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ABSTRACT In this paper, theH∞ tracking control problem of partially unknown linear systems with output
constraints and disturbance is studied by the reinforcement learning (RL) method. Firstly, an augmented
system is established based on the reference trajectory dynamics and target system dynamics, and a special
cost function is established to realize asymptotic tracking. In addition, the barrier function (BF) is used
to transform the augmented system, and the output constraints is realized simultaneously by minimizing
the quadratic cost function of the transformed system. Using only the obtained data and part of the system
dynamics, the optimal control strategy and the worst disturbance strategy are obtained by using the integral
reinforcement learning (IRL). Rigorous stability analysis shows that the proposed method can make the
trajectory of system states converge, and the output of the control strategy can make the tracking error
asymptotically stable. Finally, a simulation example is conducted to verify the effectiveness of the proposed
algorithm.

INDEX TERMS Barrier function, H∞ tracking control, integral reinforcement learning, output constraints.

I. INTRODUCTION
Due to the constraints in the practical applications, output
constraints exist widely in the controlled system, such as
the rotation angle of robot arm [1], [2], the driving speed
of autonomous vehicle [3]–[5], etc. When designing con-
trollers for such controlled systems, output constraints can
be a great hindrance. On the other hand, the unknown sys-
tem dynamics and the influence of external disturbances are
also the factors that must be considered when designing
such controllers. Modern control theory such as H∞ control
method and integral reinforcement learning (IRL) method
have received considerable attention in solving the problems
of unknown system dynamics and external disturbances [6]–
[10]. However, these methods can not satisfy the condition
of output constraints when solving the above problems. So it
is still a challenging problem to design controllers for par-
tially unknown linear systems with output constraints and
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external disturbances. In this paper, a new adaptive control
method is proposed to solve theH∞ tracking control problem
of partially unknown linear systems under the condition of
satisfying the output constraints.

For the optimal control problem, it usually depends on
solving a complexHamilton-Jacobi-Bellman (HJB) equation,
which is a very difficult problem to solve with the traditional
mathematical tools. In the past few decades, reinforcement
learning (RL) [11]–[14] was also known as adaptive dynamic
programming (ADP) or approximate dynamic programming.
The advantage of the adaptive dynamic programming is that
the neural network (NN) can be used to approximate the
optimal cost function in the optimal regulation problem, so it
is widely used to solve the optimal control problem [15]–
[17]. The concept of adaptive dynamic programmingwas first
proposed byWerbos in 1977 [18]. Murray et al. developed an
adaptive dynamic programming algorithm for optimal control
of continuous time affine nonlinear systems [19], and gave a
complete proof of its main theorem in [20]. Lewis et al. [21]
proposed a synchronous policy iterative algorithm based on
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an actor-critic network to solve the optimal control solution
of the nonlinear system with known dynamics, and gave
a proof of convergence. These methods require completely
knowable system dynamics and do not take into account the
influence of external disturbances. On the basis of [21], [22]
proposed an online adaptive control algorithm [23] based
on policy iteration (PI) to solve the continuous time two-
person zero-sum gamewith infinite horizon cost for nonlinear
systems with external disturbances. In [24], a non-strategic
reinforcement learning method was used to solve the H∞
tracking control problem for completely unknown continuous
time systems. An integral reinforcement learning method
based on value iteration (VI) was proposed to designH∞ con-
trollers for continuous time nonlinear systems [25]. An online
model-free integral reinforcement learning algorithm based
on neural network was proposed to solve the H∞ optimal
tracking control problem with finite horizon for completely
unknown nonlinear continuous systems, in which the dis-
turbance and constrained control input [26] were consid-
ered [27]. Adaptive output feedback neural tracking control
for a class of uncertain switched multiple input multiple
output nonlinear systems with non-strict feedback delays was
studied in [28]. However, in the case of output constraints, the
existing methods to solve external disturbances and unknown
system dynamics often fail to get the desired results.

