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ABSTRACT Demand Response (DR) programs show great promise for energy saving and load profile
flattening. They bring about an opportunity for indirect control of end-users’ demand based on different
price policies. However, the difficulty in characterizing the price-responsive behavior of customers is a
significant challenge towards an optimal selection of these policies. This paper proposes a Demand Response
Aggregator (DRA) for transactive policy generation by combining a Reinforcement Learning (RL) technique
on the aggregator side with a convex optimization problem on the customer side. The proposed DRA can
maintain users’ privacy by exploiting the DR as the only source of information. In addition, it can avoid
mistakenly penalizing users by offering price discounts as an incentive to realize a satisfying multi-agent
environment. With an ensured convergence, the resultant DRA is capable of learning adaptive Time-of-Use
(ToU) tariffs and generating near-to-optimal price policies. Moreover, this study suggests an off-line training
procedure that can deal with issues related to the convergence time of RL algorithms. The suggested process
can notably expedite the DRA convergence and, in turn, enable online applications. The developed method
is applied to a set of residential agents in order to benefit them by regulating their thermal loads according
to generated price policies. The efficiency of the proposed approach is thoroughly evaluated from the
standpoint of the aggregator and customers in terms of load shifting and comfort maintenance, respectively.
Besides, the superior performance of the selected RL method is represented through a comparative study.
An additional assessment is also conducted by use of a coordination algorithm to validate the competitiveness
of the recommended DR program. The multifaceted evaluation demonstrates that the designed scheme can
significantly improve the quality of the aggregated load profile with a low reduction in the aggregator’s
income.

INDEX TERMS Demand response, demand response aggregator, time-of-use tariffs, reinforcement learning.

NOMENCLATURE
Indices
t Iteration index.
i House index.
k Time-step index.
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Parameters
ω Trade-off weighting factor of the

reward function.
τ Regularization parameter of the

proximal decomposition method.
x imin Lower bound of ith household

internal temperature.
x imax Upper bound of ith household

internal temperature.
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ui,Thmax Heating system capacity
of ith house at time-step k .

Variables

st State at episode t .
at Action at episode t .
µht Normalized hourly average of

the aggregated energy consumption.
ūh Average energy consumption

at hour h.
αht Normalized energy price

at hour h.
λht Energy price value

at hour h.
ξ Initial flat energy price.
uik Energy consumption of ith

house at time-step k .
ui,Thk Thermal energy consumption

of ith house at time-step k .
ui,NCk Energy consumption

of non-controllable
loads of ith house at time-step k .

x ik Indoor temperature of ith

house at time-step k .
wik Outdoor temperature at time-step k .
δik Thermal discomfort

factor of ith house.
x isp Set-point temperature

profile of ith house.

Functions

Rt Reward function at episode t .
Ât Advantage at episode t .
LF Load factor of the aggregated

energy consumption profile.
Pr Aggregator’s income sacrifice ratio.
TC(ui,Thk ) Thermal comfort function.

Abbreviations

DR Demand Response.
DRA Demand Response Aggregator.
RL Reinforcement Learning.
ToU Time-of-Use.
DB-ToU Discount Based Time-of-Use.
MDP Markov Decision Process.
PPO Proximal Policy Optimization.
ESH Electric Space Heating.

I. INTRODUCTION
The rapid increase in energy needs and associated green-
house gas emissions has created significant challenges to
traditional power systems. This issue can be relieved by the
promise of smart grids that bring about a modern power
system with efficient alternatives regarding the energy tran-
sition concept [1]. In the context of the smart grid, Demand

Response (DR) is favored as an effective mechanism to mit-
igate peak demand by utilizing communication technologies
and advanced metering infrastructures. DR programs employ
price and incentive signals to change end-users’ consump-
tion patterns, provide stability, balance energy resources,
and bring economic efficiency to grid stakeholders [2], [3].
DR programs devise various pricing strategies for alleviating
daily peak load. These schemes aim to shift energy con-
sumption from on-peak to off-peak hours. The main idea
is to define higher price rates for on-peak hours so that
users shift their load in order to avoid extra electricity bills.
However, users’ response can result in generating new peaks
since it increases energy demand during off-peak hours [4].
This issue can result from DR methods based on tradi-
tional flat-rate electricity tariffs. Accordingly, other pricing
strategies have been proposed to provide alternatives to for-
mer policies. These techniques generally offer price-based
DR programs in which utilities or aggregators are in charge
of recommended policies considering the historical behav-
ior of end-users’ load profiles [5]. They include Real-Time
Pricing (RTP), Time-of-Use (ToU) pricing, and Critical Peak
Pricing (CPP), where RTP and ToU are the most commonly
used means [6]. RTP is a scheme in which the electricity price
varies over short periods, normally hourly, with regard to the
real-time production cost. On the other hand, ToU pricing is
a tariff in which constant electricity prices are considered for
lengthy time intervals, typically hours of the day or days of
the week [7]. The latter is normally preferred by both grid
operators and customers, and, thus, has been the main focus
of the relevant literature [4].

