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ABSTRACT Fulcrum Random Linear Network Coding (RLNC) combines outer coding in a large Galois
Field, e.g., GF(28), with inner coding in GF(2) to flexibly trade off the strong protection (low probability
of linear dependent coding coefficients) of GF(28) with the low computational complexity of GF(2).
However, the existing Fulcrum RLNC approaches are generation based, leading to large packet delays
due to the joint processing of all packets in a generation in the encoder and decoder. In order to avoid
these delays, we introduce Fulcrum Sliding Window (FSW) coding. We introduce two flavors of FSW:
Fulcrum Non-systematic Sliding Window (FNSW), which divides a given generation into multiple partially
overlapping blocks, and Fulcrum Systematic Sliding Window (FSSW), which intersperses coded packets
among the uncoded (systematic) transmission of the source packets in a generation. Our extensive evaluations
indicate that FSSW substantially reduces the in-order packet delay (for moderately large generation and
window sizes down to less than one fourth) and more than doubles the encoding and decoding (computation)
throughput compared to generation-based Fulcrum.

INDEX TERMS Fulcrum network coding, packet in-order delay, random linear network coding (RLNC),
sliding window network coding, throughput.

I. INTRODUCTION
Random Linear Network Coding (RLNC) is a Forward
Error Correction (FEC) mechanisms that linearly combines
source packets according to random coding coefficients in a
Galois Field GF to create coded packets. The coded packets
carry the random coding coefficients in the packet header.
A destination can decode the coded packets from the cod-
ing coefficients without any need for additional signaling
or coordination between the encoder and decoder, making
RLNC attractive for a wide range of communication scenar-
ios in general wireless networks [1]–[4] and wireless sensor
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network [5]–[7], as well as backhaul networks [8], [9] and
content distribution networks [10]–[13].

In particular, with RLNC, the decoder can decodeN source
packets from any set of N received coded packets as long as
the coded packets (i.e., the corresponding coding coefficients)
are linearly independent. A large Galois Field, e.g., GF(28),
ensures that the coding coefficients are linearly independent
with a very high probability, but requires complex compu-
tations for the decoding. Therefore, GF(28) coded packets
can reasonably only be decoded on computationally powerful
destination nodes. In contrast, the small Galois Field GF(2)
suffers from a relatively high probability of linear dependent
coding coefficients, but can be decoded with elementary
Exclusive OR (XOR) operations with low computational
complexity. Thus, GF(2) coded packets can be decoded on
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nodes with little computational power, e.g., Internet of Things
(IoT) actuator nodes.

Conventional RLNC is restricted to operating only in a
single Galois Field and thus can either cater to destination
nodes with high computation power or low computation
power. In contrast, Fulcrum RLNC combines a large-field
outer coding, e.g., in GF(28), with inner coding in the small
field GF(2), so as to flexibly cater to both high-powered
and low-powered destination nodes [14], [15]. Thus, Ful-
crum RLNC enables the use of RLNC as FEC for scenarios
with sets of diverse destinations that differ widely in their
computing capabilities, e.g., IoT systems with high-powered
gateways, and low-powered actuators. However, existing Ful-
crum RLNC schemes are restricted to operate only on the
basis of so-called generations, which are groups of N source
packets. With generation-based Fulcrum RLNC, all N source
packets in a given generation are randomly combined during
encoding; hence, all coded packets for a given generation
need to be received before the coded packets can be decoded
to obtain the source packets. The generation-based opera-
tion introduces delays that are proportional to the generation
size N .
Finite sliding window RLNC seeks to reduce the delay

due to the coding structure by combing the source packets
in a relatively small coding window covering w, w < N ,
source packets so as to reduce the RLNC latencies [16]–[18].
Additionally, source packets can be sent in uncoded
(so-called ‘‘systematic’’) form to bypass the decoding,
and to avoid the delays associated with encoding and
decoding [19]–[23]. The systematic source packet transmis-
sions can be FEC protected by coded packets that are combi-
nations of the source packets in a window and are interspersed
among the source packet transmissions [19]–[21], [24], [25].
To the best of our knowledge, all such existing schemes
for reducing the latency in RLNC packet communication
operate only with a single Galois Field size and thus can only
cater to either destinations with high or low computational
capabilities.

A. CONTRIBUTION AND STRUCTURE
Based on the review of the related literature in Section I-B,
we develop and evaluate the first sliding window approach
to Fulcrum RLNC coding so as to enable RLNC FEC to
diverse sets of destinations while mitigating latencies through
systematic source packet transmissions and sliding window
RLNC coding. The Fulcrum Sliding Window (FSW) cod-
ing developed in Section II incorporates the sliding window
mechanism in the Fulcrum inner coding. In particular, Ful-
crum Non-systematic Sliding Window (FNSW) conducts the
inner coding for a generation of N source packets (and asso-
ciated outer coded packets) through coding multiple partially
overlapping blocks and sends only coded packets. In con-
trast, Fulcrum Systematic SlidingWindow (FSSW) transmits
the source packets and outer coded packets in systematic
form, interspersed by sliding window inner coded packets.

In summary, our main original contributions towards devel-
oping novel network coding methodologies are:

• We design the Fulcrum SlidingWindow (FSW)method-
ology for RLNC, the first RLNC approach that permits
the flexibility of utilizing different Galois fields (cater-
ing to receivers with different computing capabilities)
with a low-latency sliding window.

• We design the Non-systematic FSW flavor (called
FNSW) which codes all transmitted packets

• We design the Systematic FSW flavor (called FSSW)
which further reduces latencies by transmitting source
packets in systematic form.

Our performance evaluations in Section III compare the
two proposed FSWflavors with the low-latency single Galois
Field PACE RLNC approach [25] that intersperses coded
packets among the systematic source packet transmissions of
a given generation and with a small-generation variation of
the original generation-based Fulcrum RLNC [14]. We find
that FSSW attains the short in-order packet latencies of PACE
while achieving higher encoding and decoding throughput
levels than PACE and conventional Fulcrum and achieving
nearly as high decoding probabilities as PACE. We also find
that FSW coding effectively differentiates the decoding com-
plexity between inner decoding in GF(2) and outer decoding
in GF(28). Section IV summarizes the conclusions from this
first FSW study and outlines future FSW research directions.