In order to solve the output constraint problem,
Tee et al. [29] proposed an barrier Lyapunov function (BLF)
by combining Lyapunov analysis with barrier function. Based
on the results of Tee, Ren et al. [30] proved that the bound-
edness of BLF was safe for adaptive neural control of a class
of output feedback nonlinear systems with unknown dynam-
ics. In [31], the output constraint adaptive control problem
in nonlinear stochastic systems was considered, and the
influence of output constraints on control performance was
overcomed. In [32], the barrier Lyapunov function design was
extended to pure feedback systems with full-state constraints.
For a class of nonlinear state constrained time-varying delay
systems with unknown control coefficients, Li et al. [33]
proposed an adaptive tracking control method. The adaptive
control problem for a class of stochastic nonlinear systems
with unknown control gain and complete state constraints is
studied in [34]. Yang et al. [35], [36] solved the zero-sum and
non-zero-sum game problem based on the barrier function,
transforming the punishment for violating state constraints
into the change of system state. However, the safety control
problem of safety-critical systems with unknown system
dynamics and external disturbances is rarely studied.

In this paper, a novel integral reinforcement learning
method is proposed to solve theH∞ tracking control problem
of partially unknown continuous time linear systems with
output constraints and external disturbances. The main con-
tributions of this paper are as follows:

• In this paper, a H∞ tracking controller satisfying the
output constraints is designed under the condition of
unknown dynamics and external disturbances. The sta-

bility of the transformed system can be expressed as
satisfying the output constraints of the original system
by using the barrier function transformation.

• A new integral reinforcement learning method is
designed to obtain the solution of H∞ tracking control
problem online. The proposed algorithm only uses the
obtained data and part of the system information, and
the system can be partially unknown.

• It is proved that the proposed method can make the
original system satisfy the output constraints under the
condition of stable transformation system, and the out-
put of the control strategy can make the tracking error
asymptotically stable.

The rest of this paper is organized as follows: The linear
tracking control with state constraints problem formulation
are given in section 2. In section 3, the barrier transforma-
tion and traditional policy iteration algorithm are considered.
In the next section, an integral RL method is proposed to
obtain the optimal solution. In section 5, a numerical example
is then presented to show the effectiveness of the proposed
method. Finally, the conclusion of this paper is given.

II. LINEAR TRACKING CONTROL PROBLEM WITH STATE
CONSTRAINTS
Considering the following linear continuous-time system,

ẋ = fx + gu+ kd, y = Cx, (1)

where x ∈ Rn is the system state, u ∈ Rm ⊂ U is the control
input, d ∈ Rm is the external disturbance term, f ∈ Rn×n gives
the drift dynamics of the system, g ∈ Rn×m and k ∈ Rn×m,
C ∈ Rp×n is the output matrix, y ∈ Rp×1 is the system output.
U denotes the set of all admissible inputs. Define that every
element in C is not less than zero. It is also assumed that the
system (1) is stabilizable.
Assumption 1: The linear continuous-time system satifies

the state constraints expressed as,

xi ∈ (ai,Ai), i = 1 · · · n, (2)

where ai < 0, Ai > 0 are the lower and upper boundaries of
the system states, ax = [a1; · · · ; an] and Ax = [A1; · · · ;An].
Based on the Assumption 1, we define the output constraint

vectors as follows ay = Cax = [ay1; · · · ; ayp], Ay = CAx =
[Ay1; · · · ;Ayp]. The output constraints can be expressed as,

yj ∈ (ayj,Ayj), j = 1 · · · p. (3)

Assumption 2: The reference output trajectory is defined
as ẏd = Fyd which does not approach to zero as time goes
to infinity, such as unit step, sinusoidal waveforms, etc.,
and the reference output trajectory yd satisfies the output
constraints (3).

In order to realize the tracking control, we first establish an
augmented system according to the system (1) and reference
output trajectory yd . The augmented system state is defined
as

ζ = [xT yTd ]
T . (4)
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Based on the equation (1) and the reference output trajec-
tory ẏd , we can define

ζ̇ =

[
f 0
0 F

]
ζ +

[
g
0

]
u+

[
k
0

]
d ≡ T ζ + Gu+ Kd . (5)

Based on the state constraints (2) and the output constraints
(3), the state constraints of the augmented system (5) can be
defined as

aζ = [a1; · · · ; an; ay1; · · · ; ayp],

= [aζ1; · · · ; aζn; aζn+1; · · · ; aζq], (6)

Aζ = [A1; · · · ;An;Ay1; · · · ;Ayp].

