevent system desynchronization.

• Preserving drivers’ privacy We preserve the privacy
of the user/driver in all phases of our system to achieve
anonymity and untractability. The user’s real identity is
only used once in the registration phase, and only KDC
can know its real IDυi . Still, no other entity can trace
the derivatives of the user identity in the transmitted
message of the user.
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FIGURE 10. Role specification for provider,session, environment and goal
in HLPSL.

FIGURE 11. Anonymous authentication protocol analysis using OFMC
backend.

• Anonymity The KDC randomly assign anonymous cre-

dentials FID[1]
υi ,FID

[2]
υi ,FID

[3]
υi , to the user when the

user registered first time with the KDC. Except for the

system initialization phase, the user’s real IDυi can not
be revealed at any stage because anonymous credentials
are used to verify the user in the authentication phase
and neither the SP nor third party recommender system
can uniquely identify the user in the system.

• Prevention of Untracablity attack The user in our
system is untraceable because of anonymous credentials

(FID[1]
υi ,FID

[2]
υi , FID

[3]
υi ), such as M ′KDC = HMAC

(FIDυi1 ‖ ECp ‖ T ‖ SKυ ). The adversary can not
link the user as the message will be expired due to the
involvement of the timestamp in each message.

• Prevention of Secret Disclosure attack We use
HMAC ,public and private keys (SKυi ,PKυi , SKKDC
PKKDC , SKSP,PKSP) to encrypt and decrypt the message
between the entities involved in our system. In any case,
if the adversary is able to compromise the message,
it still can not disclose the user’s real identity. Moreover,
the keys for this session can not be used for the next
sessions because the KDC will generate the fresh keys

FID[1]
υi ,FID

[2]
υi ,FID

[3]
υi , after every verification of the

user.
• Prevention of Impersonation Attack The adversary
can not perform an impersonation attack due to the fact
that the HMAC is used between the KDC and user using
a shared secret between them, and the adversary can not
decrypt theHMAC without the knowledge of secret keys
(SKKDC , SKυi ). In the worst case, if the adversary is able
to compromise the message between the user and KDC
or SP, it can not impersonate because the KDC does the
verification, and the anonymous credentials can not be
used more than once in the authentication process.

• Resistant Against Man in the Middle Attack The
communication between the entities is encrypted with
the HMAC such as M ′KDC = HMAC(FIDυi1 ‖ ECp ‖
T ‖ SKυ ), the adversary is unable to decrypt M ′KDC or
any other message without the prior knowledge of the
secret keys.

• Prevention of Background Knowledge AttackWe use
local differential privacy to thwart background knowl-
edge attacks so that the attacker can not link the user
to any record as data is perturbed before sending to the
third party, and the attacker can not differentiate a data
value u or u′ belong to a particular user or not.

• Accountability In case of any dispute, the SP will share
the corresponding FIDυi of the υi to KDC , and KDC
will revoke theMυi and extract the actual IDυi andmatch
user FIDυi from the tracing, the list gives plenty, such as
negative points on his driving license to the υi according
to predefined rules.

• Quantum Resistance IOTA use winternitz OTS which
is secure against the quantum computing attack. WOTS
algorithm is thought to be the most efficient post-
quantum signatures for key generation and signature
compression. IOTA has prepared for the quantum era
by using a quantum robust WOTS scheme. Variants of
WOTS include WOTS+ and WOTS-T.
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TABLE 2. Comparison of security feature with existing approaches.

TABLE 3. Parking dataset of Santander city December 2017.

B. PERFORMANCE EVALUATION
We utilised a real-world Santander, Spain, parking data set
that included the timestamp of the time of reservation of
parking spaces in December 2017. After that, actual spots
inside Santander are utilised to produce a synthetic parking
data set by adding random 8 of 29 user positions and scores
to every entry inside the actual space occupancy record set
in order to examine the privacy protection methods known
as local differential privacy. Thus, while the data set is arti-
ficial, it is derived out of a actual data set on parking
capacity and actual places, and thus accurately represents a
real dataset. Detailed information of dataset is given in the
Table 3. The data collection contains 15,296 records, each
of which contains 506 separate actual places representing
user’s present position (georeferenced), 275 parking spaces,
6232 timestamps, and ratings from 1-5 for the month of
December 2017.

1) EXPERIMENTAL SETTING
The performance of our proposed scheme is analyzed by
setting up Python 3.7.12 with NumPy v1.16.6 and Pandas
v0.24.2 libraries on a Windows 10 pro version 20H2
with an Intel Core i5 2.7 GHz processor with a 8 GB
DDR3 RAM environment. We have used IOTA Refer-
ence Implementation (IRI) and Nodejs to implement the
protocol and determine its feasibility and functionality.
Client and authentication servers are setups to register
the participants for each transaction whenever the partici-
pants are registered and authenticated with the authenticator
server on parking dataset of 15296 records of Santander
city.

