
Received April 19, 2022, accepted May 12, 2022, date of publication May 17, 2022, date of current version June 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175850

A Game-Theoretic Approach for Increasing
Resource Utilization in Edge Computing
Enabled Internet of Things
SUMIT KUMAR 1, RUCHIR GUPTA 2, (Senior Member, IEEE), K. LAKSHMANAN1,
AND VIPIN MAURYA 1
1Department of Computer Science and Engineering, Indian Institute of Technology (BHU) at Varanasi, Varanasi, Uttar Pradesh 221005, India
2School of Engineering, Jawaharlal Nehru University (JNU), Delhi 110067, India

Corresponding author: Ruchir Gupta (ruchirgupta@jnu.ac.in)

This work was supported in part by Nokia Solutions and Networks, Bangalore, India.

ABSTRACT Edge computing is a new paradigm that reduces latency and saves bandwidth by deploying
edge servers in different geographic locations. This technology plays a crucial role in the rapidly growing
app market for IoT devices as app vendors can hire computing resources on edge servers to serve their
app users. An effective allocation of edge computing resources to different apps is needed to maximize
resource utilization and serve the most app users at the lowest cost. We refer to this as an Edge Resource
Allocation (ERA) problem. In this paper, we propose an Edge Resource Allocation Game (ERAGame),
a game-theoretic approach that formulates the ERA problem by appropriately pricing the multi-tenant edge
servers. The proposed approach gives a Pure Nash Equilibrium (PNE) solution to the ERA problem. For
this, we design an ERA algorithm using ERAGame under which the system converges to PNE. For fast
convergence to PNE, the edge servers are partitioned into different groups, enabling the ERA algorithm
to run in parallel on all edge servers within each group. We prove that ERAGame is a potential game that
guarantees at least one PNE under the ERA algorithm. We evaluate that the price of stability of ERAGame
is at most O(log n). The performance of the proposed algorithm is examined through simulation.

INDEX TERMS Edge computing, Internet of Things, resource allocation, app vendors, game theory, Nash
equilibrium.

I. INTRODUCTION
Over the past decade, the world has seen exponential growth
of the Internet of Things (IoT). These things integrate the
cyber world with the physical world by sensing and collect-
ing data from the surrounding environment and transmitting
it to other devices over the Internet [1]. The rapid growth
of IoT fueled the development of advanced apps. Due to
limited resources, many resource-hungry IoT apps cannot
process sensory data on IoT devices. To address this issue,
IoT app users can offload complex computational tasks to the
cloud [3], as shown in Fig. 1. In recent years, apps that require
low latency have emerged, e.g., interactive gaming [4],
natural language processing [5], face recognition [6], etc.
However, due to unpredictable core network latency and
expensive bandwidth, the cloud often fails to meet the

The associate editor coordinating the review of this manuscript and

approving it for publication was Ludovico Minati .

stringent requirements of such latency-sensitive apps [7].
Edge computing technology is proposed to address these
challenges [8]. This technology brings computing capability
near the needed areas, saving energy and bandwidth while
reducing latency.

In edge computing, servers are termed edge servers and
deployed at various locations (generally near the cellular base
stations) by the different service providers [9], e.g., Telstra,
AT&T, etc., as shown in Fig. 1. These edge servers offer
computing resources, e.g., memory, CPU, storage, etc. App
vendors hire computing resources on the edge servers to serve
their app users, deploy app-related services and software
on edge servers, and assign app users to edge servers to
offload computational tasks [10]. In recent years, the research
on computation offloading in edge computing has attracted
considerable attention from researchers [11]–[14]. Presently,
research on resource allocation, energy savings, and latency
reduction from the perspective of IoT devices or edge

57974 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8446-3069
https://orcid.org/0000-0001-9970-3889
https://orcid.org/0000-0002-8629-901X
https://orcid.org/0000-0002-2532-1674


S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

FIGURE 1. An example of edge and cloud computing enabled IoT.

computing infrastructure is being conducted [15]–[17]. This
paper investigates the resource allocation on multi-tenant
edge servers from the perspective of IoT app vendors. Multi-
tenant architecture, commonly referred to as multi-tenancy,
is a software architecture in which app instances of different
applications run on a single physical machine where every
single app instance serves multiple users, as shown in Fig. 2.

Generally, each edge server covers some geographical
area, as shown in Fig. 3. The coverage areas of adjacent edge
servers may overlap either to avoid blank sites or because of
the availability of multiple edge servers from different infras-
tructure providers in any given geographic location [18]. Any
edge server’s computing resources can be allocated to various
apps [19]. An IoT device in the overlapping region can con-
nect to any edge server covering it (proximity constraint) with
adequate computing resources (capacity constraint) [20]. Due
to the capacity and proximity constraint, an inappropriate
resource allocation to apps may result in many app users
not being assigned to any edge server [20]. Therefore, app
vendors must hire the resources of edge servers in a manner
that maximizes the app users assigned to edge servers. App
vendor pays for the computing resources of the edge servers
hired from edge infrastructure providers [19], [21]. Thus, the
other objective of each app vendor is to hire the optimal
resources of the edge servers to reduce the cost. This can be
accomplished by maximizing resource utilization and mini-
mizing the required edge servers for app users. We refer to
this problem of allocating resources to different app vendors
(services) as the Edge Resource Allocation (ERA) problem.

Finding a centralized solution for the problem of edge
servers’ resource allocation to app vendors is an NP-hard
problem [20], [21]. To address this issue, the researchers
proposed heuristic approaches that find the sub-optimal solu-
tions [21]–[23]. However, handling proximity and capacity
constraints for multiple app vendors with a large number
of users become a tedious task as the heuristic approach
does not provide a desirable solution [24]. For better scala-
bility, researchers proposed distributed approaches to solve

FIGURE 2. Multi-tenant architecture of edge servers.

the edge servers’ resource allocation problem [18]–[20],
[24]. Papers [19], [20] proposed the game-theoretic-based
distributed approaches. In [19] and [20], each app user
and app vendor can pursue individual interests. A game-
theoretic approach gives the solution as a Pure Nash Equi-
librium (PNE) where no app vendor or app user as a player
can do better by unilaterally deviating from the solution.