= [Aζ1; · · · ;Aζn;Aζn+1; · · · ;Aζq]. (7)

Note that the desired reference output trajectory yd does
not converge to zero as time goes to infinity. When the
desired reference output trajectory is unstable and does not
converge to zero, the feedback control will make the cost
function of infinite horizon approach infinity [37]. According
to Bellman’s optimality principle, the cost function must be
finite before the optimal feedback control strategy can be used
to minimize it.

To relax the limit that the reference output trajectory must
converge to zero, a discounted cost function is introduced as
follows,

V (ζ, u, d) =
∫
∞

t
e−β(τ−t)(r(ζ, u)− γ 2dT d)dτ, (8)

where r(ζ, u) = ζ TCT
1 QC1ζ + uTRu, Q > 0 and R > 0 are

symmetric matrices, C1 = [C − I ], β > 0 is the discount
factor, γ > 0 represents a bound on L2 gain required to move
from disturbance d to the cost function, that is∫

∞

t
e−β(τ−t)r(ζ, u)dτ ≤ γ 2

∫
∞

t
(e−β(τ−t)dT d)dτ, (9)

for all d ∈ L2[0,∞).
Based on the Assumption 1-2, the goal of the H∞ tracking

control problem with output constraints is to find an optimal
control strategy u∗ such that, the system (5) has L2 gain less
than or equal γ , the output satisfies the constraints (3) and
the tracking error asymptotically stable. It can be described
mathematically as∫

∞

t
e−β(τ−t)(ζ TCT

1 QC1ζ + uTRu)dτ

≤ γ 2
∫
∞

t
(e−β(τ−t)dT d)dτ,

s.t. yj ∈ (ayj,Ayj), j = 1 · · · p,

and y→ yd , as t increase. (10)

Unlike the previous studies, the output constraints (3)
brings great difficulty to solve the optimal control strategy.
This is because the proposed discounted cost function is
only affected by the system state and the output reference
trajectory. In the next section, we will propose a barrier trans-
formation approach to satisfy the output constraints in (3).

Remark 1: Each element of the output matrix C is pre-
defined so that the output constraints can be defined by the
state constraints. At the same time, the constrains (3) can be
satisfied by constraining the system states.

III. PROBLEM TRANSFORMATION AND TRADITIONAL
POLICY ITERATION ALGORITHM
In this section, the barrier function is used to transform the
system (5) with the output constraints into a transformed
systemwithout the output constraints, that is, theH∞ tracking
control problem with the output constraints is transformed
into a H∞ tracking control problem without the output con-
straints. Before moving on, the following definition of the
barrier function is introduced.
Definition 1: The function b(·) : R→ R defined on (a,A)

is referred to as a barrier function, if

b(z; a,A) = log
A(a− z)
a(A− z)

, z ∈ R (11)

where a and A are two constants satisfying a < 0 < A.
Moreover, the inverse of the barrier function is as follows

b−1(y; a,A) = aA
e
y
2 − e−

y
2

ae
y
2 − Ae−

y
2
, (12)

with the derivative by,

db−1(y; a,A)
dz

=
Aa2 − aA2

a2ey − 2aA+ A2e−y
. (13)

Remark 2: To satisfy the output constraints, the bar-
rier function in Definition 1 should have the following
characteristics:

1) The barrier function b(·) is a finite value within the
state range of the constraints (a,A).

2) As the state approaches the constraint (a,A), b(·)
approaches infinity, i.e., lim

z→a+
b(z; a,A) = −∞,

lim
z→A−

b(z; a,A) = +∞.

3) The barrier function b(·) converges as the state con-
verges.