A. RELATED WORK
Research works have explored DR programs from different
aspects to reveal their potential benefits. They have carried
out various studies on optimal pricing strategies to overcome
the challenges related to price quantification and time blocks
definition [6]. Particularly, different approaches have been
proposed in the literature to deal with optimal price pol-
icy generation. From one side, decentralized methods have
been considered to address this matter. Authors in [8] have
developed a coordination method based on a dynamic pricing
strategy to reduce the residential bill and aggregated peak
load in a day-ahead market. In [9], the authors have pro-
posed a ToU pricing strategy and an incentive-based energy
management technique by means of genetic optimization and
rolling-horizon algorithms. They have employed this frame-
work to decrease the electricity bill and increase the use of
renewable energy. The authors in [10] have applied dynamic
pricing to a day-ahead decentralized coordination problem.
Their strategy has been aimed at reducing the electricity bill
through energy sharing and appliance scheduling. In [11],
the authors have developed a proximal decomposition-based
dynamic pricing method to minimize the square Euclidean
distance between instantaneous and average energy demand.
In addition, they have exploited a sharing-the-cost mecha-
nism while preserving the privacy of users.
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Although decentralized pricing methods can improve the
operational performance of electrical grids, they require
a reliable communication system. Accordingly, centralized
approaches to demand-side services are promoted. Centraliz-
ing pricing tariffs not only alleviate the impact of communica-
tion failures but also provide economically efficient solutions.
In this context, agents can use inexpensive computing equip-
ment to process simple control signals (policies), offered
by a DR Aggregator (DRA) [12]. Centralized strategies for
generating optimal price policies have been carried out in
the literature based on three main algorithmic mechanisms
comprising game theory, constrained optimization, and Rein-
forcement Learning (RL). The game theory is one of the
most utilized approaches for this purpose. The authors in [7]
have employed a cooperative game theory to model ToU pric-
ing. In [13], a trilayer Stackelberg game has been exploited
to determine optimal ToU tariffs for a typical community
microgrid with prosumers. In [14], the authors have proposed
a scalable, hierarchical, transactional approach to integrate
batteries andmodel-free control mechanisms. They have used
the Stackelberg game to model negotiations between the dis-
tribution system operator and a load aggregator responsible
for efficient coordination and aggregation of a large number
of buildings with flexible energy demand. The authors in [15]
have utilized the same theory to characterize the transactive
price signal of a DRA based on the Nash equilibrium of the
transactive energy in a non-cooperative game. It is worth
mentioning that the Stackelberg leadership model is a pop-
ular type of game that has been widely used for ToU-based
DR studies.

In addition to the game theory, the problem of trans-
active policy generation has been tackled by optimization
methods. In [16], a profit maximization algorithm has been
proposed to accomplish optimal prices for an electric util-
ity under market constraints. The optimal solution has been
adopted for a hybrid model of customers’ demand according
to their response to generated price signals. In [17], con-
sumers have been categorized into low and high energy users.
Consequently, a bi-level optimization problem has been
implemented to realize a fair pricing system. This mecha-
nism has been intended to deal with the possibility of unfair
billing to customers with low energy demand through the
DR decision-making procedure. In this regard, it has carried
out an individual billing strategy for every detected homoge-
neous consumer. The same issue has been encountered by the
authors in [18] and [19]. In order to avoid imposing an unfair
penalty, the former has developed a personalized real-time
pricing structure while the latter has employed a load-based
clustering manner. As a result, these works have attempted to
meet users’ desires while maintaining a reliable power sup-
ply during peak demand. Nevertheless, they have undergone
notable computational costs due to processing multiple price
policies, which can hinder real-time applications.

