
Received April 17, 2022, accepted May 3, 2022, date of publication May 17, 2022, date of current version May 24, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175854

Finite-Time Prescribed Performance Trajectory
Tracking Control for Underactuated Autonomous
Underwater Vehicles Based on a Tan-Type
Barrier Lyapunov Function
HAITAO LIU 1,2, (Member, IEEE), BINGXIN MENG 1, AND XUEHONG TIAN 1,2
1School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2Shenzhen Institute, Guangdong Ocean University, Shenzhen 518120, China

Corresponding author: Bingxin Meng (gdmengbx@126.com)

This work was supported in part by the 2019 ‘‘Chong First-Class’’ Provincial Financial Special Funds Construction Project under Grant
231419019, in part by the Key Project of Department of Education of Guangdong Province under Grant 2021ZDZX1041, and in part by
the Science and Technology Planning Project of Zhanjiang City under Grant 2020B01267 and Grant 2021E05012.

ABSTRACT This paper proposed a finite-time prescribed performance control scheme for underactuated
autonomous underwater vehicles (AUVs) based on adaptive neural networks and a tan-type barrier Lyapunov
function. Even in the presence of output constraints and environmental disturbances, the AUV can also
precisely track the desired trajectory in a finite time. By introducing a tan-type barrier Lyapunov Function
(TBLF), the singularity problem in process design is solved and all output errors are guaranteed to
satisfy the prescribed performance specifications. Dynamic surface control (DSC) and the minimal learning
parameter (MLP) are employed to greatly simplify the complexity of the algorithm and enhance the
robustness of the control system, respectively. Lyapunov stability analysis proves that the proposed controller
guarantees all signals in the closed-loop system to be uniformly ultimately bounded (UUB), and that the
tracking errors converge to a small neighborhood near the origin in a finite time. Finally, the simulation
results demonstrate the effectiveness and feasibility of the proposed controller.

INDEX TERMS Finite-time stability, trajectory tracking, tan-type barrier Lyapunov function, minimal
learning parameter, underactuated autonomous underwater vehicles.

I. INTRODUCTION
In recent years, people have increasingly recognized the
indispensability of marine resources to the development
of human society. As a result, a wide variety of marine
equipment has been vigorously developed. Among them, the
research and development of underwater vehicles, especially
autonomous underwater vehicles (AUVs), have received
much attention, and AUVs have important applications in
many fields such as surveillance, rescue, ocean mapping,
and inspection of underwater structures[1]. To accomplish
the above tasks, AUVs are usually maneuvered in three
dimensions in a complex ocean environment. Therefore, the
research on trajectory tracking control in 3D space has been
a research hotspot in the AUV field.

However, it is difficult to design an AUV trajectory track-
ing controller due to the obvious dynamicmodel uncertainties
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and the time-varying unpredictable disturbances generated by
the marine environment. Lapierre et al. developed a new type
of control law that deals explicitly with vehicle dynamics[2].
Bandara et al. proposed a control method using a vehicle
fixed frame adaptive controller and an intrinsic nonlinear
PID controller for attitude stabilization in complex-shaped
low-speed AUV navigation[3]. Furthermore, the disturbances
from the environmental external to the AUV should be
considered when designing the controller to improve the
control performance. In [4], to address the problem that
AUVs are subject to model uncertainty and unknown ocean
disturbances, the authors construct an iterative neural update
law based on the prediction error, which effectively enables
the accurate identification of the unknown dynamics of
each vehicle. In [5], the trajectory tracking problem with
actuator saturation is solved in the presence of parameter
uncertainties.

The above work is discussed for fully driven underwater
robots. For practical purposes, the design of the control
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system for an underwater underactuated vehicle is very
complex and cumbersome because there are only three
control inputs to control six degrees of freedom. To overcome
the underactuated problem of an AUV, Qiao et al. proposed
two adaptive fast integral terminal sliding mode control
schemes with dual loops [6], and Shojaei et al. used the opti-
cally guided approach [7]. Seok et al. developed additional
virtual control inputs to solve the underactuated problem [8].
Sliding model control is an effective control strategy for
trajectory tracking. In [9], controllers are designed using the
concepts of the terminal sliding model to solve the tracking
problem of an underactuated AUV. In [10], the author
conquered the quantization effect by introduction the bound
of quantization error into the switching term of the SMC.
In [11], scholars combine adaptive neural networks and dual
closed-loop integral sliding mode control to achieve sliding
model control of an underactuated AUV with uncertain
dynamics.

Disturbance observers are often used to solve disturbances
caused by ocean currents, but due to the powerful approx-
imation ability in controlling nonlinear uncertain systems,
adaptive neural networks have received much attention
from scholars in recent years. There are many types of
neural networks such as the radial basic function neural
network (RBFNN) and the convolutional neural network
(CNN). In paper [12], an improved neural network model
based on the Glasius bio-inspired neural network was
proposed and used in AUV trajectory. Paper [13] used neural
networks and adaptive techniques to estimate and compensate
for uncertainty effects in the AUV control system to achieve
3D trajectory tracking control of underactuated AUVs under
the effect of parameter uncertainty and external disturbances.
Guo et al. introduced a first-order robust exact differentiator,
which takes the unknown velocity of the AUV into account,
and proposed a nonlinear sliding mode control based on a lin-
ear parametric neural network (NSMC-NN) that effectively
deals with the unknown dynamics and external environmental
disturbances[14]. Elhaki et al. used a multilayer neural
network and an adaptive robust controller to guarantee
the transient performance of the tracking error at a given
maximum overshoot and convergence rate, compensating for
the structural and nonstructural uncertainties[15]. However,
all neural weights of the NN need to be adjusted, causing an
unacceptable learning time and complex calculations, which
greatly affects the speed of approximation. To avoid this
problem,Miao et al. adopted the Euclidean norm of the neural
weights of the NN to approximate the model uncertainties,
which is called the MLP algorithm [16].