In this paper, we propose a game-theoretic approach to
solve the ERA problem. There are three primary motivations
for adopting a game-theoretic approach [19], [20]: 1) It allo-
cates the resources to different apps in a distributed manner
by giving decision-making capability to each app vendor,
which reduces the complexity of finding a solution for the
ERA problem. 2) The app vendors can pursue different inter-
ests according to their needs in different computing capacity
dimensions such as storage, bandwidth, and computational
units. 3) A game-theoretic approach scales well with the
size of the problem, e.g., the number of app users, number
of services, number of edge servers, etc., as it works in a
distributed manner.

Wemaximize resource utilization by effectively leveraging
the multi-tenant edge servers, reducing the required edge
servers for each app vendor. The proposed solution to the
ERA problem minimizes the cost of each app vendor as
it minimizes the required edge servers. Furthermore, this
solution increases the overall assigned app users to given
resources as it maximizes resource utilization. The key to
maximizing resource utilization of any edge server is increas-
ing the number of users using the same app on the edge server.
With more users of the same service on each multi-tenant
edge server, edge servers can be more effectively utilized
since users can share global data variables, program code,
cache contents, and other resources on a wide scale. As a
result, this resource allocation also reduces service response
time and latency.

The main contributions of this paper are as follows:

• An app vendor’s cost for resource allocation on edge
servers is defined by the number of edge servers used
by the vendor and their resource utilization. The ERA
problem is then modeled as a constrained optimization
problem.

VOLUME 10, 2022 57975



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

FIGURE 3. Edge servers’ deployment with app users, and edge servers
network topology.

• The constrained optimization problem is then formu-
lated as an EdgeResourceAllocationGame (ERAGame)
to find a distributed solution, with app vendors acting as
players. The preference of each app vendor is to acquire
an optimal bundle of resources that serves the maximum
app users on edge servers.

• A distributed Edge Resource Allocation (ERA) algo-
rithm is proposed, under which all the app vendors
collectively reach a PNE in the ERAGame.

• For fast convergence to PNE, the edge servers are parti-
tioned into a few groups. These partitions allow the ERA
algorithm to run parallel on each edge server within each
group.

• The ESSGame is proven to be a potential game that
accepts at least one PNE using the ERA algorithm.

• The performance of the ERA algorithm is evaluated
theoretically against the central optimum solution.

• The ERA algorithm is compared numerically against
five representative approaches for solving the ERA
problem: a Best-Fit baseline, a Greedy baseline, and
three state-of-the-art approaches.

The rest of the paper is organized as follows. Section II dis-
cusses the work related to app user allocation for task offload-
ing. Section III elaborates on the ERA problem along with
the system model. Section IV formulates the ERA problem
as an ERAGame and analyzes the game property. Section V
presents the ERA algorithm to achieve the PNE. Sections VI
and VII analyze the ERA algorithm’s performance.

II. RELATED WORK
Edge computing is a natural extension of cloud computing
in terms of infrastructure deployment and network topol-
ogy, with a more geographically distributed architecture than
cloud computing. This architecture brings the benefits and
capabilities of cloud computing to IoT devices by deploying
edge servers in various locations closer to them. In the edge
computing environment, IoT app vendors install required
applications and services on edge servers to provide the
computation capacities to their IoT app users [26]. The
IoT app users offload their computation tasks to these edge
servers [27]. Over the last decade, extensive research has been
conducted on computational task offloading from IoT devices
to edge servers [27]–[29].

IoT app users must be assigned to edge servers for offload-
ing tasks from IoT devices to edge servers. From the per-
spective of app vendors, properly allocating IoT app users to
edge servers with some optimization objectives is a critical
problem [19]–[21]. The authors in [31] prove that allocating
app users to edge servers with proximity and capacity con-
straints is equivalent to the variable-sized vector bin pack-
ing problem. The studies in [20], [21] verify that the ERA
problem is an NP-hard problem. Finding a solution to the
ERA problem becomes more difficult because each app user
requires a different amount of various types of resources on
edge servers [20], [25], [30].

To solve this problem in a polynomial time, researchers
explore different way to find the solution for the ERA prob-
lem. In [32], the authors propose a heuristic solution to allo-
cate the users to edge servers from the perspective of edge
server infrastructure providers. The study [33] propose the
dynamic service placement framework that gives an approx-
imate solution handling end-user mobility for cost-efficient
edge computing. The edge infrastructure deals automatically
with end-user to edge server allocation.

In [34], [35], the authors assume that edge servers’ cov-
erage areas do not intersect each other or each small geo-
graphical is covered by a single edge server while allocating
the app users to edge servers. Practically, it is unlikely to
happen that each edge server covers an area exclusively [36],
[37]. The researchers in paper [38] examine the edge resource
allocation scenario with users’ mobility, requiring the reallo-
cation of users among edge servers. Their proposed approach
to user allocation seeks to reduce the number of realloca-
tions while maximizing users. These studies do not optimize
the requisite servers for app vendors, which is one of our
objectives.

Qiang et al. [20] and Phu et al. [21] propose game-
theoretic based algorithms and heuristic approaches, respec-
tively, to solve the ERA problem from the app vendor’s
perspective. However, they see the problem in respect of
single app vendors and single infrastructure providers. The
other dimension to view the app user allocation problem
is to allocate the edge servers’ resources to different apps
(services). In [19], the authors investigate the resource allo-
cation for edge computing, where multiple app vendors com-
pete for computing resources. One of the major drawbacks
of studies [19], [20] is that these proposed approaches take
exponential iteration to reach Nash equilibrium.

In this paper, we propose a game-theoretic approach to find
a solution for the Edge Resource Allocation (ERA) problem.
The proposed approach has four important differences from
state-of-the-art techniques: 1)It takes into account multiple
app vendors while solving the ERA problem. 2) It proposes
the designs of the ERA problem in a manner that efficiently
formulates the multi-tenancy functionality of edge servers
to utilize them effectively. 3) It leads to an increase in the
utilization of the multi-tenant edge server by increasing the
number of users using the same app on the edge server.
4) In the proposed approach, the convergence process for

57976 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

finding the solution runs parallelly on the edge servers.
As a result, it solves the problem more quickly than other
state-of-the-art approaches.