A fruitful application of the above methods needs
customers to provide specific information such as initial
consumption and satisfaction rate to handle the inherent

uncertainty of DR programs. Therefore, the previous studies
have assumed that users’ information is accessible in order
to generate optimal price policies. However, such reliance
upon customers can jeopardize their privacy and cause them
to lose interest in generated price policies. Conversely, it can
create opportunities for hiding information and interacting
in a dishonest manner, which can, in turn, reduce the per-
formance of DR programs. This matter can be specifically
exemplified by the proposed methods in [20], [21], and [22].
In [20], the authors have developed an optimal ToU pricing
strategy in which consumers’ price elasticity must be known.
In [21], the authors have practiced a similar procedure in
which customers’ demand properties related to energy con-
version and storage devices are required. In [22], the authors
have executed a minimization problem in which the objec-
tive function must be provided by the model of responsive
loads. The challenges caused by users’ excessive involvement
have stimulated the development of pricing strategies that
reduce the need for their information. In [23], the authors
have proposed a pricing scheme with minimal communica-
tion requirements based on a non-cooperative scenario. They
have proved the existence of a Nash equilibrium to achieve
peak demand reduction for heterogeneous players with min-
imum interactions. Nevertheless, their proposed approach
requires customers to report their total energy consumption
within every game period. Subsequently, their solution to the
problem can be significantly affected by the accuracy and
truthfulness of the provided information. Besides, they have
not clearly defined the objectives of the service provider for
generating price signals, which can affect the scalability of
their method.

Recently, the RL method has become a viable option for
DR exercises due to its ability to deal with both information
limitations and load uncertainties. In fact, this machine learn-
ing technique is known for its capability to solve problems
with hidden information. In [24] and [25], RL methods have
been utilized to manage household load scheduling. In [2],
a deep RL approach has been implemented to obtain optimal
incentive policies through an incentive-based DR program.
Likewise, the authors in [26] have applied deep RL meth-
ods in continuous action domains for load frequency control
against renewable energy uncertainties. In [27], the authors
have constructed an RL-based decision-making system to
assist end-users with selecting the most beneficial ToU tar-
iffs and monthly rates and, consequently, minimizing their
electricity and dissatisfaction costs. Different applications
of RL algorithms in power and energy systems can be studied
in [28]. Particularly, RL techniques have been used to attain
optimal transactive policies in price-based DR programs.
The authors in [3] and [29] have employed the Q-Learning
algorithm, as a model-free RL, for RTP schemes. While
both studies have aimed to minimize the customer cost, the
former has considered the aggregator profit, and the latter has
dealt with the utility cost. They have exploited information
about user dissatisfaction because of demand reduction to
determine the RTP policy. However, their methods involve
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running thousands of episodes to reach a convergence point,
which makes real-world implementations difficult. In [30],
the authors have developed a Monte-Carlo RL technique
to optimize retail prices in local micro-grids for a distribu-
tion system operator while protecting end-user privacy. Their
method has allowed for minimizing the peak-to-average ratio
and maximizing the profit by selling energy. Additionally,
their RL approach can handle the intractability of the problem
under a great deal of uncertainty. However, it eliminates the
negotiation process since it assumes that consumer agents are
reactive. This assumption rules out the fact that the agents
can be proactive and explore other strategies to optimize
their consumption. In addition, it affects the scalability of
their proposed RL-based method for relevant applications.
Besides, they have not elaborated on the convergence time as
a critical factor in implementing RL methods while reporting
the results. Indeed, the above restrictions necessitate further
investigations into the price policy generation procedure of
DR programs.

B. MOTIVATION AND CONTRIBUTION
Inspired by the previous works, this paper seeks to overcome
practical difficulties in achieving optimal price policies. From
one side, it deals with the possibility of mistakenly penalizing
users within the price generation process through a compu-
tationally efficient mechanism. From the other side, it han-
dles the concerns related to users’ privacy and interaction
with the aggregator by completely avoiding the utilization
of their information. In fact, overlooking these issues can
violate customers’ satisfaction and decline their participation
in DR programs. As a result, this study makes the following
contributions.

1) It proposes a DRA that is able to avoid penalizing users
by generating Discount Based ToU (DB-ToU) tariffs.
The proposed DRA takes advantage of discounts as an
incentive for residential users to exploit their demand
flexibility and, consequently, flatten their aggregated
power consumption.

2) It develops a procedure that can generate near-to-
optimal price policies with no access to end-user
internal information. The designed DRA is able to
learn customers’ behavior towards energy usage only
by utilizing their response to transactive policies and
handling uncertainties related to the lack of domestic
information, which varies from user to user.