A. TRANSFORMED SYSTEM BASED ON BARRIER
FUNCTION
Consider the following transformed system,

sq = b(ζq, aζq,Aζq), (14)

ζq = b−1(sq; aζq,Aζq). (15)

According to the chain rule and the equation (14), (15),
we can derive the following equation,

ṡq =
ζ̇q

db−1(z;aζq,Aζq)
dz |z=sq

= (Tq(ζ )+ Gqu+ Kqd)
a2ζqe

sq − 2aζqAζq + A2ζqe
−sq

Aζqa2ζq − aζqA
2
ζq

= T̄q(s)+ Ḡq(s)u+ K̄q(s)d, (16)
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where

T̄q(s) =
a2ζqe

sq − 2aζqAζq + A2ζqe
−sq

Aζqa2ζq − aζqA
2
ζq

×Tq([b−1(s1); · · · ; b−1(sq)]),

Ḡq(s) =
a2ζqe

sq − 2aζqAζq + A2ζqe
−sq

Aζqa2ζq − aζqA
2
ζq

×Gq([b−1(s1); · · · ; b−1(sq)]),

K̄q(s) =
a2ζqe

sq − 2aζqAζq + A2ζqe
−sq

Aζqa2ζq − aζqA
2
ζq

×Kq([b−1(s1); · · · ; b−1(sq)]). (17)

The transformed system dynamics ṡ = [ṡ1; · · · ; ṡq] is as
follows,

ṡ = T̄ (s)+ Ḡ(s)u+ K̄ (s)d, (18)

where T̄ (s) = [T̄1(s); · · · ; T̄q(s)], Ḡ(s) = [Ḡ1(s); · · · ;
Ḡq(s)], K̄ (s) = [K̄1(s); · · · ; K̄q(s)].
Assumption 3: Assume that the transformed system (18)

has the following characteristics:
(1).T̄ (s) is Lipschitz continuous function and there is a

constant λt such that ‖T̄ (s)‖ ≤ λt‖s‖, s ∈ �, where � is
a compact set containing the origin.
(2).Ḡ(s), K̄ (s) are bounded on � and there exist constants

λg, λk such that ‖Ḡ(s)‖ ≤ λg, ‖K̄ (s)‖ ≤ λk .
(3).The system (18) is controllable over the compact set�.
(4).The system (18) has the property of zero-state observ-

ability.
The discounted cost function of the transformed system is

defined as

J (s, u) =
∫
∞

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu− γ 2dT d)dτ.

(19)

Based on the transformation of equation (14)(16), the H∞
tracking control problem with output constraints has trans-
formed into a H∞ tracking control problem without output
constraints. In other words, the goal of the H∞ tracking
control problem with output constraints becomes to find an
optimal control law u∗ such that, the system (18) has L2 gain
less than or equal γ , i.e.,∫
∞

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu)dτ

≤

∫
∞

t
e−β(τ−t)γ 2dT ddτ, t ≥ 0. (20)

Remark 3: Because the barrier function will approach
infinity at the safety constraints boundary, the reference out-
put trajectory yd must strictly satisfy the output constraint (3),
otherwise the transformation system states will tend to infinity
during the process of tracking the reference trajectory.

B. POLICY ITERATION ALGORITHM BASED ON SYSTEM
DYNAMICS
Define the Hamiltonian for the discounted cost function (19)
as

H (s, u, d, J ) = sTCT
1 QC1s+ uTRu− γ dT d − βJ (s)

+JTs (s)(T̄ (s)+ Ḡ(s)u+ K̄ (s)d), (21)

where Js(s) is the partial derivative of J (s) with respect to s.
The HJB equation associated with the Hamiltonian (21) is

as follows

sTCT
1 QC1s+ uTRu− γ dT d − βJ (s)+ JTs (s)(T̄ (s)

+Ḡ(s)u+ K̄ (s)d) = 0. (22)

Given a solution J∗(s) > 0 to the Hamiltonian (21), the
optimal control solution u∗ and the worst disturbance d∗ have
the following stationary conditions,

∂H (s, u, d, J )
∂u

= 0,
∂H (s, u, d, J )

∂d
= 0. (23)