III. SYSTEM MODEL
To solve the ERA problem from the perspective of app ven-
dors, we consider n app vendors V = {1, 2, · · · , n}, and each
app vendor i has iρ app users Ui = {ui1 , ui2 , ui3 , · · · uiρ } at
different locations. The app vendors’ job is to hire computing
capacity from m edge servers S = {1, 2, · · · ,m} at differ-
ent locations to serve app users. Various edge infrastructure
providers own these edge servers. This paper only studies
resource utilization from the perspective of the computing
capacities belonging to the edge servers. The total avail-
able computing capacity of an edge server x is denoted by
σx = (σ dx ), where d ∈ D = {cache, memory, CPU,
storage, · · · }. Fig. 2 depicts the organization of these various
computing capacities, including cache in the edge servers.
We assume that all the computing resources are managed
at the edge server’s operating system level. Our proposed
approach works for any employed application, and it is inde-
pendent of how the operating system manages computing
capacities.

For numerical evaluation of the proposed approach, we cre-
ate the simulation environment by considering some assump-
tions [39], [40] as follows. 1) The app vendors deploy the
computational intensive calculation-based apps on the edge
servers. 2) The tasks offloaded to an edge server by app users
are queued to be executed on the CPU using Round Robin
scheduling. 3) Before beginning the execution of an offloaded
task, the task’s availability in the cache memory is checked.
If any component of the task is not already in cache memory,
it is loaded into the cache memory using Least Recently Used
algorithm.

Similarly, our proposed approach can be applied in other
settings, and the results will be consistent. We examine the
ERA problem in quasi-static scenarios where app users do
not change computing capacity requirements and locations
while allocating edge servers’ resources, similar to other
papers [12], [20], [41]. The notations adopted in the paper
are summarized in Table 1.
Definition 1 (Allocation Decision): Given an app vendor

i, Ui = {ui1 , · · · uiρ }, and S = {1, · · · ,m}, an alloca-
tion decision of app vendor i is denoted by a vector ai =
(βi,1, βi,2, βi,3, · · · , βi,m), where any βi,x = (βdi,x), d ∈ D
refers to the hired computing resources of an edge server x
by i. The set of all possible allocation decisions is referred to
as Ai.

A. PROXIMITY CONSTRAINT
An app vendor i can only hire the computing resources of an
edge server x for its app user uik only if x’s range, denoted by
cover(x), covers app user uik , as follows:

uik ∈ cover(x), ∀uik ∈ Ui, ∀i ∈ V , ∀x ∈ S (1)

This proximity constraint means that an app user can only be
assigned to one of the edge servers that covers the app user’s
location.

B. CAPACITY CONSTRAINT
The capacity constraint of each resource type d of each edge
server x renders as follows:

∑n
i=1 β

d
i,x ≤ σ

d
x ,∀x ∈ S,∀d ∈

D, where βdi,x ≥ 0,∀d ∈ D,∀i ∈ V ,∀x ∈ S.
Definition 2 (Allocation Decision Profile): Given V =

{1, · · · , n}, U = {U1, · · ·Un}, and S = {1, · · · ,m}, an allo-
cation decision profile is the n × m matrix (denoted by a),
in which the element at ith row and xth column is βi,x . In other
words, an allocation decision profile a = (a1, a2, a3 · · · an) is
the collection of all app vendors allocation decisions, where
a ∈ A = A1 × A2 × · · · × An.
In the context of any app vendor i, the allocation deci-

sion profile can be written as (ai, a−i) where a−i is the list
of other app vendors’ selection decision except i. Terms a,
(a1, a2, · · · an), and (ai, a−i) have been used interchangeably
throughout the paper.

1) EDGE SERVER NETWORK TOPOLOGY
The deployed edge servers remain stationary over time, and
each edge server provides the service within the circled cover-
age area, as shown in Fig. 3. Any two edge servers whose cov-
erage areas overlap are called neighboring edge servers. The
edge servers network topology can be represented as graph
G(S,E), as shown in Fig. 3, where S is a set of edge servers
(vertices), and E is a set of edges among the neighboring
edge servers. The app vendors can hire the resources of the
edge servers and deploy their app-related service software on
these edge servers. The providers of the edge infrastructure
can provide the edge server network topology to app vendors,
which enables app vendors to move their services from one
edge server to another according to their requirements [42].

2) SERVER UTILIZATION MODEL
Multi-tenancy maximizes the utilization of the available
resources on the cloud [43] as well as the edge server [20].
The experimental results illustrated in [44] show the CPU
utilization of an edge server x with multi-tenant architecture,
which can be approximated as follows:

Zcpu = logγ (P) (2)

where P(P > 1) is the number of users allocated to the CPU
unit, and γ (.9 < γ < 1) is calculated by the computational
task size. If an app vendor i hires βcpui,x units of CPU on edge
server x, the average utilization of each unit of CPU will be,

Z (βcpui,x ) =

∑β
cpu
i,x
α=1 logγ (P

i
CPUα,x)

β
cpu
i,x

(3)

where PiCPUα,x is the number of app users of app vendor i
allocated to αth unit of CPU on edge server x. Generally, the
edge server’s CPU utilization increases with the number of

VOLUME 10, 2022 57977



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

TABLE 1. Symbol table.

app users as resource sharing on a multi-tenant edge server
increases. If the number of users assigned to these resources
on an edge server goes beyond a threshold, the increase in
CPU utilization slows down and converges. It happens as the
resource sharing overhead is too much after the threshold
point. At some point, a multi-tenant server outperforms mul-
tiple single-tenant servers combined in overall CPU usage,
which is also confirmed by [43]. The memory and storage
usage in a server with multi-tenant architecture follows sim-
ilar patterns as CPU usage [20], [43]. This paper assumes
that multi-tenant servers’ other computing resources follow
identical patterns as storage, memory, and CPU, as in [20].
Thus, utilization of resources βdi,x of type d hired by app
vendor i on multi-tenant edge server x can be determined as
follows:

Z (βdi,x) =

∑βdi,x
α=1 logγ (P

i
dα,x)

βdi,x
(4)

where d ∈ D is the resource type, and γd is calcu-
lated by the computational task size. γd is specific to each
type of computing resource as the computational task size
impacts each resource type differently. We assume that
the maximum size task offloaded by each app user of the
same service is similar in size, as in [20]. Thus, γd is
service-specific and does not vary during the allocation
process.