3) It constructs a multi-agent environment with ensured
convergence by combining an RL method on the
aggregator side with an optimization problem on
the customer side. Most importantly, the suggested
DRA adopts a pre-training strategy that remarkably
decreases the convergence time of the RL algorithm
and improves its online performance.

The rest of the paper is organized as follows: Section II
presents the methodology for formulating the proposed DRA.
Section III provides the results and discussion, followed by
concluding remarks in Section IV.

II. METHODOLOGY
In a residential distribution grid, operated by automated
agents, a DRA is in charge of managing the load flexibility
of a group of residences [31]. It provides transactive policies
to motivate customers to change their energy consumption
and consequently improves the quality of the aggregated load
profile. The proposed mechanism targets a group of residen-
tial buildings, equipped with energy-intensive controllable
loads. Fig. 1 illustrates the methodology for the proposed
DR program. In this procedure, the aggregator agent is run-
ning a day-ahead pricing scheme. It communicates price
signals to residential agents in order to decrease peak load
according to their response. To be specific, it offers price
discounts during different hours of the day to manage the
aggregated demand. At the end of the day, the DRA amasses
consumption profiles, calculates rewards, and generates the
next policy. In the following, the reinforcement learning
method and the reward mechanism for the DRA and residen-
tial agents are detailed.

FIGURE 1. Automatic energy management under the price-based DR
program.

A. REINFORCEMENT LEARNING
The targeted scenario considers a multi-agent system that is
composed of a set of residential agents and a DRA agent.
The aggregator agent is an RL agent that executes a trial-error
process to learn from an environment as part of aDRprogram.
Generally, this agent chooses actions according to a given
state and receives rewards through interacting with the envi-
ronment [32]. The interaction between the aggregator agent
and the environment is represented as a Markov Decision
Process (MDP) and is characterized by

1) State, st , that presents the hourly average of the aggre-
gated energy consumption,

2) Action, at , that explains the established ToU price
policy,

3) Reward, R, that predicts the DRA profit according to a
chosen action through Ras = E[Rt+1|st = s, at = a].

4) And the discount factor, γ ∈ [0, 1], that defines
the importance of the future rewards for the current
decisions. Higher values of γ expresses that future
rewards have a higher impact on the decision making
process.
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It should be noted that an MDP is an extension of Markov
chain in which the future state, st+1 depends only on the
current state, st and the current action, at . Given the com-
ponent γ , it is possible to calculate the ‘return’, Gt , as the
future discounted reward. In fact, the task of the RL agent is
to collect as many high rewards as possible. Accordingly, the
discount factor, γ , is used to realize a bounded reward, Gt ,
in terms of Rt + γRt+1 + γ 2Rt+2 + γ 3Rt+3 + · · · and avoid
an unboundedness problem due to a growing sum (infinite
case).

The aggregator agent learns the policy, π , by interact-
ing with the environment. This policy fully describes the
behavior of the agent and represents a distribution over
the pricing actions considering the states [35]. Afterward,
the state value function of MDP, Vπ (s), is determined as the
expected return given the starting state and the policy. Addi-
tionally, the state-action value function, Qπ (s, a), represents
the expected return, starting from the state s, taking the action
a, and following the policy π [24]. The optimal policy, π∗,
results in the optimal state value function, V ∗(s). In fact, this
function is obtained when the optimal policy is selected by
the RL agent [36]. TheMDP is solved when the optimal value
function is found since it represents the maximum reward for
the state s that can be obtained from the system. Similarly,
the optimal state-action value function, Q∗(s, a), is realized
when the optimal policy is chosen by the RL agent in the state
s to have the action a [37]. Q∗(s, a) represents the maximum
reward that can be obtained from the state s and the action a.
The proposed approach employs the Proximal Policy Opti-

mization (PPO) as a policy gradient method. The PPO algo-
rithm is used to optimize the policy πθ (a, s) based on the
policy parameter θ . This technique defines a reward function,
J (θ ), that depends on πθ (a, s) and is maximized with respect
to θ [32]. PPO is an algorithm with data efficiency and reli-
able performance, similar to advanced policy gradient meth-
ods such as Trust-Region Policy Optimisation (TRPO). These
methods try to stabilize agent training by avoiding big policy
alterations (updates on θ ) per state. However, PPO is a less
complex design that takes advantage of first-order techniques
instead of complex second-order schemes or hard constraints
like KL-divergence [38], [39]. The Algorithm 1 represents
the PPO technique for which the objective function, J (θ ),
is formulated by,

J (θ ) = Êt [min(rt (θ )Ât , clip(rt (θ ), 1− ε, 1+ ε)Ât )] (1)

where
• θ is the policy parameter,
• Êt is the expectation over episode t ,
• rt (θ ) is the probability ratio between new and old poli-
cies as πθ (at |st ) / πθold (at |st ),

• Ât is the estimated advantage at episode t as −V (st ) +
γRt + · · · + γM−t+1RM−1 + γM−tV (sM ) where M is
the batch size,

• And ε is the hyperparameter for clipping. This parameter
avoids large deviations in the updated θ considering θold
by clipping the ratio at the interval [1− ε, 1+ ε] [40].