B. BACKGROUND AND RELATED WORK
1) GENERATION-BASED FULCRUM RLNC
Fulcrum RLNC [14], [15] is a convenient RLNC coding
mechanism to provide the performance characteristics of
multiple Galois Fields [34] to heterogeneous receiver nodes.
Recent Fulcrum RLNC research has examined the reduc-
tion of the encoding and decoding computational complexity
through sparse coding with a low density of non-zero coding
coefficients [26] as well as the adaptivity and energy effi-
ciency in fog computing and smart city scenarios [27]–[30].
To the best of our knowledge, as summarized in Table 1,
all existing Fulcrum RLNC related research has been limited
to generation-based coding, which introduces relatively long
packet delays. In contrast, we introduce Fulcrum Sliding
Window (FSW) coding in this study to reduce the packet
delays.

TABLE 1. Summary comparison of key properties of proposed FSW RLNC
versus existing RLNC approaches.

2) SINGLE GALOIS FIELD SLIDING WINDOW RLNC
Sliding window RLNC [16]–[18] avoids the delays of pro-
cessing full generations of packets, related research has
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explored the mixing of generations [35] and batched network
coding [36], [37]. The low-latency characteristics of sliding
window RLNC are well suited for media streaming, which
has been studied in [31]–[33]. Generally, sliding window
RLNC can operate in a non-systematic mode or a systematic
mode. Before delving into the review of the two modes of
sliding window RLNC, we briefly note that an alterative
approach to reduce packet delays is to focus on systematic
source packet transmissions and to enable the recovery of
erased systematic source packets through interspersed coded
packets, e.g., through the so-called PACE approach [25].

a: NON-SYSTEMATIC SLIDING WINDOW
Non-systematic sliding window coding partitions the original
source packets into overlapping windows (also referred to as
blocks) consisting of w source packets, whereby the window
size w is smaller than the generation size N . The w source
packets in a given block are coded together. After generating
enough coded packets for a given block, the window slides
forward by at most w source packets; the more overlap, the
more reliable the coding.

Non-systematic sliding window coding has been studied
for different types of coding, such as digital fountain codes
for streaming multimedia [38], Raptor codes for efficient
video broadcasting [39], and BATS codes [40]. An analytical
model for non-systematic sliding window coding has been
developed in [41], while the specific application context of
mobile ad hoc networks has been studied in [42], [43] and
cooperative communication has been explored in [44].

b: SYSTEMATIC SLIDING WINDOW
Systematic sliding window coding transmits a subset of u
source packets in uncoded (systematic) form, followed by
the transmission of coded packets. These coded packets
are random linear combinations of the w source packets in
the (coding) window. Research has explored mechanisms
for advancing the systematic sliding window with feedback
from the destination to the sender [21], [45] and without
such feedback [46], [47]. Throughout this study, we consider
sliding window coding without feedback.

To the best of our knowledge, all existing sliding win-
dow research has considered RLNC with a single fixed
Galois Field, limiting the existing sliding window RLNC
approaches, e.g., to either high-powered or low-powered des-
tinations. In contrast, we introduce Fulcrum sliding window
RLNC coding to support diverse sets of destinations.

II. FSW: FULCRUM CODING WITH SLIDING WINDOW
A. BACKGROUND: GENERATION-BASED FULCRUM RLNC
The general Fulcrum coding principle is that a generation of
N source packet is expanded by r expansion packets that
contain redundant information to a total of N + r coded
packets. More specifically, the original source packets P =
{P0,P1, . . . ,PN−1} are first multiplied with outer coding
coefficients c`,j that are randomly selected by the encoder

TABLE 2. Summary of main notations for Fulcrum Non-systematic Sliding
Window (FNSW) and Fulcrum Systematic Sliding Window (FSSW).

from GF(2h) [14]:

o` =
N−1∑
j=0

c`,j · Pj, ` = 1, 2, . . . , r . (1)

These expansion packets are concatenated with the original
source packets P to create the set of outer coded packets
{P0,P1, . . . ,PN−1} ∪ {o1, o2, . . . , or } = O = {Oj, j =
0, 1, . . . ,N − 1,N ,N + 1, . . . ,N + r − 1}. Then, these
outer coded packets are multiplied with the inner coding
coefficients λ`,j that are randomly selected by the encoder
from GF(2) to create the inner coded packets:

I` =
N+r−1∑
j=0

λ`,j · Oj, ` = 0, 1, 2, . . . . (2)

The inner coded packets I` can be recoded in the intermedi-
ate nodes following the general RLNC recoding principles.
Decoders can decode the received packets with inner, outer,
or combined decoding, depending on their computing power.

B. PRINCIPLES OF FULCRUM SLIDING WINDOW (FSW)
This section explains how non-systematic and systematic
sliding window schemes can be integrated into the Fulcrum
coding. The integration is applied to the Fulcrum inner coding
coefficients since the number (typically at least N + r) of
packets generated by the inner encoder is much larger than the
number (r) of packets generated by the outer encoder. Also,
all three types of Fulcrum decoders require the coded packets
generated by the inner encoder. Hence, the structure of the
inner encoding has a substantial impact on the complexity and
latency of the decoding; whereas, the outer expansion packets
generated by outer encoder help only the outer and combined
decoders to increase the packet decoding probability, not to
lower the packet latency.

In the proposed FSW coding, the outer encoder gener-
ates outer coded expansion packets in the conventional way.
Specifically, r outer coded expansion packets are generated
with dense outer coding coefficients from a large field size,
e.g., GF(28), see Section II-A. In FSW coding, the inner
encoder randomly selects the coding coefficients in the win-
dow from GF(2) and sets the other coefficients to zero.
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FIGURE 1. Matrix of inner coding coefficients λ`,j , whereby row index ` corresponds to the inner coded packet I`
sent in time slot ` (marked on right side) and column index j corresponds to the outer coded packet Oj (original
source packets Pj and r = 2 outer coded packets o1 and o2) for (a) Fulcrum Non-systematic Sliding Window (FNSW)
with moving step m = 3, window size w = 5, and cFNSW = 5 coded packets to be sent for w = 5 packets; and
(b) Fulcrum Systematic Sliding Window (FSSW) with u = 3 uncoded packets per subset and cFSSW = 1 coded packets;
for generation size N = 9 source packets and r = 2 expansion packets.