Then, we can get

u∗ = −
1
2
R−1Ḡ(s)T J∗s , (24)

d∗ =
1

2γ 2 K̄ (s)T J∗s . (25)

Lemma 1: Under Assumptions 1, 2 and 3, if the optimal
control strategy (24) and the worst disturbance (25) can solve
the H∞ tracking control problem of the transformed system
(18), then:
(1) Reasonable selection of the discount factor β can

ensure that the tracking error is asymptotically stable.
(2) The system states (1) satisfies the constraint (2) pro-

vided that the initial state x0 of the system (1) satisfies the
constraint (2).
(3) The L2 gain condition (20) can be guaranteed, if the

performance output is designed as sTCT
1 QC1s+ uTRu.

Proof: (1) Differentiating the cost function (19) along the
trajectories of the transformed system, we can get

JTs (s)(T̄ (s)+ Ḡ(s)u+ K̄ (s)d) = −sTCT
1 QC1s− uTRu

+βJ (s)+ γ dT d . (26)

In order to make the tracking error asymptotically stable,

we define the discount factor β ≤
sTCT1 QC1s+uTRu−γ dT d

J (s) , then
we can get

J̇ (s) = −sTCT
1 QC1s− uTRu+ βJ (s)+ γ dT d ≤ 0. (27)

Therefore, the tracking error is locally asymptotically sta-
ble.
(2) Based on the equation (27), one can get J̇ (s) ≤ 0, such

that

J (s(t)) ≤ J (s(0)), ∀t ≥ 0. (28)

As long as the initial state x0 satisfies the constraint (2)
and the reference output satisfies (3), it can be concluded that
the initial cost function J (s(0)) is finite, thus making the cost
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Algorithm 1 Policy Iteration Based on System Dynamics
Initialization: Start with an admissible control policy u0.
Procedure:
1. Given ui, solve the cost function J (s) using

sTCT
1 QC1s+ u∗Ti Ru∗i − γ d

T
i di − βJ

∗
i (s)+ J

∗T
is (s)(T̄ (s)

+Ḡ(s)u∗i + K̄ (s)d∗i ) = 0. (31)

2. Update the disturbance using

d∗i+1 =
1

2γ 2 K̄ (s)T J∗is, (32)

update the control strategy using

u∗i+1 = −
1
2
R−1Ḡ(s)T J∗is. (33)

if ‖ J i+1 − J i ‖≤ ε, ε is a select positive number.
The learning is finished and stop the iteration solution
else
i = i+ 1, go to step 1 end
End Procedure

function J (s(t)) finite. Therefore, according to the Remark 2,
we can infer that

xi ∈ (ai,Ai), i = 1 · · · n. (29)

Therefore, the constraints (2) can be satisfied.
(3) Considering the system transformation (14) and the

constraints (6), (7), each element of transformation system
state s = [b1(ζ1); · · · ; bq(ζq)] is finite. Note that the optimal
control input, the worst disturbance and the optimal cost
function satisfy the HJB equation (22). Then, as long as the
perference output is designed as sTCT

1 QC1s+uTRu, we have

H (s, u∗, d∗, J∗)

= 0⇒
∫
∞

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu)dτ

≤

∫
∞

t
e−β(τ−t)γ 2dT ddτ. (30)

This proof is completed.
The traditional model-based policy iteration algorithm is

shown in algorithm 1, all the system dynamics, such as
the original dynamic matrix T̄ (s), Ḡ(s) and K̄ (s) are essen-
tial. In practice, the unpredictability of system dynamics
will make the traditional policy iteration method ineffective.
In order to meet the strict requirements of the system infor-
mation, the integral RL technology is applied to the tracking
control design, so that the tracking control strategy can be
obtained when the system dynamics is partially unknown.
Remark 4: The system state of the transformation system

(18) is defined by the system (1) and the barrier function. The
barrier function is already defined by the equation (11), so the
partially unknown linear systems (1) means that part of the
transformation system is unknown.