Algorithm 1 PPO Algorithm
Input: initial policy parameters θ0, clipping threshold ε,
batch size M .
for t = 0, 1, 2, . . . do

Define the normalized action at . (Price policy defined by
the aggregator agent)
Get the normalized state st . (Residential agents’
response)
Calculate the reward Rt .
Collect the set of partial trajectories {(st , at ,Rt , st + 1)}
on policy πt = π (θt ).
Estimate advantage Ât .
if t mod M = 0 then

Compute policy update

θt+1 = argmax
θ

M∑
j=0

J (θ )

via stochastic gradient ascent with Adam [33].
end

end

B. DEMAND RESPONSE AGGREGATOR
The DRA is in charge of defining the price policy that is
applied for the next 24 hours. Each episode, t , starts with
sending the price policy and waiting for the response of
the residential agents in terms of power demand. The RL
aggregator performs an initial offline training by exploiting
the information of a specific day. Subsequently, the trained
agent is deployed to provide the transactive price signal for
the following days. As a result, the DRA learns to carry out
near to optimal pricing policies for a given set of houses by
using aggregated energy demand data. In this regard, the state

st ∈ S in the MDP can be defined as st = {µ1
t , µ

2
t , . . . , µ

24
t }

where µht =
ūh

max
h∈{1,...,24}

{ūh}
is the normalized average of

the aggregated consumption ūh at hour h. The agent selects
a normalized action at ∈ A as at = {α1t , α

2
t , . . . , α

24
t }.

Considering that ξ is the initial price policy, applied to the
power grid, and λht is the price, decided by the DRA for
the next hour, the price value at each hour, h, of the day is
calculated using αht through,

λht = ξα
h
t (2)

Accordingly, a price constraint based on (3) is established
by the DR program.

0 ≤ αht ≤ 1 ∀h ∈ {1, 2, . . . , 24} (3)

This restriction maintains a generated transactive policy
lower than the initial tariff, ξ , by constraining the action
space of DRA. As a result, it provides residential agents with
λht ≤ ξ . Finally, the reward function considers two main
objectives, intended by the agent to maximize. They con-
sist of improving the aggregated load profile quality and
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achieving the optimal DB-ToU tariff with lower aggrega-
tor’s income sacrifice. The former is aimed at load factor
correction in peak reduction, which is the inverse of the
peak-to-average ratio. Considering u = {u1, u2, . . . , uN } as
the overall discretized energy consumption profile, the load
factor can be calculated through,

LF =
1
N

∑N
k=1 uk

maxk{u}
(4)

Besides, the latter is sought by offering price discounts
to the houses for shifting their loads without sacrificing the
aggregator’s income. To be specific, the aggregator agent
defines the optimal policy by comparing DB-ToU and con-
stant bills together. Being u0,k the energy consumption when
the price is ξ , this comparison is performed by quantifying
the aggregator sacrifice based on the ratio between both bills,
computed through,

Pr =

∑N
k=1 ukλk

ξ
∑N

k=1 u0,k
(5)

According to (4) and (5), the agent reward function at the
episode t can be explained by,

Rt = ωLFt + (1− ω)Prt (6)

where ω is a weighting factor that allows a trade-off between
the aforementioned objectives. The aggregator agent tries to
maximize the return by using the proposed reward function.
This non-linear objective function balances load factor and
total revenue as two conflicting terms. The RL approach
enables the utilization of the proposed reward function in (6)
since it is not a differentiable operation that can be opti-
mized through gradient-based methods. Generally, RL meth-
ods facilitate executing non-differentiable reward functions
on the aggregator side. It should be highlighted that this
advantage increases the versatility of the recommended DRA
for actual implementations.