C. FULCRUM NON-SYSTEMATIC SLIDING WINDOW
1) ENCODING
In order to keep the encoding and decoding computation
time as well as the complexity low, Fulcrum Non-Systematic
Sliding Window (FNSW) divides a data stream into blocks,
whereby the block length equals the window length w. In the
encoding, only the w packets in a given block are combined
together. Figure 1(a) illustrates the coding coefficient matrix
of the inner encoder for a generation of N = 9 source packets
and r = 2 outer coded packets. The block length is w ≤ N ,
and equivalently, the window size is w = 5, while the moving
step is m = 3 packets. As illustrated in Figure 1(a), the first
cFSSW × w = 5 × 5 block of inner coding coefficients,
which is marked with gray shading in the upper left of
Figure 1(a) consists of the coding coefficients corresponding
to the packets P0,P1,P2,P3, and P4. According to the exam-
ple in Figure 1(a), the encoder has to generate at least 5 coded
packets out of these w = 5 source packets in order to enable
the decoding of this block. In the example in Figure 1(a), the
coding coefficient row for creating the first coded packet is
1, 0, 1, 1, 0, i.e., the first inner coded packet I0 to be sent in
time slot 0 is a combination of the source packets P0,P2, and
P3 (since the corresponding coding coefficients are 1), while
the coding coefficients corresponding to P1 and P4 are zero
(i.e., P1 and P4 are not included in I0).
After the encoder generates cFNSW coded packets from a

block, the coding window is moved forward by m = 3 pack-
ets, as summarized in the flowchart in Figure 2. The second
block consists of the inner coding coefficients corresponding
to the source packets P3,P4,P5,P6, and P7 (see grey shaded
5× 5 block in the center of Figure 1(a)); whereby P3, and P4

FIGURE 2. Flowchart of FNSW inner encoding: cw counts windows, and
cc counts coded packets for a block (i.e., a window position).

are common packets in the first block and the second block.
As a result, packets P3 and P4 are more protected than
packets P0,P1, and P2 since packets P3, and P4 are covered
by the first and second blocks. In an erasure-free scenario,
there is no need for overlap, i.e., the window can move by
the block size m = w. In erasure scenarios, either a large
overlap or a high number of coded packets cFNSW should
be set to protect against packet erasures. Note that since the
inner encoder operates in GF(2), the probability of creating
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linear dependent packets is high. Thus, the number of coded
packets generated for one block, should at least be equal to
the window size, i.e., cFNSW ≥ w.

2) DECODING
For progressive decoding, which commences elimination
with the first received packet, a modified version of the
Gauss-Jordan elimination is applied [48].

a: INNER DECODING
The decoding process of one block can be finalized with inner
decoding when the decoder has received w linearly inde-
pendent coded packets. Then, all w packets can be decoded
together and sent to the upper layer. If the number of received
linearly independent coded packets for one block is less
than w, then the inner decoding process of this block is not
successful, and additional coded packets are required. These
additional coded packets can be coded packets generated by
the inner encoder as random linear combinations of all N + r
packets. Since these additional coded packets are denser than
the coded packets that are generated from a single block, they
can (provided they are linearly independent) recover packet
erasures or linear dependencies that occur in any block.

b: OUTER AND COMBINED DECODING
For outer or combined decoding, w linearly independent
coded packets are required to decode blocks that do not
include outer expansion packets (i.e., with the coefficients
corresponding to the outer expansion packets set to zero).
For instance, in Figure 1(a), five linearly independent coded
packets are required to decode the first two blocks (since
the coding coefficients corresponding to the outer expansion
packets o1 and o2 are zero). However, the outer decoder
only needs w−r = 3 linearly independent coded packets to
decode the last block in Figure 1(a) since the dimension of the
decoding matrix is N × N and the outer expansion packets
are used to map back the coding coefficients to the higher
field detail [14]. Moreover, these outer expansion packets are
random linear combinations ofN source packets, i.e., they are
fully dense.

3) PARAMETER SETTINGS
The number cFNSW of inner coded packets per block and
the moving step m control the trade-off between low delay
and low computation complexity on one hand; and protection
against channel erasures on the other hand. For instance,
a larger number cFNSW of coded packets for a block, will
increase the chance of decoding the block; on the down-
side, a larger cFNSW will delay the transmission of the next
block. We propose to set the number cFNSW of coded pack-
ets for a block as a function of the channel packet erasure
probability ε:

cFNSW ≥ w · (1+ ε). (3)

A smaller moving step m implies more overlap, i.e., the
window will slide forward more slowly, resulting in more

blocks. Hence, a smaller m will increase the total number of
generated packets and the computational time. We propose to
set:

m ≤ w · (1− ε), (4)

i.e., a larger erasure probability ε implies a smaller moving
step m, and thus more overlap.

The number nw of windows in one generation [40, Eq. (1)]
is

nw =
⌈
N + r − w

m

⌉
+ 1. (5)

We define the number tFNSW of packets that are inner GF(2)
coded according to the sliding window scheme, i.e., as com-
binations of w packets (sparse coded packets), for a given
generation as

tFNSW = nw · cFNSW. (6)

For instance, in Figure 1(a), the source transmits tFNSW =
15 packets that are coded according to the FNSW scheme.
After sending these tFNSW = 15 sparse coded packets, the
source can send dense coded packets that are random linear
combination of N + r packets, until the N source packets can
be decoded.