3) APP VENDOR COST MODEL
The infrastructure providers rent out the computational
resources based on a pricing model. The cost incurred by an
app vendor to hire the computing resources will comprise two
components: usage cost and fixed cost. In this paper, we use
a cost model that determines the usage cost of computing
resources based on their utilization. The pricing model based
on resource utilization is called the pay-as-you-go pricing
model used by different infrastructure providers, e.g., AWS,
Azure, Salesforce, etc. The utilization of resources of an edge
server hired by an app vendor can be determined from Eq. 4.
If an app vendor i hires computing resources βi,x = (βdi,x),
d ∈ D of edge server x, the usage cost, denoted by B, can be
determined as follows:

B(βi,x) =
∑
d∈D

δd · Z (βdi,x) · β
d
i,x (5)

where δd is the application-specific priority assigned to
resource type d indicates the significance of resource type d
for service provided by the app vendor. The usage cost B(βi,x)
is a non-decreasing concave function as Zd (βdi,x). Thus, the
usage cost per user of app vendors decreases as the resource
utilization increases. In other words, this cost function moti-
vates the vendor to increase the number of users of the same
app on an edge server to reduce the usage cost. The usage
cost optimization increases the app users assigned to a given
bundle of resources and minimizes the required edge servers
per app.

The fixed cost, denoted by F , incurred by app vendor i can
be determined as follows:

F(a, x) =
fx
|Rax |

(6)

where Rax is the number of app vendors who hire the com-
puting resources on edge server x, and fx is the cost of edge
server x. Cost fx may include cost of electricity consumption
in the building, land, maintenance, depreciation of machine,
managerial and administrative staff, etc. The optimization of
fixed cost F(a, x) incurred by each app vendor motivates the
vendor to hire the computing resources on an edge server
that provides services to users of more apps. As a result, this
optimization increases the overall utilization of an edge server
subject to capacity constraints.

The total cost incurred by each app vendor i for hiring
resources on edge server x at selection decision profile a can
be calculated as,

ci,x(a) =
fx
|Rax |
+ B(βi,x) (7)

An app vendor i may hire computing resources on various
edge servers and maintains a list νi(a) of these edge servers.
Thus, the overall cost incurred by i for all edge servers in νi(a)
at allocation decision profile a is,

ci(a) =
∑
x∈νi(a)

ci,x(a) =
∑
x∈νi(a)

(
fx
|Rax |
+ B(βi,x)

)
(8)

57978 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

If the cost vector is c(a) = (c1(a), c2(a), c3(a), · · · , cn(a)),
where any ci(a) denotes the cost incurred by app vendor i
at allocation decision profile a, the total cost of all the app
vendors, denoted by C(a), will be as,

C(a) =
∑
i∈V

ci(a) (9)

4) OPTIMIZATION MODEL
In this paper, we model the ERA problem as a con-
strained optimization problem. Given app vendor set V =
{1, 2, · · · , n} and edge server set S = {1, 2, · · · ,m}, the
constrained optimization problem can be modeled as follows:

min
a∈A

∑
i∈V

ci(a) (10)

subject to:

uik ∈ cover(x), ∀uik ∈ Ui, ∀i ∈ V , ∀x ∈ S (11)
n∑
i=1

βdi,x ≤ σ
d
x , ∀x ∈ S, ∀d ∈ D (12)

βdi,x ≥ 0, ∀d ∈ D, ∀i ∈ V , ∀x ∈ S (13)

Objective 10 minimizes the app vendors’ total cost. Con-
straint 11 ensures that every app user uik should be allocated
to an edge server x only when x covers uik . Constraints 12
and 13 ensures that the computing capacity hired by app
vendors on an edge server x must not exceed of available
computing capacities of x.

IV. EDGE RESOURCE ALLOCATION GAME
This section formulates the ERA problem as the Edge
Resource Allocation Game (ERAGame). As aforementioned,
the app vendors share edge servers’ costs. Hence, one app
vendor’s allocation decision regarding hiring and abandoning
the computing resources of an edge server affects the cost of
other app vendors. Thus, app vendors have a strategic inter-
action as the cost incurred by an app vendor depends on its
allocation decision as well as the other’s allocation decisions.
The strategic interaction can be modeled as an ERAGame,
where each app vendor acts as a player. ERAGame aims to
find an allocation decision profile a∗ = (a∗1, · · · , a

∗
n), a

∗
∈ A

as a Pure Nash Equilibrium (PNE) in which the cost vector
c(a∗) = (c1(a∗), · · · , cn(a∗)) that includes the cost incurred
by all the app vendors is stable optimal.
Definition 3 (Pure Nash Equilibrium): An allocation

decision profile a∗ = (a∗1, a
∗

2, a
∗

3 · · · a
∗
n) is a PNE if no app

vendor can reduce its cost by unilaterally deviating from its
allocation decision, i.e,

ci(a∗i , a
∗
−i) ≤ ci(ai, a

∗
−i) for all ai ∈ Ai, i ∈ V (14)

In ERAGame, each app vendor i’s objective is to minimize
cost ci(a) at every allocation decision profile a. In more
elabrotely, given other app vendors’ decisions a−i, app ven-
dor i would like to perform a suitable decision ai to minimize
ci(a) as:

min
ai∈Ai

ci(ai, a−i) (15)

FIGURE 4. (a) Edge servers deployment, and (b) partition of edge servers
into the groups.

ERAGame formulates the problem as a tuple (V , {Ai}i∈V ,
{ci}i∈V ), where V is a set of app vendors, Ai is i’s finite set
of allocation decisions subject to Eqs. 11-13, and ci is the
cost function that determine the cost of i’s selection decision
ai ∈ Ai. In ERAGame, all the app vendors gradually move
towards a PNE to reducing their costs. Whether ERAGame
accepts at least one PNE is of critical significance to this
study.

V. DISTRIBUTED RESOURCE ALLOCATION MECHANISM
This section proposes an Edge Resource Allocation (ERA)
algorithm to find a Pure Nash Equilibrium (PNE) allocation
decision profile. As app vendors have strategic interaction,
each app vendor makes a resource allocation decision to
respond to the other app vendors’ decisions in ERAGame.
Each allocation decision made by the app vendor is seen
as an improvement in terms of cost-cutting and resource-
utilization enhancement. Suppose app vendors make alloca-
tion decisions at the same time. In that case, the outcome of
each app vendor allocation decision may not be regarded as
an improvement since they affect each other’s incurred costs.
Hence, to ensure progress with each allocation decision, only
one app vendor at a time can be allowed to make allocation
decisions with respect to allocation decisions chosen by other
app vendors. However, it may take a considerable amount of
time to converge at PNE.

To achieve fast convergence, we first partition the edge
server set into different groups and feed these groups to the
ERA algorithm as an input. The edge server groups must
be created in such a way that resource allocation decisions
made on one edge server in a group do not directly impact
decisions made on other edge servers within that group. This
kind of grouping will allow the ERA algorithm to run parallel
on all the edge servers within each group, leading to fast
convergence to PNE. However, the existence and quality of
PNE in ERAGame are irrespective of the process of grouping
and the number of edge server groups.