In order to enhance the control performance, finite-
time convergent and prescribed performance are proposed,
which are utilized in many fields except underactuated
AUVs. In paper [17], a new finite-time adjustable barrier
function is introduced, whose design parameters can be
dynamically adjusted in real time as the tracking error
changes. Considering the safety of an underwater vehicle,
we need to constrain its output to ensure that no accidents

occur and the AUV can achieve its target as quickly as
possible [18], [19]. In paper [20], a novel high-order sliding
mode (HOSM) controller was designed with asymmetric
output constraints. In paper [21], a fixed-time controller for
a category of nonlinear systems with output constraints was
constructed, which can be considered to be an extension
of the finite-time control algorithm. Specifically, the output
constraint can be satisfied at any time, and the convergence
time is independent of the initial conditions and can be
predetermined. When the autonomous underwater vehicle is
working in a marine environment with coral reefs, ditches
or rocks, the AUV cannot move freely without restriction.
If we do not want the AUV to collide with the reef and be
damaged when passing through some narrow and cramped
environments, we should limit its position error as much
as possible. On the other hand, when the angle error is
too large, the AUV cannot correct the error quickly due
to the mechanical system, which will affect the position
error. This requires us to further investigate the underwater
robot system with output constraints and a quick response
strategy.

Inspired by the above-mentioned works, a finite-time
convergent prescribed performance control scheme based
on the MLP neural network for an underactuated AUV is
proposed. The main contributions of this paper are given in
the following points.

(1) Compared with [22] and [23], the TBLF and perfor-
mance function are developed to guarantee the output errors
of the systems to be finite-time convergent and limited within
a certain region in a finite time.

(2) In contrast to the existing state observers method [24]
and RBFNN algorithm [25], the MLP neural network is
designed to approximate the model uncertainties and external
disturbances, which guarantees that the computational burden
of the algorithm can be drastically reduced and improves
the system performance. Furthermore, an adaptive law is
introduced to estimate the approximation errors.

(3) Dynamic surface control is used to solve the problem of
dimensional explosion in the backstepping method. Different
from previous works[26, 27], the closed-loop system is finite-
time stable and not asymptotically stable. Finite time control
can achieve better steady and transient performance and
stronger robustness.

The content of this paper is organized as described in
the following. Section II presents the relevant preparatory
knowledge and some theoretical assumptions. Section III
shows the design of the controller. Section IV verifies the
effectiveness of this scheme by simulation. Finally, Section V
makes some concluding remarks.

A. PRELIMINARY KNOWLEDGE AND PROBLEM
FORMULATION
1) MATHEMATICAL MODELING OF THE AUV
In this paper, an underactuated 5-degree-of-freedom AUV
subject to environmental disturbances is studied. Fig.1 shows
the frame and state of the AUV, and the kinematic and
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FIGURE 1. Frames and states of underwater vehicles in three dimensions.

dynamical model of this AUV is depicted as follows [28]:

ẋ = u cosψ cos θ − v sinψ + w sin θ cosψ
ẏ = u sinψ cos θ + v cosψ + w sin θ sinψ
ż = −u sin θ + w cos θ
θ̇ = q
ψ̇ = r/ cos θ

(1)



u̇ = m22
m11

vr − m33
m11

wq− d11
m11

u+ 1
m11
τu + du

v̇ = −m11
m22

ur − d22
m22

v+ dv
ẇ = m11

m33
uq− d33

m33
w+ dw

q̇ = (m33−m11)
m55

uw− d55
m55

q−
ρgGM

L
sin θ

m55
+

1
m55
τq + dq

ṙ = (m11−m22)
m66

uv− d66
m66

r + 1
m66
τr + dr

(2)

where η = (x, y, z, θ, ψ)T defines the position and
orientation; υ = (u, v,w, q, r)T represents the velocity in
each direction;τu, τqand τr represent the control input torque
provided by the thrusters and propellers; di(i = u, v,w, q, r)
stand for the time-varying environmental disturbances caused
by wind, waves and ocean currents; mii(i = 1, . . . , 6) denote
the positive inertia masses of the vehicle; dii(i = 1, . . . , 6)
are the hydrodynamic coefficients; ρg is the buoyancy of the
AUV; and GM L represents the distance between the center
of gravity and the floating center[29].
Remark 1: To simplify the controller design in the next

section, the dynamics of the rolling motion are ignored in the
AUV model. In practice, a recovery force is generated due to
the existence of a metacentric height between the center of
gravity and the floating center of the AUV. This allows the
AUV to stabilize the rolling oscillation by this restoring force
at low speed.
Remark 2: In model (2), there is no control input in the

second and third equations, which means that the velocities
v and w are not controllable during trajectory tracking. This
implies that the AUV can only go through three control inputs
to accomplish the trajectory tracking mission. Therefore, the
AUV is underactuated.

The position and orientation tracking errors between the
follower and the target in the inertial reference frame are
transformed to the body fixed frame as follows:

xe = (x − xd ) cos θ cosψ + (y− yd ) cos θ sinψ
−(z− zd ) sin θ

ye = −(x − xd ) sinψ + (y− yd ) cosψ
ze = (x − xd ) sin θ cosψ
+(y− yd ) sin θ sinψ + (z− zd ) cos θ

(3)

Differentiating (3) yields the following error dynamics in the
body fixed frame:

ẋe = u− qze + rye − ẋd cos θ cosψ − ẏd cos θ sinψ
+żd sin θ
ẏe = v− r(xe
+ tan θze)+ ẋd sinψ − ẏd cosψ
że = w+ qxe + r tan θye − ẋd sin θ cos y
−ẏd sin θ sin y− żd cos θ

(4)

Then, the tracking errors can be expressed as:

ρe =

√
x2e + y2e + z2e, θe = arctan 2(ze,

√
x2e + y2e),

ψe = arctan 2(ye, xe)