Based on [49, Eq. (7)], the probability of receiving w
linearly independent coded packets out of cFNSW transmitted
inner GF(2) coded packets is:

P(cFNSW,w) =
w−1∏
i=0

(
1−

1
2cFNSW−i

)
. (7)

D. FULCRUM SYSTEMATIC SLIDING WINDOW (FSSW)
1) ENCODING
Fulcrum Systematic Sliding Window (FSSW) first transmits
a subset of u uncoded source packets, followed by cFSSW
coded packets, as summarized in the flowchart in Figure 3.
Figure 1(b) illustrates the FSSW inner coding coefficient
matrix for a generation of N = 9 source packets, r = 2
outer coded packets, subset size u = 3, and window length
w = 5. As marked in Figure 1(b) with gray shading, the
coding coefficient that corresponds to a systematic packet
is set to one (while all other coding coefficients in the row
are set to 0). For instance, in the first row of Figure 1(b),
the coefficient that corresponds to packet P0 is one and all
other coding coefficients are zero, which means that P0 is
sent uncoded, i.e., systematically. After sending u systematic
packets, cFSSW = 1 coded packet is transmitted. The coding
coefficients of the coded packets are selected randomly from
GF(2). Since w > u, the window also includes w− u source
packets from the previous subset of uncoded packets. For
instance, the coverage of the second coded packet (which
corresponds to time slot 7 in Figure 1(b)) includes P1 and
P2 which were sent in the first subset. We propose to set the
window length to

w = du · (1+ ε)e. (8)
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FIGURE 3. Flowchart of FSSW inner encoding: cu counts systematic
packets in a subset, cc counts coded packets for a subset, and cn count
total transmitted systematic packets.

2) DECODING
The decoder only needs to decode coded packets to recover
packet erasures since received systematic packets can imme-
diately be sent to the upper layer. The decoder can store
systematic packets to utilize in the decoding process of coded
packets so as to recover packet erasures. For instance, suppose
that P5 in Figure 1(b) is erased. If the decoder receives
the second coded packet which is a combination of P1,P3,
and P5, the decoder needs P1 and P3 in uncoded form to
recover P5. If a packet is erased and cannot be recovered
through redundant packets, then either the sender needs to
send coded packets at the end of the generation, or this packet
will be counted as a loss.

3) PARAMETER SETTING
For a given packet erasure probability ε, the corresponding
code rate c ≤ 1− ε [50] defines the number cFSSW of coded
packets that need to be transmitted for a subset of u uncoded
packets:

c =
u

u+ cFSSW
≤ 1− ε. (9)

We define the number tFSSW of packets that are coded accord-
ing to the FSSW sliding window scheme for a given genera-
tion as

tFSSW =
⌈
N + r
c

⌉
= N + r +

⌈
N + r
u
· cFSSW

⌉
; (10)

whereby, N + r packets (i.e., the N source packets and the
r outer coded packets) are sent systematically by the inner
encoder; and dcFSSW · (N + r)/ue packets are sent as inner
GF(2) coded packets, i.e., as combinations of w packets
(sparse coded packets).

III. PERFORMANCE EVALUATION
This section first introduces our simulation setup in
Section III-A, examines the delay of individual packets in
Section III-B, the encoding and decoding throughput of dif-
ferent generations sizes in Section III-C, the impact of dif-
ferent window lengths on the delay, linear dependency, and
throughput in Section III-D, and the decoding probability in
Section III-E.

A. EVALUATION SETUP
1) OVERALL SETUP
We implemented FSSW and FNSW with the Kodo library
(kodo-fulcrum version 7.0) [51]. We measured the encoding
and decoding throughput with the standard benchmarks in
the library. We considered a coding scenario consisting of
one sender and one receiver, without intermediate recoding
nodes. A progressive decoder is applied, which is an on-the-
fly version of the Gauss Jordan elimination [48], and starts
decoding from the first received coded packet.

We performed the measurements in a virtual machine with
two vCPUs and roughly 3GB RAM. The properties of the
host PC are Intel(R) Core(TM) i7-7600UCPU 2.90GHzwith
20GB RAM. The size of the data packets was 1500 bytes
which is the maximum size of Ethernet packets. We use
the Galois Fields GF(2) for the inner coding and GF(28)
for the outer coding. We conducted over 2000 independent
replications for each scenario resulting in 95% confidence
intervals that are less than 1% of the corresponding sample
means. The confidence intervals are omitted from the plots to
avoid visual clutter. The channel erases a transmitted packet
independently with probability ε.

2) THROUGHPUT METRICS
With N denoting the generation size in number of source
packets and σ denoting the packet size in bytes, the encoding
throughput is defined as the generation size in bytes N · σ ,
divided by the encoding computation time for a given gener-
ation. Similarly, we define the decoding throughput as N · σ
divided by the decoding computation time for recovering the
N original data packets.

3) DELAY METRICS
We assume that time is slotted between the sender and
receiver, and that one packet is transmitted in each time
slot. We define the packet in-order-delay δ(i) for packet i,
i = 0, 1, . . . ,N − 1, as the index of the time slot in which
the packet is decoded (while neglecting the decoding com-
putation time, which is evaluated as decoding throughput)
minus the packet order number i. For instance, suppose in
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TABLE 3. FSSW and FNSW parameters for generation size N = 64 packets
and r = 4 outer coded packets; window size w = 20 throughout.

Figure 1(b) that P1 is erased when it is sent uncoded in time
slot 1. Then, suppose the receiver received the first coded
packet in time slot 3 and recovers P1. The in-order delay of
P1 is then two time slots, since it was supposed to be received
in time slot 1, while it was actually decoded in time slot 3.