2) PERFORMANCE METRICS
We use Mean Absolute Error (MAE) and Root mean square
error (RMSE) [33] to evaluate our proposed local differential
privacy accuracy.

a: MEAN ABSOLUTE ERROR (MAE)
The average number of errors in MAE is calculated as the
absolute difference between the actual and noisy responses
of the average query results. The high value of MAE guar-
antees stronger privacy. Still, at the cost of utility, because
the difference between the actual and noisy responses of the
average query results is high, inversely, in the case of low
MAE, the utility is enhanced. Still, the privacy will be low
because the difference between the actual and noisy responses
of the average query results is low.

MAE =
1
N

i=2∑
N

(uai − u′ni) (11)

Where uai and u′ni are actual and noisy query responses of
the query i, and N is the total number of queries.

b: ROOT MEAN SQUARE ERROR (RMSE)
The root mean square error (RMSE) is a quadratic evaluation
function that also calculates the average number of errors. It’s
the square root of the average squared deviations between
the real and noisy query results. It quantifies both privacy
and utility. As with MAE, a high RMSE indicates a large
difference between the true and noisy query results, which
increases privacy but decreases utility. While a low root mean
square error means that the difference between true and noisy
query responses is small, this improves utility but compro-
mises privacy.

RMSE =

√∑N
i=1 = (uai − u′ni)

N
. (12)

We measure the privacy and utility trade-off of local differ-
ential privacy by using MAE and RMSE between the privacy
budget (ε) 0.1 to 1.0 and also analyze each sensitivity1f (1-5)
of the records between.

3) PERFORMANCE ANALYSIS
We recorded readings in order to assess the time complex-
ity of registration and authentication. For a single operation
in milliseconds, a separate time threshold is used. It takes
somewhat longer for the drivers to register for the first time
than it does for authentication. An access token is made when
the driver registers. This token is used by the driver to prove
their identity. We repeated this procedure many times to get
an average time for registration and authentication.

The cost of computing is expressed in GAS. It deducts
90737 GAS from the overall limit of 113421 GAS for every
transaction.

Figure 12 demonstrates that registration time is rather long
when compared to authentication time. We observed many
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FIGURE 12. Time complexity of registration and authentication process.

FIGURE 13. MAE LDP on different privacy budget.

transactions in order to set up the average time complexity.
The registration time complexity is 1.71s, while the authen-
tication time complexity is 0.81s, which is much lower than
the registration time.

We use MAE and RMSE for evaluating local differential
privacy in terms of accuracy and privacy for privacy budgets
ranging from ε 0.1 to 1.0. The mean absolute error (MAE)
for privacy budgets ranges from ε 0.1 to 1.0 for sensitivity
1 f = 1. (i.e., the addition or removal of a user affects one
record in the parking data set). In this case, it is shown that the
MAE is very high, with values of 18.55 since 0.1 ensures the
maximum privacy at the expense of the lowest utility, as seen
in Figure 13. However, as the privacy budget ε increases, the
MAE continues to decrease dramatically, and at 1.0, MAE is
near zero, indicating that maximum utility.

Similarly, we meaure root mean suqare error (RMSE)
for privacy budgets ranges from ε 0.1 to 1.0 for sensitivity
1 f = 1. In this case, it is shown that the RMSE is very high,
with values of 210 since 0.1 ensures the maximum privacy at
the expense of the lowest utility, as seen in Figure 14. How-
ever, as the privacy budget ε increases, the RMSE continues
to decrease dramatically, and at 1.0, RMSE is less than 10,
indicating that maximum utility.

Figure 15 illustrates execution time on different privacy
budget ε 0.1 to 0.6. At 0.1, local differential privacy took
0.75 seconds as at lower the privacy budget ε, more noise
needs to be added. On the other hand, at ε 0.6 it takes less

FIGURE 14. RMSE LDP on different privacy budget.

FIGURE 15. Execution time LDP on different privacy budget.

FIGURE 16. Time Complexity of LDP and DP on different privacy budget.

time 0.32 seconds because at ε 0.6, the utility is high with the
increase no of ε.

C. COMPARISON OF RESULTS
Execution time on different privacy budget ε 0.1 to 0.6 for
our proposed scheme and base paper (differential privacy) is
illustrated in Figure 16. At 0.1, our proposed scheme took
0.75 seconds but differential privacy technique used in [23]
took 1 seconds, as at lower the privacy budget ε, more noise
needs to be added. On the other hand, at ε 0.6 both differential
privacy and local differential privacy takes less time 0.32 and
0.38 seconds respectively because at ε 0.6, the utility is high
with the increase no of ε. The differential privacy technique
used in [23] takes more computation as the addition of noise
is done at single location while on other hand in our proposed
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FIGURE 17. LDP vs DP MAE comparison on different privacy budget.