(5)

By the above analysis, we can use the following formula to
show the position error:

xe = ρe cos θe cosψe
ye = ρe cos θe sinψe
ze = ρe sin θe

(6)

In order to force the AUV to achieve the desired trajectory,
we need to impose some restrictions on the tracking error ρe,
θe and ψe. That is, the tracking errorρe, θe and ψe need to
satisfy the following time-varying limits:

−βu(t) < ρe < βu(t)

−βq(t) < θe < βq(t)

−βr (t) < ψe < βr (t) (7)

where −βi(t) and βi(t), i = u, q, r are predefined lower and
upper bounds for errors ρe, θe andψe. The boundary functions
βi(t), i = u, q, r are taken as:

βu = (βu,0 − βu,∞) exp(−$ut)+ βu,∞
βq = (βq,0 − βq,∞) exp(−$qt)+ βq,∞
βr = (βr,0 − βr,∞) exp(−$r t)+ βr,∞ (8)

where βi,∞ ≤ βi,0, (i = u, q, r), $u, $q and $r are
designed positive constants. βu,∞, βq,∞ and βr,∞ represents
the maximum error allowed when the system is stabilized.
Eq. (8) is also known as the performance function [30].
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B. RBFNN APPROXIMATION
Suppose f (x) : Rm

→ R is an unknown smooth nonlinear
function and it can be approximated over a compact set � ⊆
Rm with the following RBFNN:

f (x) = W Tφ(x)+ ε (9)

W = argmin
ŵ
{ sup
x∈Rm
|f (x)− Ŵ Tφ(x)|} (10)

where W ⊆ Rl represents the optimal weight vector,
ε is a positive constant representing the approximation
error, Ŵ is the estimation of W ∗, W̃ = W − Ŵ , and
φ(x)=[φ1(x), · · · , φl(x)]T represents the radial basis function
vector, the element of which is chosen as the Gaussian
function:

φi(x) = exp(−
||x − µi||2

λ2i
), i = 1, . . . l (11)

where µi ∈ Rm and λi ∈ R are the center and spread,
respectively, and|ε| ≤ ε̄ where ε̄ is an unknown constant.

C. LEMMAS AND ASSUMPTIONS
The following assumptions and theorems will be used in the
design.
Assumption 1: The sway velocity and heave velocity of the

AUV satisfy sup
t≥0
|v| < vm and sup

t≥0
|w| < wm, where vm and

wm are unknown constants.
Remark 3: Assumption 1 always stands due to paper [7].

The assumption is appropriate because the velocities in sway
and heave will be damped by the hydrodynamic damping
forces.
Assumption 2[22]: The position, speed and acceleration

signals of the AUV, i.e., xd , yd , zd , ẋd , ẏd , żd , ẍd , ÿd , z̈d , have
upper and lower bounds.
Assumption 3[22]: The environmental disturbance di(i =

u, v,w, q, r, ) is bounded and satisfies |di| ≤ χi,max with
χi,max being an unknown positive constant.
Assumption 4: The pitch angle is bounded such that
|θ (t)| < θmax < π/2.
Remark 4: The pitch angle θ satisfies |θ | < π/2 due to the

metacentric restoring forces [28] [29].
Lemma 1 [31]: For any ` ∈ R+ and x ∈ R,the following

inequality is established:

0 ≤ |x| − x tanh(
x
`
) ≤ κ` (12)

where κ = 0.2785 satisfies κ = e−(κ+1).
Lemma 2 [32]: If a nonlinear system ẋ = f (x) satisfies

κ1 > 0, κ2 > 0, εv > 0 and α ∈ (0, 1) such that

V̇ (x) ≤ −κ1V (x)− κ2V α(x)+ εv (13)

Thus, with the residual set�V = min
{

εV
(1−2)κ1

, ( εV
(1−2)κ2

)
1
α

}
,

the system is practical finite-time stable, where 0 < 2 < 1.
The settling time is as follows:

T (x0) ≤ max
{

1
κ12(1−α) ln(

κ12V 1−α(x0)+κ2
κ2

),
1

κ22(1−α) ln(
κ22V 1−α(x0)+κ22

κ22
)
} (14)

Lemma 3 [33]: For any c > 0, a ≥ 0, b > 0, we have
ac(b− a) ≤ 1

1+c (b
1+c
− a1+c).

Lemma 4 [33]: For any c > 1, a > 0, b ≤ a, we have
(a− b)c ≥ bc − ac.

D. TAN-TYPE BARRIER LYAPUNOV FUNCTION
The tan-type barrier Lyapunov function[34] was introduced
to constrain the tracking error:

Vb =
β2b

π
tan(

πz2

2β2b
) (15)

Remark 5: According to the formulation of TBLF in (15),
we can obtain that:  lim

z→0
Vb = 0

lim
z→βb

Vb = ∞
(16)

We can realize that when the initial state zsatisfies the
constraint βb(0), then it will always be maintained. Moreover,
if there are no constraints on system states, i.e.,βb→∞, then
we can obtain the following equation by using L’Hospital:

lim
βb→∞

Vb =
1
2
z2 (17)

Therefore, we can directly use the quadratic term to replace
the TBLF with no constraints on the dynamic error.
Remark 6: There are many types of barrier Lyapunov

functions (BLF) such as the log-type BLF[17, 22] and the
tan-type BLF[35]. Eq. (15) should be rewritten to Vb =
1
2 log

β2b
β2b−z

2 .Whenβb → ∞, error z is not restricted,

and Vb = 0. Therefore, the log-type BLF cannot be
used as a universal BLF without constraints. Certainly, the
tan-type BLF can be used to deal with both constrained
and unconstrained situations, but the tan-type BLF is quite
complex for underactuated AUV control.