We define the mean in-order packet delay D as the mean
of the in-order packet delays δ(i) experienced by the source
packets i, i = 0, 1, . . . ,N − 1, of a generation, i.e.,

D =
1
N

N−1∑
i=0

δ(i). (11)

4) BENCHMARKS
We compare the performance of the proposed FNSW and
FSSW for a given generation size N and number r of
Fulcrum outer coded packets against the original generation-
based Fulcrum [14] operating with a range of ‘‘small-
generation’’ sizes η, η ≤ N , and corresponding numbers
ρ, ρ ≤ r , of outer coded packets, as manipulating the
generation size is a possible strategy to tune the RLNC
performance [52]–[54]. Specifically, for FSW scenarios with
fixed generation size N = 64 and r = 4 outer coded
packets in Section III-D, we consider the following ‘‘small-
generation’’ original generation-based Fulcrum benchmarks:
transmit two small-generations, each with generation size
η = 32 and ρ = 2 outer coded packets; four small-
generations with η = 16 and ρ = 1; eight small-generations
with η = 8 and ρ = 1 (so as to maintain the Fulcrum
principle), and 16 small-generations with η = 4 and ρ = 1.
We further compare FSSW with u systematic packets in a

subset and cFSSW coded packets after a subset with PACE-
Burst encoding [25] with u systematic packets followed by
cFSSW coded packets per sub-generation. The PACE bench-
mark focuses on low latency by interspersing GF(28) coded
packets that combine all source packets in a generation that
have been transmitted so far.

B. IMPACT OF ERASURES ON PACKET DELAY
1) FSSW AND FNSW PARAMETER SETTINGS
Table 3 lists the FSSW and FNSW parameters for the two
considered packet erasure probabilities ε = 0.05 and ε =
0.15. For both FSSW and FNSW, the code rate c was set
according to Eqn. (9) for ε = 0.05 to c = 95/100 = 19/20;
analogously, for ε = 0.15, we set c = 85/100 = 17/20.
For FSSW, based on c = 19/20 and Eqn. (9), we set the
size u of the subset of uncoded packets to u = 19 and the
number cFSSW of coded packets per subset to cFSSW = 1;

analogously, for c = 17/20, we set u = 17 and cFSSW = 3.
The window size wwas set according to the FSSW approach,
see Eqn. (8), and the same w value was used for FNSW.
For FNSW, we set the moving step for the ε = 0.05, c =
19/20 scenario to m = 19 and set the number of coded
packets to cFNSW = 21. For both FSSW and FNSW, after
sending tFSSW and tFSSW packets, respectively, according to
the sliding window approaches, the source sent dense GF(2)
coded packets until the N source packets could be decoded.
These FSSW and FNSW parameters were identical for all
Fulcrum decoder types, i.e., for the inner, outer, and combined
Fulcrum decoders.

2) RESULTS AND DISCUSSION
Figure 4 shows the packet in-order delay δ(i) for the
inner decoder as well as for the outer/combined decoder.
We observe that the delays for the inner and outer/combined
decoders exhibit generally similar behaviors, whereby the
outer/combined decoder can slightly reduce the delays com-
pared to the inner decoder. In particular, with original Ful-
crum RLNC, the delay of the first packets (small i) is very
high since all packets are decoded at the end of the genera-
tion, namely after the outer/combined decoder has received
N = 64 linearly independent coded packets, or the inner
decoder has received N + r = 68 linearly independent coded
packets [14]. The decoded packets are sent to the upper layer.
For inner decoding, the in-order delay δ(0) of the first packet
is around 72 time slots for ε = 0.05 in Figure 4(a). The
decoder receives an average number of 1.6 linear dependent
coded packets when coding N + r = 68 packets in GF(2)
[55, Eqn. (4)]. Accordingly, the original Fulcrum encoder has
to transmit on average (N + r + 1.6)/(1− ε) = 69.6/0.95 =
73.3 coded packets in order to enable the inner decoding
(which requires N + r linearly independent coded packets)
at the receiver, hence the first (i = 0) packet has to wait on
average for the transmission of 73.3 − 1 = 72.3 subsequent
coded packets to enable the inner decoding, i.e., δ(0) = 72.3;
and, for the last packet, δ(63) = 73.3−64 = 9.3. Importantly,
the average (across the packets i = 0, 1, . . . ,N − 1) of
the in-order packet delays of the original generation-based
Fulcrum is proportional to the generation size N .
We observe from Figure 4 that the FNSW in-order packet

delay resembles a sawtooth wave with four peaks. The four
peaks are due to nw = 4 windows in a generation, whereby
each peak corresponds to the beginning of a block. The delay
of the first packet in a block is the highest among the packets
in the block because in FNSW, the receiver has to have w
linearly independent packets to decode the block. Thus, the
first packet in a block has to wait until w linearly independent
coded packets have been received, causing the decreasing
slope of a given sawtooth; whereby the first (left-most) saw-
tooth consists of w packets and subsequent sawtooth waves
consist ofm ≤ w packets (due to thew−m packets of overlap
with the preceding window). If the cFNSW coded packets per
window of w packets are not enough to recover the erased
packets of a block, then some packets in the block have towait
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FIGURE 4. In-order delay of individual packets δ(i ) as a function of packet order number i for FNSW, FSSW, original Fulcrum,
and PACE for scenarios with correctly estimated channel packet erasure probabilities ε = 0.05 in (a) and ε = 0.15 in (b), and
incorrect estimation, namely estimated ε = 0.05 and coding parameters from Table 3 for ε = 0.05, but actual ε = 0.15 in (c),
while estimated ε = 0.15 and coding parameters from Table 3 for ε = 0.15; but actual ε = 0.05 in (d); fixed parameters:
generation size N = 64, r = 4 outer coded packets.

until dense coded packets arrive at the end of the generation,
causing an underlying decreasing delay trend for increasing
packet order number i, see the mild trend in Figure 4(a)
and the pronounced trend in Figure 4(c). Whereas, too many
coded packets delay the transmission of the next window,
causing an underlying increasing delay trend, see Figure 4(d).

For FSSW, Figure 4 indicates that the in-order packet
delays are consistently below 12 time slots for all considered
scenarios. FSSW achieves the short in-order packet delays
due to the transmission of the systematic packets. More
specifically, a received systematic packet i can immediately
be passed to the upper layer. If there are no more than cFSSW
packet erasures within a subset of u packets, then the erasures
can be recovered by the cFSSW coded packets at the end
of the subset (provided these cFSSW coded packets are lin-
early independent). If the packet erasure probability ε on the
channel has been correctly estimated, then the cFSSW coded
packets are typically sufficient for the recovery, resulting in

the nearly flat delay curves in Figures 4(a) and 4(b). On the
other hand, if ε is underestimated and thus cFSSW too small,
then some erased packet can only be recovered with the dense
coded packets sent at the end of the generation, resulting
in the tendency for increased delays for the packets early
in the generation and thus the decreasing delay trend with
increasing packet number i in Figure 4(c).