A. EDGE SERVER GROUPING (SYSTEM PREPROCESSING)
1) DESIRE PROPERTIES OF GROUPS
In each group, every pair of edge servers must be more
than two edges apart (distance between nodes). For exam-
ple, edge servers X4 and X7, shown in Fig. 4b, can be
included in the same group since the shortest path length

VOLUME 10, 2022 57979



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

between X4 and X7 is more than two. Such distance among
edge servers allows app vendors to allocate and deallocate
edge server resources without directly influencing the allo-
cation and deallocation of resources on other edge servers
in the group. This can be illustrated by an example using
Fig. 4 as follows. The coverage area of edge servers X4 and
X7 overlap with {X1,X5,X8} and {X3,X6,X10}, respectively,
and {X1,X5,X8} ∩ {X3,X6,X10} = ∅. The edge servers in
{X1,X5,X8} and {X3,X6,X10} are neighboring edge servers
of X4 and X7, respectively. If constraints in Eqs. 11-13 are
met, the users of an app assigned to edge server X4 who
are also present in the overlapping coverage areas of X4 and
{X1,X5,X8} can be assigned from X4 to {X1,X5,X8}. Users
in overlapping coverage areas of X4 and X1 can move from
X4 toX1; users in overlapping coverage areas ofX4 andX5 can
move from X4 to X5; users in overlapping coverage areas of
X4 and X8 can move from X4 to X8. App users who are not
within the overlapping coverage area cannot be assigned to
edge servers in {X1,X5,X8}. Thus, any vendor who has hired
resources on X4 for its app users in the overlapping area can
hire resources on neighboring servers in {X1,X5,X8} rather
than X4. Similarly, an app vendor with resources on X7 can
redirect app users to an edge server in {X3,X6,X10} rather
than X7. As the intersection of {X1,X5,X8} and {X3,X6,X10}
is empty, resource deallocation from edge servers X4 and
X7 to other edge servers can be done in parallel without
interfering with each other.
Thus, each group has the property that if an app ven-

dor relocates users from one edge server, the decision does
not directly influence the relocation decision of users from
other servers within that group from the perspective of cost
and capacity. This property allows the ERA algorithm to
be executed in parallel on all edge servers belonging to a
group, reducing the time complexity. Thus, m edge server
set can be divided into different groups as group set 5 =
{50,52, · · · ,5T−1}, where any 5l ∈ 5 is a group of edge
servers, and T is the number of groups. These groups have
the properties as follows:

• distance(x1, x2) > 2, for every x1, x2 ∈ 5l, for all 5l
∈ 5, where distance(x1, x2) represents the distance
between x1 and x2.

• 5l1 ∩5l2 = ∅, for every 5l1,5l2 ∈ 5

2) GROUPS FORMATION
The edge server set can be partitioned into a few groups
using the network topology of edge servers provided by the
edge computing infrastructure providers. These groups can
be formed using distance-2 graph coloring. If the distance
between two edge servers is more than two, the distance-2
coloring of the graph assigns the same integer number to both
edge servers. Edge servers with identical integer numbers are
grouped in the same group, and the total number of integers
used in the distance-2 graph coloring represents the number
of groups. More elaborately, if T is the number of colors and
each distinct integer number l ∈ {0, 1, 2, · · · ,T − 1} refers

to a distinct color, the distance-2 coloring of graph G(S,E)
is a mapping from edge server set S to {0, 1, 2, · · · ,T − 1}
such that each pair of edge servers having a distance at most
2 receive distinct integer numbers from set {0, 1, · · · ,T −1}.
The edge servers receiving the same integer number l ∈
{0, 1, · · · ,T −1} belong to group5l . For example (Fig. 4b),
edge servers {X2,X11,X17} depicted by yellow color form a
group.

To partition the edge server into the groups, we use the
heuristic-based distance-2 graph coloring algorithm [45].
The complexity of finding such groups is O(m× |E|), where
m is the number of edge servers, and E is a set of edges
among the edge servers. The group formation process takes
place once because the edge servers are static entities. If the
infrastructure provider extends the geographical service area
by increasing the number of edge servers, new edge servers
can be included in the existing groups based on their distance
property.

B. EDGE RESOURCE ALLOCATION ALGORITHM
Given V = {1, · · · , n}, {Ui, · · · ,Un} and S = {1, · · · ,m},
ERAGame applies an iterative process for convergence to the
PNE, as shown in Algorithm 1. In each iteration, app vendors
try to minimize their costs by following the ERAGame rules
while gradually moving towards the PNE. The process begins
with an arbitrary allocation decision profile a, and an app
vendor list Rax is created for every edge server (Lines 1-2).
The process iterations are repeated for every group until
the system reaches PNE. Each iteration is represented by
t(t = 1, 2, 3 · · · ), and the allocation decision profile in
any t is denoted by a(t).
In every iteration, each edge server sends a message con-

taining < SIx ,R
a(t)
x , λ

a(t)
x > to neighboring edge servers

(Line 4), where SIx is the identity of edge server x, Ra(t)x
is the list of app vendors, and λax is the available resources
of edge server x at allocation decision profile a(t). This
message is transmitted in a decentralizedmanner which needs
messaging synchronization [4]. Next, a group5l is selected,
where l ≡ t (mod T ) (Line 5). The computation in each
iteration of the allocation process (Lines 6-20) is performed
by individual app vendors on each edge server y ∈ 5l in
parallel. After selecting group 5l , each app vendor i with
resources on edge servers in group 5l can participate in the
current iteration to minimize its cost (Line 6-7). Then each
participant app vendor i on each edge server x ∈ 5l finds the
set of optimal alternative edge servers NEGx of x in terms of
cost. This optimal set must satisfy the proximity constraints
Eq. 11 and capacity constraints Eqs. 12-13. This means that
the edge servers in NEGx can give the services to i’s app
users currently getting the services from x (Line 8). Next,
if the app vendor i’s possible cost on edge servers in NEGx
is less than the cost incurred on x, the app vendor i requests
resource allocation on the edge servers inNEGx (Lines 9-13).
The resources are allocated to any app vendor on every edge
server y ∈ NEGx according to (Lines 14-18). If any edge
server receives multiple resource allocation requests from