E. CONTROL OBJECTIVE
For a smooth reference trajectory (xd , yd , zd ), the control
target of this paper is to design TBLF-based control input
signals τu, τq and τr to make the AUV follow the target
trajectory successfully. In the presence of environmental
disturbances, the tracking errors of the AUV achieve the
prescribed performance and eventually converge to an
arbitrary small neighborhood of the origin. Finally, the
adaptive neural network is used to estimate and approximate
unknown environmental disturbances from wind, wave and
ocean currents.

II. MAIN RESULTS
In this part, a controller based on the TBLF backstepping
method with combined DSC and RBFNN techniques is
designed for the trajectory tracking problem of an underac-
tuated AUV. The design process is divided into three parts:
the design of the virtual control law, the design of the
actual control input, and the elimination of environmental
disturbances.
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A. SURGE MOTION CONTROLLER
The following TBLF candidate should be considered:

Vue =
β2u

π
tan(

πρ2e

2β2u
) (18)

where βu is a time-varying function that is a constraint
onρe.To ensure that Vue is continuous and positively
defined,|ρe| ≤ βu should be set.

Differentiating Vue, we have the following:

V̇ue= [2(ρeρ̇e−
β̇uρ

2
e

βu
) csc(

πρ2e

β2u
)+

2βuβ̇u
π

] tan(
πρ2e

2β2u
) (19)

where csc(•) = 1/ sin(•).
By differentiating ρe in (5), one obtains the following:

ρ̇e = u cos θe cosψe + v cos θe sinψe + w sin θe
+ cos θe cosψe(−ẋd cos θ cosψ

− ẏd cos θ sinψ

+ żd sin θ )+ cos θe sinψe(ẋd sinψ − ẏd cosψ)

+ sin θe(−ẋd sin θ cosψ − ẏd sin θ sinψ − żd cos θ )

(20)

The following error coordinate transformation can be
defined as follows:

ue = u− αuc
ue1 = αuc − αu (21)

The following virtual control lawαu should be designed:

αu = (cos θe cosψe)−1(
β̇u

βu
ρe −

β2u

2πρe

×(kρ + kρ1(
β2u

π
)
3
4 tan(

πρ2e

2β2u
)−

1
4

+
2β̇u
βu

) sin(
πρ2e

β2u
)− v cos θe sinψe

−w sin θe
− cos θe cosψe(−ẋd cos θ cosψ

− ẏd cos θ sinψ

+ żd sin θ )− cos θe sinψe(ẋd sinψ − ẏd cosψ)

− sin θe
×(−ẋd sin θ cosψ − ẏd sin

×θ sinψ − żd cos θ )) (22)

where the design parameters kρ > 0, kρ1 > 0.
According to (16-18), V̇ue is simplified as

V̇ue = −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

+ 2ueρe cos θe cosψe sec2(
πρ2e

2β2u
)

+ 2ue1ρe cos θe cosψe sec2(
πρ2e

2β2u
) (23)

A first-order filter is used to reduce the computational
complexity of the traditional backstepping method:

κuα̇uc + αuc = αmu, αuc(0) = αmu(0) (24)

with αmu = αu + 2κuρe cosψe cos θe sec2(
πρ2e
2β2u

), where αu is

the filtered virtual control law and κu > 0 is the designed
time constant. The derivative of ue1 is as follows:

u̇e1 = −κ−1u ue1 − 2ρe cos θe cosψe sec2(
πρ2e

2β2u
)− Bu(•)

(25)

where α̇uBu(•) with Bu(η, η̇, η̈, v,w, βu, β̇u, β̈u, ρe, ue, ue1)
being continuous functions.

The quadratic Lyapunov function below should be chosen
since there is no restriction on ue and ue1:

Vue2 = Vue +
1
2
u2e +

1
2
u2e1

=
β2u

π
tan(

πρ2e

2β2u
)+

1
2
u2e +

1
2
u2e1 (26)

The time derivative of Vue2 is given by:

V̇ue2 = V̇ue + ueu̇e + ue1u̇e1

= −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

+ 2ρeue cosψe cos θe sec2(
ρ2eπ

2β2u
)

+ 2ρeue1 cosψe cos θe sec2(
ρ2eπ

2β2u
)+ ue(u̇− α̇uc)

+ue1(−κ−1u ue1−2ρe cos θe cosψe sec2(
πρ2e

2β2u
)

−Bu(·)) = −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

+ 2ueρe cos θe cosψe sec2(
πρ2e

2β2u
)

+ ue(
m22

m11
vr −

m33

m11
wq−

d11
m11

u+
1
m11

τu

+ du − α̇uc)− κ−1u u2e1 − ue1Bu(•) (27)

Defining λ̂−u = ||Ŵu||
2, ∂u =

φ2u (xu)
2bu

[16], the surge control
law is designed as:

τu = m11(−kuue − ku1u
1
2
e − κu1u

3
2
e1u
−1
e −

m22

m11
vr +

m33

m11
wq

+
d11
m11

u+ α̇uc − 2ρe cos θe cosψe sec2(
πρ2e

2β2u
)

−λ̂−u∂uue − tanh(
ue
`u

)}̂u) (28)

˙̂
λ−u = ∂uu2e − kλuλ̂−u − kλu1λ̂−

1
2
u (29)

˙̂}u = ue tanh(
ue
`u

)− k}u}̂u − k}u1}̂
1
2
u (30)

where xu = [u, α̇uc]T , bu, kλu, k}u, kλu1, k}u1 are positive
design parameters.
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B. PITCH MOTION CONTROLLER
The following TBLF candidate should be considered:

Vqe =
β2q

π
tan(

πθ2e

2β2q
) (31)

where βq is a time-varying function that is a constraint on θe.
Differentiating Vqe, we have the following:

V̇qe = [2(θeθ̇e

−
β̇qθ

2
e

βq
) csc(

πθ2e

β2q
)+

2βqβ̇q
π

] tan(
πθ2e

2β2q
) (32)