On the other hand, the price constraint (3) established by
the proposed DB-ToU scheme, always provides participants
with benefit. Users are never penalized since they receive the
initial price without any discount in the worst scenario. This,
in turn, boosts customers’ motivation for participating in DR
program. In addition, the proposed reward function uses the
initial energy consumption u0 = {u0,1, u0,2, . . . , u0,N } from
the constant tariff exercise. This practice provides the aggre-
gator with prior knowledge about users’ energy consumption
preferences and helps provide useful information about the
price responsive behavior of the residential agents.

C. RESIDENTIAL ENVIRONMENT
A case study of residential houses, located in Quebec,
Canada, during winter is considered in this work. Buildings
in the Quebec region represent a specific example of energy
consumption. Due to long cold climates, they consume a
massive amount of heating energy, which is mainly supplied
by electricity. In this district, Electric Space Heating (ESH)

systems account for more than 60% of energy consump-
tion [41]. In this case study, the residential environment is
composed of 20 agents. The residential agents are capable
of controlling their ESH demand by employing a Model
Predictive Control (MPC). To be specific, the MPC is applied
to thermal models of houses in order to estimate their indoor
temperature on a daily basis [42]. The decision-making pro-
cess of this model is executed based on the maximization of
users’ SocialWelfare Function. Accordingly, an optimal deci-
sion is made by satisfying individual participants’ comfort,
which is maintaining the temperature setpoint (the reference)
while minimizing the energy cost. Therefore, they can take
advantage of the price discounts, offered by the DRA. In fact,
ESH systems, as thermal loads, can provide residential agents
with energy flexibility to modify their demand under the DR
program. The total energy consumption of the residential
agent i at the time-step k is,

uik = ui,Thk + ui,NCk (7)

where ui,Thk and ui,NCk are the energy demand of the thermal
and other loads (assumed to be non-controllable), respec-
tively. The dynamic thermal response of the houses is
described by the state-space representation model to avoid
high computational complexity [43]. For the same agent, i,
this linear model computes the future value of indoor tem-
perature, x ik+1, depending on the current amounts of indoor
temperature, x ik , outdoor temperature, wik , and ESH demand,
ui,Thk , based on,

x ik+1 = Ax ik + Bw
i
k + Cu

i,Th
k (8)

where A is the state matrix while B and C are the input
matrices associated with the weather and heating sources,
respectively. The residential agent controls the thermal loads
to minimize the cost of energy consumption considering
occupants’ desires. Thermal comfort desires are used to for-
mulate the concave utility function through [44],

TC(ui,Thk ) = −δik (x
i
sp − x

i
k )

2 (9)

where for the agent i in (8), x isp presents the set-point temper-

ature profile, x ik represents the internal temperature profile,
and δik is the discomfort factor. This latter element charac-
terizes users’ willingness to sacrifice their thermal comfort
in order to reduce the bill. To be specific, it defines periods
of the day within which the comfort level varies between
high and low boundary conditions. In order to perform a
realistic scenario, the values of δik are determined according
to the comfort preferences in the Quebec residential sector,
presented in [45].

Since the residential agents solve their optimization prob-
lem in a selfish way, they do not cooperate with each other.
Dealing with the individuals who attempt to maximize their
own profit can expose the proposed approach to the prisoner’s
dilemma. In order to address this issue, a proximal decom-
position approach is established by penalizing the residen-
tial agents’ demand modification based on the regularization

VOLUME 10, 2022 54023



A. Fraija et al.: Discount-Based ToU Electricity Pricing Strategy for DR With Minimum Information Using RL

parameter τ . The penalization is applied to the difference
between the current energy consumption at episode t and
its previous amount at episode t − 1. Considering the utility
function in (9), the individual welfare can be expressed by,

W =
N∑
k=1

TC(ui,Thk )− λkuik − τ (u
i
t,k − u

i
t−1,k )

2 (10)

The goal of residential agents is to maximize their individ-
ual welfare. As a result, the dual problem of the agents’ cost
function can be formulated through,

Minimize
ui={uik }

T
k=1

N∑
k=1

δk (x isp − x
i
k )

2
+ λkuik + τ (u

i
t,k − u

i
t−1,k )

2

subject to Eqnarray(8)

x ik ∈ [x imin, x
i
max]

ui,Thk ∈ [0, ui,Thmax]

uik = ui,Thk + ui,NCk (11)

where the parameters x imin and x
i
max are the lower and upper

bounds of the allowed internal temperature, respectively,
and ui,Thmax is the heating system capacity within time slot k .
It should be noted that the temperature bounds are set by
the user for the thermostat. The equation (11) is a convex
optimization problem that is solved by using Disciplined
Convex Programming (DCP). The optimal solution is cal-
culated by means of the Embedded Conic Solver (ECOS)
through the Python-embedded modeling language for convex
optimization, CVXPY.