57980 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

Algorithm 1: Edge Resource Allocation
Input: V , {Ui, · · · ,Un},G(S,E),5
Output: Allocation Decision Profile a
Result: A Pure Nash Equilibrium

1 Initialize a← (a1, a2, a3, · · · an) to be an arbitrary
allocation decision profile

2 At every edge server x ∈ S do Rax ←
{i | i is an app vendor hired resources on x at a}

3 repeat
4 each edge server x ∈ S send a message containing

< SIx ,R
a(t)
x , λ

a(t)
x > to its neighbouring edge

servers
5 selection of edge server group 5l for iteration t
6 for each edge server x ∈ 5l do
7 for each app vendor i ∈ Ra(t)x do
8 i finds each set of alternative edge servers

NEGx of x, subject to constraints 11,
12, and 13

9 for each set of edge servers NEGx do
10 i calculates the possible cost of the

resource allocation on each edge
server in NEGx as in Eq. 7

11 i finds an edge server set NEGminx such
that minNEGx (

∑
y∈NEGx ci,y(a(t)))

12 if
∑

y∈NEGminx
ci,y(a(t)) < ci,x (a(t))

then
13 app vendor i request for resource

allocation on each y ∈ NEGminx
14 for each y ∈ NEGminx do
15 if y receive request from multiple

vendors then
16 edge server y accepts the

requests that best fit the
available resources

17 else
18 accept the request of app

vendor i

19 if app vendor i’s request accepted
then

20 deallocate the resources from x

21 until no more allocation decision updates needed ;

app vendors, it accepts the requests that can best fit the
available resources λa(t)x . In this case, an edge server y can
accept the request of app vendor i if it is included in the
best fit. If app vendor i’s request is accepted by all edge
servers in y ∈ NEGx , the allocated resources on edge server x
for the services provided by app vendor i are deallocated
(Lines 19-20). These iterations repeat for each group 5l ∈

5 until the app vendors stop updating their selection deci-
sions (Line 21). App vendors’ individual selection decisions
comprise the final allocation decision profile that will be a
solution as the PNE.

VI. THEORETICAL ANALYSIS
A. GAME PROPERTY
In the current configuration of the ERAGame, all app vendors
try to minimize their costs by employing the ERA algorithm.
As a result, the ERA algorithm behaves similarly to a gradient
descent process to identify a PNE by exploring all possibil-
ities. To investigate the existence of PNE in the ERAGame,
we need a function defined on the allocation decision profile
that observes the convergence process of the ERA algorithm.
The overall cost of all app vendors can not be used to observe
the convergence process because it is inconsistent during the
convergence process. This is because when an app vendor
changes its allocation decision to reduce its cost, this impacts
the distribution of edge servers’ fixed costs among other app
vendors. As a result, the pattern of change in the overall cost
of the system is not steady. We need a consistent function
that should always decrease with any change in allocation
decision made by any app vendor using the ERA algorithm.
The key is to find a potential function and to establish that
ERAGame is a potential game defined as follows:
Definition 4 (Potential Game): A game is a potential

game if there is a potential function 8(a) such that,

ci(a′i, a−i) ≤ ci(ai, a−i)⇒ 8(a′i, a−i) ≤ 8(ai, a−i)

for any i ∈ V , ai, a′i ∈ Ai and a−i ∈
∏
l 6=i

Al (16)

We can determine the potential function 8(a) value of the
game at any allocation decision profile a by calculating the
potential of each edge server. The potential of an edge server
can be determined as follows. Suppose only one app vendor i
hires computing resources βi,x of an edge server x. In that
case, the edge server’s potential is equal to cost incurred by
app vendor for hiring resources on edge server x. Therefore,
the edge server’s potential is fx + B(βi,x). When another app
vendor j hires the computing resources of edge server x, x’s
potential will be as the previous potential of x + the cost
incurred by app vendor j for hiring the resources on x. The
cost incurred by app vendor j is fx

2 + B(βj,x). Hence, the
potential of edge server x is increased to fx +

fx
2 + B(βi,x)+

B(βj,x) and so on. Thus, the potential of an edge server x with
app vendors Rax at an allocation decision profile a is,

8x(a) =
|Rax |∑
k=1

(
fx
k
)+

∑
i∈Rax

B(βi,x) (17)

The overall potential8(a) of ERAGame can be calculated by
summing the potential of all edge servers as,

8(a) =
∑
x∈S

 |Rax |∑
k=1

(
fx
k
)+

∑
i∈Rax

B(βi,x)


=

∑
x∈S

fx · H (|Rax |)+
∑
i∈Rax

B(βi,x)

 (18)

where H (|Rax |) =
(
1
1 +

1
2 +

1
3 + · · · +

1
|Rax |

)
.

VOLUME 10, 2022 57981



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

Theorem 1: The ERAGame with the potential function
8(a) is a potential game.

Proof: Suppose an app vendor i changes its allocation
decision from ai to a′i to minimize its cost and the allocation
decision profile changes from a to a′. The app vendor sees
this change as an improvement. Consequently, the change in
i’s cost will be negative as,

1ci = ci(a′)− ci(a) < 0 (19)

Due to deviation, the list of edge servers on which app
vendor i has computational resources is updated from νi(a) to
νi(a′), where νi(a′)\νi(a) and νi(a)\νi(a′) contain all the edge
servers added and left by i, respectively. Only edge servers in
νi(a′) \ νi(a) and νi(a) \ νi(a′) impact the cost of app vendor
i. The change in app vendor i’s cost from Eqs. 8 and 19 can
be elaborated as,

1ci =
∑

x∈νi(a′)\νi(a)

ci,x(a)−
∑

y∈νi(a)\νi(a′)

ci,y(a′)

=

∑
x∈νi(a′)\νi(a)

(
fx

|Rax | + 1
+ B(βi,x)

)

−

∑
y∈νi(a)\νi(a′)

(
fy
|Ray |
+ B(βi,y)

)
< 0 (20)

where Rax or Ray is a list of app vendors that hire computing
resources of x or y, respectively, before app vendor i deviates.
The change in Potential function value is,

18 = 8Inc −8Dec (21)

The app vendor i hires the computing resources on
the edge servers in νi(a′) \ νi(a). As a result, the poten-
tial of these edge servers will increase. Therefore, from
Eqs. 17 and 18, the increase in potential is 8Inc =∑

x∈νi(a′)\νi(a)

(
fx
|Rax |+1

+ B(βi,x)
)
. On the other hand, i aban-

dons the computing resources of edge servers in νi(a) \
νi(a′). Hence, from Eqs. 17 and 18, the value of 8 decreases
by 8Dec =

∑
y∈νi(a)\νi(a′)

(
fy
|Ray |
+ B(βi,y)

)
. Thus, from

Eqs. 20 and 21,

18 = 1ci < 0 (22)

From Eq. 22, if any app vendor i changes its allocation deci-
sion tominimize its cost, ci(a′) ≤ ci(a) implies8(a′) ≤ 8(a).
Hence, ERAGame is a potential game.