By differentiating θe in (5), one obtains the following:

θ̇e = q cosψe + r tan θ sinψe + cos θe(w− ẋd sin θ cosψ

− ẏd sin θ sinψ − żd cos θ )/ρe − sin θe cosψe(u

− ẋd cos θ cosψ − ẏd cos θ sinφ + żd sin θ)/ρe
− sin θe sinψe(v+ ẋd sinψ − ẏd cosψ)/ρe (33)

The following error coordinate transformation should be
defined:

qe = q− αqc
qe1 = αqc − αq (34)

The following virtual control lawαq should be defined:

αq = (cosψe)−1(
β̇q

βq
θe −

β2q

2πθe
(kθ

+ kθ1(
β2q

π
)
3
4 tan(

πθ2e

2β2q
)−

1
4

+
2β̇q
βq

) sin(
πθ2e

β2q
)− r tan θ sinψe

− cos θe(w− ẋd sin θ cosψ

− ẏd sin θ sinψ − żd cos θ )/ρe + sin θe cosψe(u

− ẋd cos θ cosψ − ẏd cos θ sinφ + żd sin θ )/ρe
+ sin θe sinψe(v+ ẋd sinψ − ẏd cosψ)/ρe) (35)

where the design parameters kθ > 0, kθ1 > 0. Combing (32)
and (33), one can obtain the following:

V̇qe = −kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

+ 2qeθe cosψe sec2(
πθ2e

2β2q
)

+ 2qe1θe cosψe sec2(
πθ2e

2β2q
) (36)

The virtual control law is filtered using a first-order filter
below:

κqα̇qc + αqc = αmq, αqc(0) = αmq(0) (37)

with αmq = αu + 2κqθe cosψe sec2(
πθ2e
2β2q

), where αq is the

filtered virtual control law and κq > 0 is the designed time

constant. The derivative of qe1 is:

q̇e1 = −κ−1q qe1 − 2θe cosψe sec2(
πθ2e

2β2q
)− Bq(·) (38)

where α̇qBq(•) with Bq(η, η̇, η̈, u, v,w, r, βq,
β̇q, β̈q, θe, qe, qe1) being continuous functions.
Then, the QLF should be chosen as follows:

Vqe2 = Vqe +
1
2
q2e +

1
2
q2e1 =

β2q

π
tan(

πθ2e

2β2q
)+

1
2
q2e +

1
2
q2e1

(39)

By differentiating Vqe2, one obtains the following:

V̇qe2 = V̇qe + qeq̇e + qe1q̇e1

= −kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

+ 2qeθe cosψe sec2(
πθ2e

2β2q
)

+ 2qe1θe cosψe sec2(
πθ2e

2β2q
)+ qe(q̇− α̇qc)

+ qe1(−κ−1q qe1 + 2θe cosψe sec2(
πθ2e

2β2q
)− Bq(•))

= −kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

+ 2qeθe cosψe sec2(
πθ2e

2β2q
)+ qe(

(m33 − m11)
m55

uw

−
d55
m55

q−
ρgGML sin θ

m55
+

1
m55

τq + dq

− α̇qc)

− κ−1q q2e1 − qe1Bq(•) (40)

Defining λ̂−q = ||Ŵq||
2, ∂q =

φ2q (xq)
2bq

, the pitch torque can be
designed as follows:

τq = m55(−kqqe − kq1q
1
2
e − κq1q

3
2
e1q
−1
e −

(m33 − m11)
m55

uw

−2θe cosψe sec2(
πθ2e

2β2q
)+ α̇qc +

d55
m55

q

+
ρgGML sin θ

m55
− λ̂−q∂qqe − tanh(

qe
`q

)}̂q) (41)

˙̂
λ−q = ∂qq2e − kλqλ̂−q − kλq1λ̂−

1
2
q (42)

˙̂}q = qe tanh(
qe
`q

)− k}qλ̂−q − k}q1}̂
1
2
q (43)

where xq = [q, α̇qc]T , bq, kλq, k}q, kλq1, k}q1 are positive
design parameters.

C. YAW MOTION CONTROLLER
The following TBLF candidate should be considered:

Vre =
β2r

π
tan(

πψ2
e

2β2r
) (44)
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By differentiating Vre, we have the following;

V̇re = [2(ψeψ̇e −
β̇rψ

2
e

βr
) csc(

πψ2
e

β2r
)+

2βr β̇r
π

] tan(
πψ2

e

2β2r
)

(45)

By differentiating ψe in (5), we obtain the following:

ψ̇e = −r(1+ tan θ tan θe cosψe)+ q tan θe sinψe
+(v+ ẋd sinψ − ẏd cosψ) cosψe/ρe cos θe
−(u− ẋd cos θ cosψ − ẏd cos θ sinψ

+żd sin θ ) sinψe/ρe cos θe (46)

The following error coordinate transformation can be defined
as follows:

re = r − αrc
re1 = αrc − αr (47)

The following virtual control lawαrcan be defined as
follows:

αr = (tan θ cosψe tan θe + 1)−1(
β2r

2πψe
(kψ

+kψ1(
β2r

π
)
3
4 tan(

πψ2
e

2β2r
)−

1
4 +

2β̇r
βr

) sin(
πψ2

e

β2r
)

−
β̇r

βr
ψe + q tan θe sinψe − (v+ ẋd sinψ

−ẏd cosψ) cosψe/ρe cos θe − (u− ẋd cos θ cosψ

−ẏd cos θ sinψ + żd sin θ ) sinψe/ρe cos θe) (48)

where the design parameters kψ > 0, kψ1 > 0. The
simplified V̇re can be obtained as follows:

V̇re = −kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

+2reψe(tan θ cosψe tan θe + 1) sec2(
πθ2e

2β2r
)

+2re1ψe(tan θ cosψe tan θe + 1) sec2(
πθ2e

2β2r
) (49)

The virtual control law is filtered using a first-order filter
below:

κr α̇c + αrc = αmr , αrc(0) = αmr (0) (50)

with αmr = αr + 2κrψe(1 + tan θ tan θe cosψe) sec2(
πθ2e
2β2r

),
where αr is the filtered virtual control law and κr >

0 is the designed time constant. The derivative of re1 is as
follows:

ṙe1 = −κ−1r re1 − 2ψe(1+ tan θ tan θe cosψe) sec2(
πθ2e

2β2r
)

−Br (·) (51)

where α̇rBr (·) with Br (η, η̇, η̈, u, v, q, βr , β̇r , β̈r , ψe, re, re1)
being continuous functions.