III. RESULTS AND DISCUSSION
A. REINFORCEMENT LEARNING ENVIRONMENT
PREPARATION
The reinforcement learning environment is composed of a
set of twenty residential houses. The electric heating system
information of these houses is obtained from a previous study,
conducted by the authors for the case of Quebec in [46]. This
information that comprises simulated ESH demand, as well
as internal and external temperatures, is used to create the
thermal dynamic response model of the houses, described
by (8). For this purpose, the parameters of the state space
representation of each house are estimated by means of the
Ridge regression technique [47]. Additionally, a data genera-
tion process is used to create the non-controllable appliances’
load based on the same study [46]. This process employs
the power consumption distribution of these devices, cap-
tured from actual data of eight houses in Quebec during
winter, to generate their demand through a sampling pro-
cedure. Subsequently, the ESH and non-controllable loads
are added to construct the overall power profile of each
house. Finally, the user preference and set-point tempera-
ture profiles of the houses are acquired from [45], in which
the author has investigated these features in Quebec house-
holds. The above practice provides the twenty houses with

FIGURE 2. Aggregated energy consumption behavior of twenty residential
agents in correlation with outside temperature on a typical winter day.

different electricity consumption patterns, which is perti-
nent to the Quebec region. Fig. 2 exemplifies the aggre-
gated energy consumption behavior of heating and uncon-
trollable demand in twenty houses for a typical day in
winter 2018.

The operation of residential agents in the RL environment
is carried out by OpenAI Gym as a toolkit for exploring
RL algorithms. In this environment, the aggregator agent
starts the pre-training phase on a randomly chosen day.
Accordingly, the aggregator learns the optimal DB-ToU price
policy for the selected day by applying PPO while taking into
account the reward function, presented in (6). Afterwards,
it defines theDB-ToU tariff for the next 24 hours andwaits for
the residential agents’ response. Subsequently, the suggested
policy is improved upon receiving the feedback in terms of
aggregated energy consumption profile for the next following
episode. The simulation starts with a conventional pricing
scheme where the energy cost is ξ = 10 /kWh and the DRA
offers a discount price tariff every day, as an incentive for
the residential agents. Fig. 3 presents a schematic diagram of
the interaction between RL agents that has been developed

FIGURE 3. The RL environment developed using Gym toolkit.

54024 VOLUME 10, 2022



A. Fraija et al.: Discount-Based ToU Electricity Pricing Strategy for DR With Minimum Information Using RL

by Gym. The results of the simulation process are discussed
within the following subsections.

B. OFFLINE TRAINING RESULTS
The pre-training phase, explained above, is processed in an
offline manner. In the first step of the offline training, the
aggregator agent intends to determine a near-to-optimal price
policy for the initial day. The learning phase starts by select-
ing poor actions due to the lack of knowledge. However,
the reward increases at each iteration as the agent gradually
gains experience. This primary aim is accomplished after
1000 episodes as demonstrated in Fig. 4. The RL convergence
under all scenarios, illustrated in this figure, demonstrates
that the proposed RL-based DRA can deal with the lack of
information and define the near-to-optimal ToU price policies
by utilizing only the DR. In fact, it is capable to deal with
uncertainties related to the absence of households’ internal
information, for example, comfort preferences and energy
flexibility potentials. Besides, it can be observed that the
choice of τ is important for an optimal application of the
designed structure since it affects the convergence point.
Its higher values can notably restrict the changes in energy
consumption and avoid improving the load factor. On the
other hand, its lower amounts can bring about opportunistic
residential agents and challenge sensible convergence of the
results.

FIGURE 4. Rewards achieved by the aggregator agent within
1000 episodes of the offline training phase for different amounts of τ .

Afterward, the aggregator agent is used to generate the
DB-ToU tariff for the same (initial) day, as shown in Fig. 5.
As it can be seen, the generated policy, presented by the dark-
red line, is able to mitigate energy consumption peaks and
improve load factor. This implies the aggregator’s capability
to learn the DR of the residential agents. In addition, it can be
observed that the recommended policy can successfully avoid
any erroneous penalty to users since it maintains the energy
price under the initial flat tariff while minimizing the reduc-
tion in the aggregator’s income. In addition, Fig. 6 shows the
difference between indoor and set-point temperatures of the
house during 24 hours under the DB-ToU tariff. It can be
observed that the thermal comfort of residential agents is not

FIGURE 5. Aggregated energy consumption under the ToU tariff resulted
from the offline learning process.