Theorem 1 also proves that the potential function’s value
decreases with each change in the allocation decision made
by any app vendor as an improvement. In the ERA algorithm,
app vendors make the allocation decision to minimize their
costs. Therefore, the value of the potential function will
decrease with every iteration of the ERA algorithm.
Theorem 2: In ERAGame, the system converges to at least

one PNE.
Proof: The existence of PNE in the ERAGame can be

demonstrated using the following two reasons:

1) The ERAGame contains a finite number of allocation
decision profiles, and the potential function 8(a) is
defined on them. Consequently, the outcomes of 8(a)
are also finite.

2) According to Theorem 1, the value of the poten-
tial function 8(a) declines monotonically with each
change in the app vendors’ allocation decisions under
the ERA algorithm; thus, no cycle is feasible in the
ERAGame under the ERA algorithm.

Both arguments imply that the ERA algorithm will even-
tually halt. The halting point signifies that no app vendor
benefits by deviating from the current allocation decision,
which is essential for PNE existence. Hence, there exist at
least one PNE in the ERAGame.

B. CONVERGENCE ANALYSIS
This subsection analyzes how many iterations of the ERA
algorithm are required to converge at PNE by following the
trajectory of the convergence process. The potential function
is used to observe the convergence process of the ERA algo-
rithm, as aforementioned. In each iteration of the ERA algo-
rithm, the app vendors make the allocation decision for their
cost reduction and collectively generate an allocation deci-
sion profile. This process continues until the system reaches
the PNE. The app vendors reduce their costs in every iteration
of the ERA algorithm, so the potential 8(a) value would
monotonically decrease in every iteration, as demonstrated in
Theorem 1. This implies that the allocation decision profile
is not repeated during the execution of the ERA algorithm
employed in the finite ERAGame. Theorem 2 proved that the
system reaches the PNE in a finite number of iterations of the
ERA algorithm. Moreover, the edge server set is partitioned
into T groups. In each iteration of the ERA algorithm, app
vendors can make allocation decisions in parallel on every
edge server in any group 5l ⊆ 5. From these conclusions,
it follows that the number of iterations in the ERA algorithm
to reach Nash equilibriumwill never exceedmaxqi,x (T×qi,x),
where qi,x is the number of all possible alternates in place of
an edge server x for app vendor i.

C. PRICE OF STABILITY
This subsection evaluates the bound on the quality of the
PNE solution obtained using the ERA algorithm in order to
meet app vendors’ optimization objectives, as discussed in
Section III. The best PNE has the lowest overall cost of app
vendors. In general, the Price of Stability (PoS), which is the
ratio of the overall cost of app vendors at best PNE to the
centralized optimum, demonstrates the quality of the PNE.
If allocation decision profiles a∗ and ao are the best PNE
solution and centralized solution, respectively, the PoS is,

PoS(a) =
C(a∗)
C(ao)

(23)

where C(a∗) and C(ao) are overall costs incurred by app
vendors at allocation decision profiles a∗ and ao, respectively.
Since the potential function plays a vital role in the estimation

57982 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

of PoS, we first establish a relationship between the potential
function and the total cost of app vendors.
Lemma 1: In ERAGame, for any allocation decision pro-

file, C(a) ≤ 8(a) ≤ H (n) · C(a), where C(a) is the total cost
incurred by n app vendors.

Proof: From Eq. 10, n app vendors’ total cost C(a) is,

C(a) =
∑
x∈S

fx +∑
i∈Rax

B(βi,x)

 (24)

As defined in section VI-A, H (|Rax |) ≥ 1 for any |Rax | ≥ 1.
Thus,

C(a) ≤
∑
x∈S

fx · H (|Rax |)+
∑
i∈Rax

B(βi,x)

 = 8(a) (25)

BothH (.) andB(.) are non-negative and non-decreasing func-
tions, and H (n) ≥ H (Rax) as n ≥ R

a
x . So,

8(a) ≤ H (n) ·
∑
x∈Sa

(fx +
∑
i∈Rax

B(βi,x)) = H (n) · C(a) (26)

Hence, from Eqs. 25 and 26, C(a) ≤ 8(a) ≤ H (n) · C(a).
Theorem 3: In ERAGame, the price of stability is at

most H(n).
Proof: Suppose the allocation decision profile ao is a

central enforced optimum solution and C(ao) is the cost at
ao. We assume that app vendors begin with ao as the initial
allocation decision profile and changing allocation decisions
until the system reaches a PNE a∗. As stated in the Theorem 1,
8(a) will decrease with every improvement of app vendors in
this process, so,

8(a∗) ≤ 8(ao) (27)

From the first inequality of lemma 1,

C(a∗) ≤ 8(a∗) (28)

From inequalities in Eqs. 27 and 28,

C(a∗) ≤ 8(ao) (29)

The second inequality of lemma 1 says,

8(ao) ≤ H (n) · C(ao) (30)

Hence, the result infers from the inequalities in Eq. 29 and 30,
C(a∗) ≤ H (n) · C(ao)⇒ C(a∗)

C(ao) ≤ H (n)

In ERAGame, there is a PNE solution, for which the total
maximum cost of all app vendors will not exceed the H (n) =
1+ 1

2+
1
3+· · ·+

1
n = O(log n) factor of the cost at the optimal

centralized solution.

VII. NUMERICAL EVALUATION
This section evaluates the ERA algorithm’s performance by
conducting a set of extensive experiments on the different
combinations of edge servers, app vendors and app users.

TABLE 2. Experimental settings.

A. PERFORMANCE BENCHMARK
The proposed ERA algorithm is evaluated against five rep-
resentative approaches, namely a Best-Fit baseline, a Greedy
baseline, and three state-of-the-art approaches for solving the
ERA problem. These baseline and state-of-the-art approaches
are as follows:

• Best-Fit: This approach allocates the edge server
resources to an app vendor in such a way that the
remaining resources are as small as possible, subject to
proximity constraints.