FIGURE 18. LDP vs DP RMSE comparison on different privacy budget.

scheme noise is added locally and overall computation is
divided among other entities rather than a centralized loca-
tion.

The MAE is high 18.2 and 10 at privacy budget ε 0.1 for
both in local differential privacy and differential privacy
respectively. But our prooosed local differential privacy
achieves more privacy at privacy budget of 0.1 as compared
to base paper [23] differential privacy as shown in Figure 17.
At privacy budget of 0.5 the MAE for differential privacy
is close to zero which means differential privacy gives more
utility as compared to proposed local differential privacy.

The RMSE is high 210 and 202 at privacy budget ε 0.1 for
both in local differential privacy and differential privacy
respectively. But our proposed local differential privacy
achieves more privacy at privacy budget of 0.1 as compared to
differential privacy as shown in Figure 18. At privacy budget
of 0.5 the RMSE for differential privacy is close to zero which
means differential privacy gives more utility as compared to
local differential privacy.

our proposed scheme not only provide stronger privacy
but also grantees security and divide computation among
different entities. The privacy utility trade off shows that our
scheme provide more privacy on lower privacy budgets.

1) COMPUTATION OVERHEAD
The computational cost of our proposed protocol for authen-
tication level includes the key generation and hashing. The

complexity in the computation of ECC is cubic if the prime
numbers of bit length are used. The modular multiplication
is considered to solve the ECC bit length. For this purpose,
the double-and-add algorithm is used to entertain the bit
length. Using ECC, we have the advantage of more security
with fewer parameters 23 = 8 compared to other public-key
RSA and Discrete Logarithm encryption schemes. These two
schemes provide the same protection as ECC but with larger
computations. ECC needs 2 bits of increase in parameter
length compared to RSA and DL, which 20-30 bit increase in
bit-length to achieve the same security level. The attacker’s
efforts to break the security also increase in the case of ECC.

The key generation of parties involves secret number which
needs point multiplication over the Curve. The length of the
message depends on the encryption scheme, which is used
to encrypt the message. In our scheme, the data provider,
consumer, and authenticator communication are hashed and
asymmetrically encrypted including the timestamp. By gen-
erating shared secret include some computation which has
scalar multiplication properties and the hashing. It can be
seen that during the registration and authentication phases,
a very less amount of analysis is needed because they do not
consider the bit length much larger as compared to in other
public-key schemes.We assume that the total number of bytes
used for Hash, HMACare 16, timestamp STs and for the iden-
tity of entities consumes 4 bytes of data. The generation of a
key for communication is only done at once, authentication.
That is why it does not create extra computational overhead
for the rest of the communication.

VII. CONCLUSION AND FUTURE WORK
This paper proposes a secure and privacy-preserved parking
recommender scheme based on IOTA DLT, local differential
privacy, and elliptic curve cryptography. Privacy of parking
data is a major concern in data sharing systems as various
parking service providers are sharing the historical data with
third-party recommender systems for better user experience
and personalized parking recommendations that may lead to
unauthorized access to individual’s data and the user can be
uniquely identified by using background knowledge attack
by the attacker. We have developed the anonymous secu-
rity protocol for authentication and registration using ECC
and HMAC that authenticates the user to prevent unautho-
rized access to data and provide anonymity and integrity
during the communication. Our proposed protocol is effi-
cient against secret disclosure, traceability, and Unlinkabil-
ity attacks compared to existing schemes such as ECCbAP.
However, the time for authentication of our proposed system
is slightly high because HMAC is used to provide anonymity
and integrity during sharing of data, which is acceptable in
data privacy. It is also resistant against (MiM) attacks to
protect communication between users andKDC. LDP utilizes
the Laplace mechanism to change query responses, which
removes the need for a third party to do data perturbation.
This is because untrustworthy third parties cause a significant
threat to the user’s security and privacy. In addition to LDP
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anonymization techniques, we have presented a model that
utilizes the IOTA ledger to provide a new level of security
that ensures immutability, scalability, and quantum secrecy
throughout the database and protects against a single point
of failure issue. The trade-off between privacy and utility is
assessed by experimental data drawn through actual park-
ing metrics, allowing users to get parking space suggestions
while preserving their privacy. Our experiments demonstrate
that, in addition to protecting the driver’s privacy and security,
our proposed model has low storage overheads, computation,
and communication costs.

In future, we will add the anonymous payment scheme by
using IOTA tokens and anonymous reputation management
along with the proposed scheme and evaluate our scheme
with real data set of the user parking.
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