Algorithm 2 Integral RL Based Policy Iteration for Tracking
Problem With Output Constraints
Initialization: Start with an admissible control policy u0.
Procedure:
1. Given ui, solve the cost function J (s) using

sT (t)Pis(t) =
∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTi Rui

−γ 2dT d)dτ + e−β1tsT (t +1t)Pis(t +1t). (37)

2. Update the disturbance using

d∗i+1 =
1

2γ 2 K̄ (s)T J∗is =
1
γ 2 K̄ (s)TPis, (38)

update the control strategy using

u∗i+1 = −
1
2
R−1Ḡ(s)T J∗is = −R

−1Ḡ(s)TPis. (39)

if ‖ Pi+1 − Pi ‖≤ ε, ε is a select positive number.
The learning is finished and stop the iteration solution
else
i = i+ 1, go to step 1 end
End Procedure

IV. INTEGRAL RL FOR TRANSFORMED SYSTEM AND
STABILITY ANALYSIS
Based on the transformation system dynamics and the tra-
ditional model-based policy iterative algorithm, the integral
RL tracking control algorithm is designed for the system
with partially unknown dynamics, and the tracking error can
guarantee asymptotically stable under the condition of output
constraints.

A. INTEGRAL RL FOR PARTIALLY UNKNOWN DYNAMICS
Based on the optimal control theory, the discounted cost func-
tion (19) can be rewritten by the positive definite quadratic
function such that

J (s) = sTPs, (34)

where P is the positive definite matrice.
For time interval 1t > 0, the cost function (19) satisfies

J (s(t)) =
∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu

−γ 2dT d)dτ + e−β1tJ (s(t +1t)). (35)

Substituting equation (34) for (35), we can get

sT (t)Ps(t) =
∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu

−γ 2dT d)dτ + e−β1tsT (t +1t)Ps(t +1t).

(36)

Based on the equation (34) and (35), we use the integral
reinforcement learning method to solve the H∞ tracking
control problem with the output constraints.
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Theorem 1: Consider the transformation system (18), the
Hamiltonian equation (21), the control input (39), and the
disturbance input (38). Assume that the Assumptions 1, 2
and 3 hold. The iterative control strategy (39) obtained from
(21) can minimize the right side of (37). The iterative dis-
turbance strategy (38) obtained from (22) can maximize the
right side of (37).
Proof: Consider the definition of the Hamiltonian (21) that

d2H
d2u
= 2R> 0, so that the Hamiltonian attains a minimum in

u.
We define the first order Taylor series for

∫ t+1t
t e−β(τ−t)

(sTCT
1 QC1s+ uTRu− γ 2dT d)dτ and e−β1tJ (s(t +1t)) as

follows∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu− γ 2dT d)dτ

= −
1
β
(e−β1t − 1)(sTCT

1 QC1s+ uTRu− γ 2dT d)

+o(1t), (40)

e−β1tJi(s(t +1t)) = eβ1tJi(s(t))+ eβ1tJis
(s(t))(T̄ (s)+ Ḡ(s)u∗ + K̄ (s)d∗)1t + o(1t). (41)

If the time interval 1t is small enough, then the
higher-order infinitesimal term o(1t) can be ignored. we can
get ∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTRu− γ 2dT d)dτ

= −
1
β
(e−β1t − 1)(sTCT

1 QC1s+ uTRu− γ 2dT d),

(42)

e−β1tJi(s(t +1t)) = eβ1tJi(s(t))+ eβ1tJis
(s(t))(T̄ (s)+ Ḡ(s)u∗ + K̄ (s)d∗)1t. (43)

The iterative control policy ui satisfies

ui = argmin
u
H (s, u, d, Ji)

= argmin
u
[sTCT

1 QC1s+ uTRu− γ 2dT d − βJi(s)

+JTis (s)(T̄ (s)+ Ḡ(s)u+ K̄ (s)d)]. (44)

Since the iterative cost function Ji(s) is not affected by the
control strategy, we can get

ui = argmin
u
[−

1
β
(e−β1t − 1)(sTCT

1 QC1s+ uTRu

−γ 2dT d)+ eβ1tJi(s(t))+ eβ1t (JTis (s)(T̄ (s)

+Ḡ(s)u)+ K̄ (s)d))]. (45)

Based on (34), (42), (43), it yields

ui = argmin
u
[
∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTi Rui

−γ 2dT d)dτ + e−β1tsT (t +1t)Pis(t +1t)]. (46)

In the same way, we can get

di = argmax
d

[
∫ t+1t

t
e−β(τ−t)(sTCT

1 QC1s+ uTi Rui

FIGURE 1. Constrained trajectory of the tracking dynamics under the
integral RL based tracking control algorithm.