A large number cFSSW of coded packets at the end of a
subset of u packets is helpful for ensuring the recovery of
the erased packets of the subset; however, the cFSSW coded
packets delay the transmission of the subsequent systematic
source packets by cFSSW time slots. These dynamics lead to
the four barely visible sawtooth waves in Figure 4(b), where
the cFSSW = 3 coded packets protect against the high erasure
probability ε = 0.15, while increasing the in-order delays of
the packets at the beginning of the next subset. The downward
trend within a given sawtooth (subset) is caused by the packet
recovery with the coded packets at the end of the subset.
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FIGURE 5. Encoding and decoding throughput as a function of generation size N ; fixed parameters packet erasure prob. ε = 0.1,
r = 4 outer coded packets, window size w = 10; FSSW: u = 9, cFSSW = 1; FNSW: m = 9, cFNSW = 11.

An excessive number cFSSW of coded packets leads to the
‘‘step-up’’ curve of the in-order packet delays in Figure 4(d).

We also observe from Figure 4 that PACEwith its structure
of u systematic packets followed by cFSSW dense GF(28)
coded packets achieves the same low delays as FSSW; albeit,
PACE does not provide the flexibility of utilizing the inner,
outer, or combined Fulcrum decoder.

C. IMPACTS OF GENERATION SIZE ON THROUGHPUT
This section examines the encoding and decoding (compu-
tation) throughput as a function of the generation size N .
The channel erasure probability was set to ε = 0.1. The
window size was set to w = 10 packets so that FNSW
can have a low coding complexity and low computation
time and correspondingly high throughput levels. The effect
of the window size w on the throughput will be examined
Section III-D.

1) ENCODING THROUGHPUT
We observe from Figure 5(a) that FSSW and FNSW sub-
stantially increase the encoding throughput compared to the
original generation-based Fulcrum, whereby the encoding
throughput gap widens with increasing generation size N .
In particular, FSSW more than doubles the original Fulcrum
encoding throughput for N = 50; while for N = 400, FSSW
achieves more than five times the original Fulcrum encoding
throughput.

We also observe from Figure 5(a) that PACE achieves an
encoding throughput between FSSW and FNSW for the small
generation size N = 50, while the PACE encoding through-
put drops to just slightly above the original Fulcrum encoding
throughput for large N . PACE sends u = 9 systematic
packets followed by cFSSW = 1 dense GF(28) coded packets
that combine all previously transmitted source packets of the
generation, whereas FSSW and FNSW utilize GF(2) for the
inner encoding and GF(28) only for the outer encoding.

2) DECODING THROUGHPUT
Turning to the decoding throughput in Figure 5(b),
we observe similar trends as for the encoding throughput.
In comparison to the original Fulcrum, FNSWalmost doubles
the decoding throughput, while FSSW increases the decoding
throughput approximately 2.5 times relative to the original
Fulcrum. We observe from Figure 5(b) that for FSSW, the
outer decoder achieves higher decoding throughput than the
combined decoder for the small generation sizes N = 50 and
100; while for the large N = 400 generation size, the
combined decoder achieves a higher throughput than the
outer decoder, as is common for Fulcrum decoding [14].
The combined decoder applies two stages of inner decod-
ing up to N received packets and then maps the resulting
decoder coefficient matrix back to theGF(28) outer decoding
[14, Sec. II.D.3.]. In contrast, the outer decoder maps back
to GF(28) outer decoding right away. The large proportion
of systematic source packets in FSSW simplifies the outer
decoding (as the systematic packets are an extreme form
of sparse coding [56]–[61]). Moreover, for small generation
sizes N , the cubed computational complexity of decoding in
N [62] is low. The additional computation overhead from
executing the inner decoding stages of the combined decoder
does not pay off for the combination of extremely sparse
(FSSW) coding and small generations. On the other hand,
for large generations of extremely sparse (FSSW) coding or
any generation size of moderately sparse (FNSW) coding,
the inner decoding stages of the combined decoder reduce
the decoding complexity compared to pure outer decoding.

The PACE decoding throughput in Figure 5(b) follows a
similar trend as the PACE encoding throughput in Figure 5(a)
due to the exclusive operation of PACE in GF(28).

D. IMPACT OF WINDOW SIZE
This section examines the impact of the window sizew on the
mean packet delay D, the number of linear dependent coded
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FIGURE 6. Mean in-order packet delay D and number of received linear dependent coded packets per generation for FNSW and FSSW
as a function of window size w with parameters from Table 4 and for small-generation original Fulcrum as a function of
small-generation size η, see Section III-A4.

FIGURE 7. Encoding and decoding throughput of FNSW and FSSW as a function of window size w for parameters from Table 4 and of
small-generation original Fulcrum as a function of η, see Section III-A4.

TABLE 4. FSW parameters for generation of N = 64 packets,
ε = 0.1 packet erasure probability, and r = 4 outer coded packets for
different window sizes w ; FSSW code rate is set to c = 1− ε = 9/10
(u = 9, cFSSW = 1, tFSSW = 76) for all window sizes w .

packets per generation, as well as the encoding and decoding
throughput of FSSW and FNSW. Throughout this section,
we consider the fixed generation size of N = 64 packets with
r = 4 outer coded packets and a packet erasure probability
of ε = 0.1 on the channel. Table 4 summarizes the FSSW

and FNSW parameters for the range of considered window
sizes w. Figure 6 shows the mean in-order packet delayD and
the number of received linear dependent coded packets per
generation, while Figure 7 shows the encoding and decoding
throughput as a function of the window size w.