Then, the QLF is considered as follows:

Vre2 = Vre +
1
2
r2e +

1
2
r2e1 =

β2r

π
tan(

πψ2
e

2β2r
)+

1
2
r2e +

1
2
r2e1

(52)

By differentiating Vre2, one obtains the following:

V̇re2 = −kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

+2reψe(tan θ cosψe tan θe + 1) sec2(
πθ2e

2β2r
)

+2re1ψe(tan θ cosψe tan θe + 1) sec2(
πθ2e

2β2r
)

+re(ṙ − α̇rc)+ re1(−κ−1r re1

−2ψe(tan θ cosψe tan θe + 1) sec2(
πθ2e

2β2r
)− Br (·))

= −kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

+2reψe(1+ tan θ tan θe cosψe) sec2(
πθ2e

2β2r
)

+re(
(m11 − m22)

m66
uv−

d66
m66

r +
1
m66

τr + dr − α̇rc)

−κ−1r r2e1 − re1Br (·) (53)

Defining λ̂−r = ||Ŵr ||
2, ∂r =

φ2r (xr )
2br

, the following yaw
controller is designed:

τr = m66(−krre − kr1r
1
2
e − κr1r

3
2
e1r
−1
e

−2ψe(1+ tan θ tan θe cosψe) sec2(
πr2e
2β2r

)

+α̇rc −
m11 − m22

m66
uv+

d66
m66

r − λ̂−r∂rre

− tanh(
re
`r
)}̂r ) (54)

˙̂
λ−r = ∂rr2e − kλr λ̂−r − kλr1λ̂−

1
2
r (55)

˙̂}r = re tanh(
re
`r
)− kηr }̂r − kηr1}̂

1
2
r (56)

where xr = [r, α̇rc]T , br , kλr , kηr , kλr1, kηr1 are positive
design parameters.

Fig.2 shows a block diagram of the proposed control
system. In the next part, the stability analysis of the control
system is presented.

D. LYAPUNOV STABILITY ANALYSIS
Theorem 1: For the trajectory tracking problem of an
underactuated AUV with models (1) and (2), if the initial
errors limited in the bound and all assumptions are valid, then
it is guaranteed that all closed-loop system signals in con-
trollers (22), (24), (28), (29), (30), (35), (37), (41), (42), (43),
(48), (50), (54), (55) and (56) are uniformly ultimately
bounded. The system outputs can reach the prescribed
performance throughout the process and eventually converge
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FIGURE 2. Block diagram of the proposed target tracking control system.

to a small area near zero in a finite time whose radius is
adjustable by control parameters.

Proof: By constructing the following Lyapunov
function:

V =
β2u

π
tan(

πρ2e

2β2u
)+

β2q

π
tan(

πθ2e

2β2q
)+

β2r

π
tan(

πψ2
e

2β2r
)

+
1
2
u2e +

1
2
q2e +

1
2
r2e +

1
2
u2e1 +

1
2
q2e1 +

1
2
r2e1

+
1
2
λ̃−
2
u +

1
2
λ̃−
2
q +

1
2
λ̃−
2
r +

1
2
}̃2u +

1
2
}̃2q +

1
2
}̃2r (57)

we can obtain:

V̇ = −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

−kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

−kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

−kuu2e − ku1u
3
2
e − kqq2e − kq1q

3
2
e − krr2e − kr1u

3
2
r

−κ−1u u2e1 − κu1u
3
2
e1 − κ

−1
q q2e1 − κq1q

3
2
e1 − κ

−1
r r2e1

−κr1r
3
2
e1 − ue1Bu(·)− qe1Bq(·)− re1Br (·)

−λ̂−u∂uu2e − ue tanh(
ue
`u

)η̂u − λ̂−q∂qq2e

− qe tanh(
qe
`q

)η̂q − λ̂−r∂rr2e − re tanh(
re
`r
)η̂r

+ uedu + qedq + redr + λ̃−u
˙̃
λ−u + λ̃−q

˙̃
λ−q

+λ̃−r
˙̃
λ−r + }̃u ˙̃}u + }̃q ˙̃}q + }̃r ˙̃}r (58)

The unknown disturbances di could be estimated by RBFs
such as di = Wiφi(xi)+ εi, i = u, q, r .
Thus, Eq. (58) is simplified as:

V̇ ≤ −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

− kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

− kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

− kuu2e − ku1u
3
2
e − kqq2e − kq1q

3
2
e − krr2e − kr1u

3
2
r

− κ−1u u2e1 − κu1u
3
2
e1 − κ

−1
q q2e1 − κq1q

3
2
e1 − κ

−1
r r2e1

− κr1r
3
2
e1 − ue1Bu(·)− qe1Bq(·)− re1Br (·)