FIGURE 6. Indoor temperature deviation from set-point (temperature
difference) under the DB-ToU tariff according to thermal comfort
preferences of the residential agents.

highly affected although the aggregated energy consumption
profile is significantly altered. Particularly, the generated tar-
iff can efficiently manage the aggregated demand by exploit-
ing energy flexibility potentials, characterized by customer
thermal comfort needs. Such management results in higher
deviations from set-point temperature (notable difference)
during periods with lower comfort levels while maintaining
customer preferences over time with higher comfort rates
(close to zero difference).

Moreover, a comparative study is conducted to evaluate
the performance of the proposed PPO approach in the offline
training phase. For this purpose, the Deep Deterministic Pol-
icy Gradient (DDPG) and the Advantage Actor-Critic (A2C)
as popular RL methods as well as a coordination technique
are considered. The comparison results with the RL algo-
rithms are presented in Fig. 7. It can be seen that PPO out-
performs other techniques by higher and faster convergence.
The inadequacy of DDPG can be attributed to the complexity
of managing the DB-ToU tariffs across 24 hours. On the other
side, A2C that starts with an inferior performance is able to
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FIGURE 7. Performance comparison between different RL algorithms.

FIGURE 8. Comparison results between the proposed PPO and a
coordination-based method through the offline training phase based on
the load factor rate and electricity bill for different values of τ .

converge to a solution better than DDPG. Moreover, Fig. 8
illustrates the PPO outcomes in terms of the load factor rate
and electricity bill for different amounts of τ compared to a
coordination method, discussed in [11]. This scheme, used
to coordinate residential houses, is based on non-cooperative
game theory and a proximal decomposition algorithm.

The proximal decomposition approach utilizes a billing
mechanism proportional to aggregated demand in order to
define the price policy regarding the coordination task. It can
be seen in Fig. 7 (a) that the proposed PPO performs better
only for the lower values of τ considering the load factor
results. Nevertheless, it realizes a lower reduction in the
aggregator’s income for all values of τ as shown in Fig. 7 (b).
The DRA can achieve such a low reduction, although the
near-to-optimal tariff is based on discounts. On the other
hand, a larger income reduction based on the proximal
decomposition method evidence that the monetary sacrifice
in a DR program can be high if it is not controlled.

C. ONLINE PERFORMANCE
Subsequently, the aggregator agent, prepared by the offline
learning procedure, is deployed for consecutive days in order
to evaluate its online performance. Different external temper-
ature profiles, selected randomly from the database, are used
for the evaluation. The performance comparison between
scenarios with and without the aggregator agent pre-training
is presented in Fig. 9. It can be recognized that the proposed
pre-training system, applied to a single day, can significantly
improve the efficiency of the PPO algorithm. It has reduced
the convergence period from more than 1000 to a couple
of days. This remarkable improvement is achieved by real-
izing a trade-off between choosing exploratory actions and
exploiting optimal ones, defined by the aggregator agent
during offline training. This strategy allows to deal with the
convergence-time problem of the RL mechanisms and facili-
tates the future implementation of the proposed DR program.

FIGURE 9. The proposed PPO performance with and without utilizing the
pre-training process.

IV. CONCLUSION
This work has developed a data-driven based DRA for
generating near-to-optimal DB-ToU tariffs. The proposed
approach offers a DR service where the aggregator agent
determines price policies based on discounts, captured by
minimal information exchange with end-user agents. The
suggested design reduces infrastructural needs for communi-
cation and maintains customer agents’ privacy within reliable
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interactions. The method has recommended an RL algorithm
for constructing a promising DR system. Additionally, it has
carried out an offline training phase that notably improves the
performance of the aggregator agent in realizing a trade-off
between load factor and total revenue as two contrary objec-
tives. As a notable achievement, this practice has avoided the
time-consuming convergence of the RL and, in turn, enabled
an online implementation. A comparative study with two
common RL techniques and a proximal decomposition-based
coordination scheme demonstrates the efficiency of the pro-
posed DR system. Particularly, the comparison manifests the
superior performance of the recommended structure through
high and fast convergence rates. Future work focuses on DR
studies about heterogeneous residential agents with regard to
real-world applications.
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