1) MEAN IN-ORDER PACKET DELAY
We observe from Figure 6(a) that the FNSW mean in-order
packet delay D generally increases as the window size w
increases. This mean delay increase is mainly due to the
sawtooth FNSW delay dynamics in Figure 4. As the window
size w increases, there will be fewer, but larger sawtooth
waves, which increase the mean value of the individual in-
order packet delays δ(i). For the extreme case of w = N + r ,
there would be only a single sawtooth (window) and FNSW
would degenerate to the original generation-based Fulcrum.
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In contrast, we observe from Figure. 6(a) that the FSSW
mean in-order packet delay D remains essentially unchanged
as the window size w increases. There is only a very slight
delay increase for the small window sizes w = 5 and 10 due
to the slightly increased numbers of FSSW linear dependent
packets for these small window sizes, see Figure 6(b).

We observe from Figure. 6(a) that the mean in-order
packet delay D of small-generation original Fulcrum gen-
erally decreases as the small-generation size η is reduced;
however, the delay D reaches a minimum for η = 16 for
inner decoding and η = 8 for outer decoding and then
increases for further reductions of the small-generation size η.
In order tomaintain the Fulcrum principle of at least one outer
coded packet, the η = 4 small-generation coding requires
a total of N/η = 16 outer coded packets per generation of
N = 64 source packets, see Section III-A4. This large cod-
ing overhead negates the delay reduction effect of the small
generation size. Moreover, the inner decoder cannot utilize
the outerGF(28) coded packets and requires the transmission
of numerous inner coded packets to compensate for the high
number of received linearly dependent inner coded packets
that occur for small η, see Figure 6(b).

2) RECEIVED LINEARLY DEPENDENT CODED PACKETS
The number of received linearly dependent coded packets
per generation in Figure 6(b) is evaluated by subtracting
N + r from the total number of packets received by the inner
decoder (up to the point when enough packets have been
received to decode all N source packets) and by subtracting
N from the total number of packets received by the outer
and combined decoder. We observe from Figure 6(b) that
the number of linear dependent packets generally decreases
with increasing window size w. This is because the number
of possible random combinations in GF(2) of the w source
packets in the coding window increases as 2w, reducing
the probability of the occurrence of linear dependent coded
packets. Specifically, the probability of receiving linearly
independent packets in Eqn. (7) increases withwwhile cFNSW
and w satisfy Eqn. (3).

We further observe from Figure 6(b) that for a very small
window size w (or small-generation size η), FNSW and orig-
inal Fulcrum with inner decoding have more than double the
number of linear dependent packets than FSSW and orig-
inal Fulcrum with outer decoding. On the other hand, for
large window sizes w ≥ 36, FNSW and original Fulcrum
have slightly lower numbers of linear dependent packets than
FSSW. As illustrated in Figure 1(a), FNSW transmits all
packets in inner GF(2) coded form, while FSSW transmits
only cFSSW inner GF(2) coded packets per u uncoded (sys-
tematic) source packets. For small window sizes w, and cor-
respondingly few (2w) possible random combinations of the
source packets in the coding window, it becomes quite likely
that FNSW generates linearly dependent coded packets. For
large window sizes w (and correspondingly large cFNSW
that satisfy Eqn. (3)), the probability of receiving w linearly
independent packets among cFNSW coded packets increases,

see Eqn. (7), and correspondingly the probability of linear
independent packets increases for original Fulcrumwith large
values of the small-generation size η approaching the actual
generation size N . On the other hand, for FSSW with large
window sizesw, w� u, the first few coded packets in FSSW
combine fewer than w packets; specifically, the first coded
packet combines u source packets, as illustrated in the upper
left corner of the coding coefficient matrix in Figure 1(b).
Thus, for large window sizes w, w � u, FSSW slightly
increases the chance of linear dependent packets compared
to FNSW which always combines w source packets.

3) ENCODING THROUGHPUT
We observe from Figure 7(a) that FSSW achieves a high
encoding throughput that decreases only slightly for increas-
ing window size w; whereas, the FNSW encoding through-
put decreases approximately quadratically with increasing
window size w. FSSW generates only dcFSSW · (N + r)/ue
inner GF(2) coded packets that are combinations of w coded
packets, see Eqn. (10), leading to a linear increase in the
encoding complexity with increasing w. In contrast, FNSW
generates tFNSW, tFNSW ≥ N + r , inner coded packets as
specified in Eqn. (6) in conjunction with Eqns. (3)–(5). Each
inner coded packet is a combination of w packets in GF(2),
and there are cFNSW, cFNSW ≥ w [see Eqn. (3)], coded
packets per window, resulting in a computational encoding
complexity that is quadratic in w [62].

Figure 7(a) also indicates that the encoding throughput of
the small-generation original Fulcrum strategy is generally in
the vicinity of the FNSW encoding throughput. The decrease
of the original Fulcrum encoding throughput when decreas-
ing the small-generation size from η = 8 to η = 4 is mainly
due to the increase of the total number of outerGF(28) coded
packets from 8 to 16 for the full generation of N = 64 source
packets, see Section III-A4.

4) DECODING THROUGHPUT
Figure 7(b) shows the decoding throughput levels for the three
types of Fulcrum decoders. We observe from Figure 7(b)
that for all decoder types, FSSW achieves higher decod-
ing throughput than FNSW, mainly due to the systematic
source packet transmissions in FSSW. We also observe from
Figure 7(b) that the FSSW decoding throughput is nearly
constant as the window size w increases; whereas, FNSW
exhibits decreasing decoding throughput for increasing w.
There are two main opposing effects are work: (THDec↘)
Larger window sizes w increase the computational effort for
the decoding of the sparse coded packets, i.e., the packets
that are combinations of w source (and outer coding) packets;
and (THDec↗) larger window sizes w reduce the number of
linearly dependent packets (see Figure 6(b)), thus reducing
the need to decode dense coded packets (that are combi-
nations of all N + r source and outer coded packets) at
the end of the generation. For FSSW with only few sparse
coded packets, these two effects approximately compensate
each other. On the other hand, for FNSW which requires
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FIGURE 8. Decoding failure probability of N = 64 source packets as a
function of number of received extra packets for inner and
outer/combined Fulcrum decoder for FSSW, FNSW, PACE, and
small-generation original Fulcrum; fixed parameters: packet erasure
prob. ε = 0.1, r = 4 outer coded packets, window size w = 30; FSSW:
u = 9, cFSSW = 1; FNSW: m = 27, cFNSW = 33.