−γ 2dT d)dτ + e−β1tsT (t +1t)Pis(t +1t)]. (47)

The proof is completed.
Based on the integral RL method, a new policy itera-

tive algorithm is proposed to solve the H∞ tracking control
problem with output constraints, as shown in algorithm 2.
In algorithm 2, only part of the system information is used in
the iterative process. According to lemma 1 and theorem 1,
the integral RL control algorithm proposed in algorithm 2 can
make the tracking error locally asymptotically stable under
the condition that the trajectory of the system converges.
Remark 5: Compared with the existing optimal tracking

control standard solutions, the proposed method provides
some advantages for solving partially unknown linear sys-
tems, which are reflected in the following aspects.
(1) In the existing strategy iteration algorithm, all the

system information is repeatedly used and transformed in
the solving process. The proposed algorithm only uses the
obtained data and part of the system information, and the
system can be partially unknown.
(2) By combining the tracking control problem with the

barrier function, the tracking system and the tracking error
are locally asymptotically stable under the condition of out-
put constraints.

V. SIMULATION RESULTS
In this section, a linear example is presented to prove the
validity of the proposed algorithm.

Consider the following linear system

ẋ = fx + gu+ kd, y = Cx,

where,

f =
[
0.5 1.5
2.0 −2

]
, g =

[
5
1

]
, k =

[
1
0

]
, C = [1 0].

Assume that the desired output trajectory is generated by
the command generator system ẏd = 0 with the initial value
yd (0) = 0.3. Define (19) as the performance function. One
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FIGURE 2. Unconstrained trajectory of the tracking dynamics under the
integral RL based tracking control algorithm.

FIGURE 3. Transformed system dynamics under the integral RL based
tracking control algorithm.

selects Q = 3, R = 1 and the discount factor γ = 1.5. The
output constraints is defined as y ∈ (−0.5, 0.8).
Assuming that the system drift dynamics in algorithm 2 is

unknown, the data obtained from the transformed system
every 0.05 seconds is used for simulation. At the same time,
we make a comparison with the method in [14], which proves
that the proposed method is effective for the output con-
straints and the tracking control problems.

Figure 1 shows the trajectory of the system output follow-
ing the reference output under output constraints. Figure 2
describes the tracking control trajectory without output con-
straints based on integral reinforcement learning algorithm.
Comparing the results of the two figures, it can be clearly seen
that the proposed method can complete the tracking under the
condition of ensuring the output constraints. Figure 3 shows
the tracking trajectory of the transformation system, where
the reference output trajectory s3= 0.940 is obtained by equa-
tion (14), which also verifies the second part of Theorem 1.
Figure 4 shows the parameter changes of matrix P in the

process of iteration. The trajectory of the control strategy and

FIGURE 4. Evolutions of the P matrice during the integral RL process.

FIGURE 5. Trajectory of control strategy under integral RL process.

FIGURE 6. Tracking error trajectory by our integral RL method.

disturbance strategy are shown in Figure 5. Figure 6 shows
the tracking error, which obviously eventually converges to
zero.

VI. CONCLUSION
In this paper, we studied the H∞ tracking control prob-
lem for partially unknown linear systems with output con-
straints and disturbances. The asymptotic tracking and output
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constraint of the system were realized by building an aug-
mented system and a reasonable system transformation. Inte-
gral reinforcement learning was used to obtain the optimal
control strategy and the worst disturbance strategy online.
It was proved that the proposed method can minimize the
performance of the system under the influence of out-
put constraints and disturbances. The numerical simulation
example also demonstrated the effectiveness of the proposed
method.
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