− λ̂−u∂uu2e − λ̂−q∂qq
2
e − λ̂

−
r∂rr2e +—λu∂uu2e

+—λq∂qq2e +—λr∂rr2e + ue}u + qe}q + re}r
− ue tanh(

ue
`u

)}̂u − qe tanh(
qe
`q

)}̂q − re tanh(
re
`r
)}̂r

− λ̃−u
˙̂
λ−u − λ̃−q

˙̂
λ−q − λ̃−r

˙̂
λ−r − }̃u ˙̂}u − }̃q ˙̂}q − }̃r ˙̂}r

+
bu
2
+
bq
2
+
br
2

≤ −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

− kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

− kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

− kuu2e − ku1u
3
2
e − kqq2e − kq1q

3
2
e − krr2e − kr1u

3
2
r

− κ−1u u2e1 − κu1u
3
2
e1 − κ

−1
q q2e1 − κq1q

3
2
e1 − κ

−1
r r2e1

− κr1r
3
2
e1 − ue1Bu(·)− qe1Bq(·)− re1Br (·)

+ kλuλ̃−uλ̂−u + kλu1λ̃−uλ̂−
1
2
u + kλqλ̃−qλ̂−q + kλq1λ̃−qλ̂−

1
2
q

+ kλr λ̃−r λ̂−r + kλr1λ̃−r λ̂−
1
2
r + kηu}̃}̂u + kηu1}̃}̂

1
2
u

+ kηq}̃}̂q + kηq1}̃}̂
1
2
q + kηr }̃}̂r + kηr1}̃}̂

1
2
r

+ κ`u}u + κ`q}q + κ`r}r +
bu
2
+
bq
2
+
br
2

(59)
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Since λ̂−i > 0 and —λi > 0, using Lemma 3 and Lemma 4,
one obtains:

λ̃−iλ̂−
z
i = λ̂

−
z
i (—λi − —̂λi)

≤
1

1+ z
(—λ1+zi − (—λi − λ̃−i)1+z)

≤
1

1+ z
(2—λ1+zi − λ̃−

1+z
i ) (60)

Combining the inequality (60) and Young’s inequality, one
obtains:

V̇ ≤ −kρ
β2u

π
tan(

πρ2e

2β2u
)− kρ1(

β2u

π
tan(

πρ2e

2β2u
))

3
4

− kθ
β2q

π
tan(

πθ2e

2β2q
)− kθ1(

β2q

π
tan(

πθ2e

2β2q
))

3
4

− kψ
β2r

π
tan(

πψ2
e

2β2r
)− kψ1(

β2r

π
tan(

πψ2
e

2β2r
))

3
4

− kuu2e − ku1u
3
2
e − kqq2e − kq1q

3
2
e − krr2e − kr1u

3
2
r

− (κ−1u −
1
2
)u2e1 − κu1u

3
2
e1 − (κ−1q −

1
2
)q2e1 − κq1q

3
2
e1

− (κ−1r −
1
2
)r2e1 − κr1r

3
2
e1 +

1
2
B2u +

1
2
B2q

+
1
2
B2r −

1
2
kλuλ̃−

2
u +

1
2
kλu—λ2u −

2
3
kλu1λ̃−

3
2
u

+
4
3
kλu1—λ

3
2
u −

1
2
kλqλ̃−

2
q +

1
2
kλq—λ2q −

2
3
kλq1λ̃−

3
2
q

+
4
3
kλq1—λ

3
2
q −

1
2
kλr λ̃−

2
r +

1
2
kλr—λ2r −

2
3
kλr1λ̃−

3
2
r

+
4
3
kλr1—λ

3
2
r −

1
2
k}u}̃2u +

1
2
k}u}2u −

2
3
k}u1}̃

3
2
u

+
4
3
k}u1}

3
2
u −

1
2
k}q}̃2q +

1
2
k}q}2q −

2
3
k}q1}̃

3
2
q

+
4
3
k}q1}

3
2
q −

1
2
k}r }̃2r +

1
2
k}r}2r −

2
3
k}r1}̃

3
2
r

+
4
3
k}r1}

3
2
r +

bu
2
+
bq
2
+
br
2

(61)

Then, the following inequalities hold:

V̇ ≤ −γ1V − γ2V
3
4 + ς (62)

where γ1, γ2 and ς satisfy the following:

γ1

= min
{
kρ, kθ , kψ , ku, kq, kr , (κ−1u −

1
2
), (κ−1q −

1
2
) ,

(κ−1r −
1
2
),
kλu
2
,
kλq
2
,
kλr
2
,
k}u
2
,
k}q
2
,
k}r
2

}
(63)

γ2

= min
{
kρ1, kθ1, kψ1, ku1, kq1, kr1, κu1, κq1, κr1,

2
3
kλu1,

2
3
kλq1,

2
3
kλr1,

2
3
k}u1,

2
3
k}q1,

2
3
k}r1

}
(64)

ς

=
1
2
B2u +

1
2
B2q +

1
2
B2r +

1
2
kλu—λ2u +

4
3
kλu1—λ

3
2
u

+
1
2
kλq—λ2q +

4
3
kλq1—λ

3
2
q +

1
2
kλr—λ2r +

4
3
kλr1—λ

3
2
r

+
1
2
k}u}2u +

4
3
k}u1}

3
2
u +

1
2
k}q}2q +

4
3
k}q1}

3
2
q

+
1
2
k}r}2r +

4
3
k}r1}

3
2
r +

bu
2
+
bq
2
+
br
2

(65)

Hence, according to Lemma 1, all closed-loop sys-
tem signals converge to a circular region �V =

min
{

ς
(1−2)γ1

, ( ς
(1−2)γ2

)
3
4

}
near the origin in finite time.