the decoding of blocks of cNFSW ≥ w sparse coded packets
(which involves computationally expensive matrix inversion
with cubed complexity in cNFSW [62]), the decoding through-
put decreasing effect (THDec↘) dominates for increasing w
despite the pronounced drop in the FNSW number of linearly
dependent packets with growing w (see Figure 6(b)).
Importantly, the throughput results in Figure 7 indicate

that the FSW coding design provides a strong differentiation
between the computational complexity of the different types
of Fulcrum decoders. For the higher-performing FSSW, the
inner decoder achieves about 3/2 times the throughput of
the outer and combined decoders, i.e., inner decoding has
only about 2/3 of the computational complexity of outer or
combined decoding.

E. DECODING PROBABILITY
This section examines the decoding probability of the N
source packets of a generation as a function of the number
of extra received packets (beyond N packets) by the inner
Fulcrum decoder and the outer/combined Fulcrum decoder.
We observe from Figure 8 that small-generation original Ful-
crum with η = 32, PACE, and FSSW with outer/combined
decoder, as well as FNSW with outer/combined decoder
require the fewest received packets, followed by the inner
decoder for original Fulcrum with η = 32, FSSW, and
FNSW. The original Fulcrum with η = 4 and outer decoding
requires even more received packets. The outer/combined
decoder maps back to the large-size GF(28), where linear
dependent coded packets and the omission of source packets
in the outer coded packets due to a zero coding coefficient are
very rare. Thus, in FSSW, the r = 4 outer coded packets can
almost surely recover any erased systematically transmitted
source packet. On the other hand, the inner decoder has to

rely on the cFSSW = 1 inner GF(2) sliding window coded
packet that follows after u = 9 systematic source packets
and the innerGF(2) dense coded packets that follow after the
tFSSW packet transmissions. The sliding window inner coded
packets cover at mostw = 30 source packets (while the dense
coded packets cover all N source packets); in addition, linear
dependent coded packets (as examined in Figure 6(b)) and
source packet omissions in a GF(2) coded packet (when the
corresponding coding coefficient is zero) limit the recovery
capabilities of the inner coded packets.

We note that generation-based Fulcrum (for the full gener-
ation sizeN ) requires at leastN+r received packets for inner
decoding [14]. In contrast, FSSW permits—in principle—
inner decoding with N received packets: Suppose that the
channel erases cFSSW systematic packets from each subset of
u systematic source packets and that the cFSSW coded packets
can recover these packet erasures (or none of the u source
packets, but all following cFSSW coded packets are erased).
Then, all N source packets can be decoded (or are systemat-
ically received) from N packets received at the destination.
FNSW transmits only coded packets, therefore the N source
packets need to be obtained through outer decoding of the
N × N coding coefficient matrix or inner decoding of the
(N + r)× (N + r) coding coefficient matrix.
The PACE benchmark employs onlyGF(28) coding, which

has a negligible probability of linear dependent coded pack-
ets, thus reducing the number of required received packets
compared to the FSW schemes that employ GF(2) coding
for all inner coding. The small-generation η = 32 original
Fulcrum benchmark with outer decoding has the smallest
number of linear dependent packets in Figure 6(b) and cor-
respondingly requires the smallest number of extra received
packets for decoding. However, for the small-generation size
η = 4, original Fulcrumwith outer decoding has amean num-
ber of close to ten linear dependent packets per generation of
N = 64 source packets in Figure 6(b). Accordingly, small-
generation original Fulcrum with η = 4 requires around ten
packets to approach successful decoding and over 18 extra
packets are required to reduce the decoding failure probability
below 1%, see Figure 8.

IV. CONCLUSION
We introduced Fulcrum Sliding Window (FSW) coding to
reap the benefits of both the Fulcrum RLNC coding and the
sliding window RLNC coding. Based on the Fulcrum coding,
FSW coding flexibly reaches diverse sets of destinations that
need to decode with low-complexity XOR operations in the
small Galois FieldGF(2) or with computationally demanding
operations in a large Galois Field, e.g., GF(28). Based on the
sliding window coding, FSW achieves low in-order packet
latencies as well as high encoding and decoding (computa-
tion) throughput. More specifically, we developed Fulcrum
Non-systematic Sliding Window (FNSW) coding and Ful-
crum Systematic Sliding Window (FSSW).

Our extensive evaluations indicate that the introduced
FSSW coding achieves short in-order packet delays in
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conjunction with high encoding and decoding throughput.
We also observed that FSSW preserves the Fulcrum RLNC
feature of effective differentiation between the outer and
combined decoding (high reliability, i.e., low decoding failure
probability, at the expense of complexGF(28) decoding) ver-
sus inner decoding (reduced reliability or slightly increased
delay for low complexity GF(2) decoding).

The PACE benchmark [25] achieves similarly short in-
order packet delays and high reliability as FSW, but gives
lower encoding and decoding throughput and, importantly,
is limited to operating in a single Galois Field size. A small-
generation strategy of the original generation-based Fulcrum
RLNC coding [14] incurs a high coding overhead as the
small-generation size is shrunken in an effort to achieve
short in-order packet delays. The high overhead negates the
delay reductions of the small-generation size. Also, small-
generation Fulcrum coding creates a relatively high propor-
tion of linear dependent coded packets, sharply reducing the
reliability, i.e., increasing the decoding failure probability.

Future research can build on FSW in several directions.
One interesting direction is to further accelerate the encoding
and decoding through hardware acceleration modules [63],
[64]. FSW allows the flexibility to support hardware mod-
ules that are limited to XOR operations as well as hard-
ware modules that can execute operations in large Galois
Fields. Another interesting future research direction is to
explore deep learning techniques [65]–[68] to estimate the
channel packet erasure probabilities and to adapt the coding
parameters.
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