T ≤ max

{
4
γ12

ln(
γ12V

1
4 (0)+ γ2
γ2

),

4
γ1

ln(
γ12V

1
4 (0)+ γ22
γ22

)

}
(66)

By choosing appropriate design parameters kρ, kθ , kψ ,
ku, kq, kr , κu, κq, κr , kλu, kλq, kλr , kρ1, kθ1, kψ1, ku1, kq1, kr1,
kλu1, kλq1, and kλr1, �V is limited to a small region C∗ =

min
{

ς
(1−2)γ1

, ( ς
(1−2)γ2

)
3
4

}
. Then, one obtains:

β2u

π
tan(

πρ2e

2β2u
)+

β2q

π
tan(

πθ2e

2β2q
)+

β2r

π
tan(

πψ2
e

2β2r
)

+
1
2
u2e +

1
2
q2e +

1
2
r2e +

1
2
u2e1 +

1
2
q2e1 +

1
2
r2e1

+
1
2
λ̃−
2
u +

1
2
λ̃−
2
q +

1
2
λ̃−
2
r +

1
2
}̃2u +

1
2

˜

}2q +
1
2
˜
2
r} ≤ C

∗

(67)

which means that
β2u

π
tan(

πρ2e

2β2u
) ≤ C∗, ρ2e ≤

2β2u
π

tan−1(
πC∗

β2u
) < β2u

β2q

π
tan(

πθ2e

2β2q
) ≤ C∗, θ2e ≤

2β2q
π

tan−1(
πC∗

β2q
) < β2q

β2r

π
tan(

πψ2
e

2β2r
) ≤ C∗, ψ2

e ≤
2β2r
π

tan−1(
πC∗

β2r
) < β2r (68)

From (67) and (68), the following inequalities hold:

|ρe| < |βu|, |θe| < |βq|, |ψe| < |βr |, |ue| <
√
2C∗,

|qe| <
√
2C∗|re| <

√
2C∗, |ue1| <

√
2C∗, |qe1| <

√
2C∗,

|re1| <
√
2C∗, |λ̃−u| <

√
2C∗|λ̃−q| <

√
2C∗,

|λ̃−r | <
√
2C∗, |}̃u| <

√
2C∗, |}̃q| <

√
2C∗, |}̃r | <

√
2C∗

(69)

In conclusion, the errors ρe, θe, ψe, ue, qe, re, ue1, qe1, re1,
λ̃−u, λ̃−q, λ̃−r , }̃u, }̃q, }̃r are practical finite-time stable, and the
proof is complete.
Remark 7: According to equations (63) and (64), one can

obtain that when the design parameters kρ, kθ , kψ , ku, kq, kr ,
kλu, kλq, kλr , kρ1, kθ1, kψ1, ku1, kq1, kr1, kλu1, kλq1,and kλr1
increase, the parameters κu, κq, κr , κu1, κq1,and κr1, decrease,
and γ1, and γ2increase, thus changing the convergence
time of the controller and steady state errors. Therefore,
appropriate parameters can be selected to obtain better
control performance.
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FIGURE 3. Trajectory tracking.

FIGURE 4. XZ plot.

FIGURE 5. XY plot.

III. SIMULATION RESULTS
In order to verify that the proposed control scheme is
effective, simulation results of the developed controller in
this paper are compared with the finite-time control strategy,
the existing literature [22] and the traditional backstepping
control scheme under the same simulation situation [7]:
m11 = 25kg,m22 = 17.5kg,m33 = 30kg,m55 = 22.5kg ·

FIGURE 6. Tracking error ρe.

FIGURE 7. Tracking error θe.

FIGURE 8. Tracking error ψe.

FIGURE 9. Velocities.

m2,m66 = 15kg · m2, d11 = 30kg · s−1, d22 = 30kg ·
s−1, d33 = 30kg · s−1, d55 = 20kg · s−1, d66 = 20kg ·
s−1, ρgGML = 5.
The reference trajectory should be set as:xd = 5 sin 0.2t +

5 cos 0.1t, yd = 5 sin 0.1t + 5 cos 0.2t, zd = −10 − 0.1t.
We use the following gains for simulation:kρ = 0.1, kθ =
8.6, kψ = 2.8, ku = 2, kq = 5, kr = 8, kρ1 = kθ1 = kψ1 =
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FIGURE 10. Actual control inputs.

FIGURE 11. Adaptive parameters.

0.01, k∂1 = 0.1, κ∂=0.01, and k—λ∂=0.01, where ∂ = u, q, r .
The performance functions in (8) are specified as:βu = (11−
0.05) exp(−0.3t) + 1.25, βq = (π/6 − 0.05) exp(−0.5t) +
0.05, βr = (π/2 − 0.05) exp(−0.5t) + 0.05. We use the
following signals as ocean environment disturbances τk =
0.5sign(k)+ 0.5 sin(t/10), k = u, v,w, q, r . The initial state
of the AUV is given by x(0) = 15, y(0) = 10, z(0) =
−5, θ(0) = −π/10, ψ(0) = −π/7, u(0) = 0, v(0) =
0,w(0) = 0, q(0) = 0, r(0) = 0.

Simulation results are illustrated in Figs.3-11. Figs.3-5
show the trajectory tracking result, which indicates that
the AUV can successfully track the target. Figs.6-8 shows
tracking errors and the prescribed performance constraints.
Compared with the tradition backstepping method and BLF
tracking trajectorymethod, the proposed controller converges
quickly and has better control precision. Fig.9 shows the
velocities of the AUV in u, q and r . Fig.10 illustrates that
the three controllable inputs τu, τq and τrare continuous and
smooth. Fig.11 shows the adaptive parameters λ̂−u, λ̂−q and λ̂−r .

IV. CONCLUSION
In this paper, a finite-time convergent control strategy based
on the tan-type barrier Lyapunov function backstepping
method, combining DSC technique and MLP algorithm,
is proposed for the trajectory tracking problem of an
underactuated autonomous underwater vehicle. The proposed
controller ensures that all signals of the closed-loop system
are bounded, and the AUV can converge to the desired
trajectory in a finite time. The DSC technique improves the
efficiency of the controller by simplifying the calculation
process, while the MLP also enhances the robustness against

the model uncertainties. Then, an adaptive law can effectively
estimate NN errors and environmental disturbances to
guarantee the accuracy of system. Finally, simulation results
show that the proposed controller is effective.
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