• Greedy: This approach allocates the resources to any app
vendor on an edge server with the maximum available
resources, subject to proximity constraints.

• PRDS [19]: The resource allocation problem for vari-
ous services with budget limitations was solved using
a Game-Theoretic approach. Its goal is to allocate the
optimal bundle of resources to each service.

• TPDS [20]: This research proposed a game-theoretic
approach for allocating app users to edge servers. Its goal
is to increase the number of app users assigned to the
edge servers while lowering the overall cost.

• MCFH [21]: This solution uses a heuristic to solve
the app user allocation problem by first allocating the
highest capacity edge server. Its objective is to maximize
the number of app users on edge servers while reducing
the number of edge servers required.

PRDS, TPDS, and MCFH solves the same resource allo-
cation problem as studied in this paper. We select the PRDS,
TPDS, and MCFH algorithms as the state-of-the-art bench-
mark. All the experiments are written in Python 3.5. These
experiments are conducted on Windows 10 OS system with
Intel CORE i7-7700U CPU 3.60 GHz and 8 GB RAM.

B. SIMULATION SETTINGS
In this area, the works generally use the custom-built sim-
ulator in different languages. In the same way, as other
papers [19]–[20] in this area used to develop the simulation
environment, we created our environment in Python 3.5 to
implement all of the experiments. We have set up a 20 km ×
20 km rectangular space to evaluate the algorithm. The base
stations are spaced 600meters apart throughout this rectangu-
lar region. For each simulation, we deploy 100 edge servers
at different base stations at random. Edge servers’ cover-
age radius is uniformly distributed over [750 m, 1500 m].
The available resources on each edge server are produced
at random using a normal distribution N (µ, σ 2), with µ =
50 being the average amount of each resource type d , and
σ = 10 representing the standard deviation. Each type’s

VOLUME 10, 2022 57983



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

generated number of computing resource units is rounded
off to a positive integer number. Under the normal dis-
tribution, a negative amount of any resource type can
be generated; hence any negative value is rounded to 1.
In our experiments, we consider resource type set D =
{bandwidth, Storage,Memory,Cache,CPU}. The app users’
offloaded work is generated by uniform distribution over
[10KB, 60KB]. The number of app users Rax and parame-
ter γd determine the resource consumption Zd (x) of type d
on server x. The average task size, denoted by Avg_Size,
offloaded to edge server determines the value of γd . For each
resource type d in our experiment, the value of γd is set
to {(10KB ≤ Avg_Size < 20 KB, γd = 0.91), (21KB ≤
Avg_Size < 30 KB, γd = 0.92), (31KB ≤ Avg_Size <

40 KB, γd = 0.93), (41KB ≤ Avg_Size < 50 KB, γd =
0.94), (50KB ≤ Avg_Size < 60 KB, γd = 0.95)}. Priority δd
is set to 0.25 for each resource type d . Any app user’s resource
requirements are determined by the size of the offloaded task.
We presume that a task with less than 30 KB requires one
unit of each resource type, whereas a task with a size of
more than 30 KB requires two. The fixed cost of each edge
server is generated by uniform distribution over [50], [75].
We create the simulation setting to calculate the response time
as in the paper [39], [40]. We assume a cache memory of
128 kb in size, with each block being 4kb in size. Each app
user’s computational task is divided into pages of 4 kb in size.
We assume that for each app, the first 50% of total pages
of computational tasks offloaded by any app user is shared
with other app users of the same app. The Least Recently
Used (LRU) page replacement technique swaps the pages
from the cache. The Round Robin scheduling algorithm is
used for CPU allocation with a time quantum of 10 ms. The
response time for an app user is calculated as the amount
of waiting time in the queue for first-time CPU allocation
and the time required to cache all of its computational task’s
pages. We assume that every 1 kb of the offloaded task by app
users needs a CPU burst of 1 ms. The cache access (page hit)
and primary memory access time (page miss) are assumed
to be 20 nanoseconds and 800 nanoseconds. The computa-
tional tasks by each app user are generated at some intervals.
These intervals are selected by uniform distribution over
[2 seconds, 10 seconds].

Experiments are run on the data sets by changing various
parameters such as app vendors, app users, and edge servers.
The data sets are summarized in Table 2. Each experiment
is repeated 50 times, and the results are averaged. It allows
neutralizing extreme cases like sparse or dense server/app
user distributions. The error bar with a 95 percent confidence
interval is depicted by the vertical lines in the result figures
of each experiment.

C. PERFORMANCE COMPARISON
We evaluate the performance of the ERA algorithm by con-
ducting experiments on three types of experimental settings
given in Table 2. In each experiment, the ERA algorithm

performance is compared with the baseline and state-of-the-
art approaches in terms of the following metrics.

• Cost per app vendor: It denotes the average cost incurred
by each app vendor for resource allocation on the edge
servers.

• Allocated users: This metric represents the overall users
of each app assigned to the edge servers.

• App users per edge server: This metric refers to the
average number of users of each app assigned to every
edge server. This calculation includes edge servers that
serve at least one app user.

• App vendors per edge server: This represents the aver-
age number of apps deployed on each edge server.

• Required edge servers: This measurement refers to the
edge servers used out of the total available edge servers.

• Response time: This is the average time interval between
task submission and the first response received by app
users. In our experiments, response time is calculated as
the amount of waiting time in the queue for first-time
CPU allocation and the time required to cache all of its
computational task’s pages.

Experiments 1, 2, and 3 correspond to set-1, set-2, and set-3
given in Table 2. Experiment 1, 2, and 3 evaluates the algo-
rithm’s performance with the different numbers of app users
per vendor ranging from 100 to 1000, the different number of
edge servers ranging from 10 to 100, and the different number
of app vendors ranging from 5 to 50, respectively.

1) EXPERIMENT 1
The experimental findings illustrated in Fig. 5 compare the
algorithm’s performance with different numbers of app users
per vendor ranging from 100 to 1000, with the number of
edge servers being constant at 50. The results depicted in
Fig. 5a show that the average cost per app vendor increases
when app users increase. ERA algorithm gives a more
cost-effective solution than other alternatives as it appropri-
ately allocates resources by utilizing the multi-tenancy. This
happens because ERA maximizes the number of app users of
similar services on each edge server that effectively utilizes
the multi-tenant edge server. Fig. 5b shows that the overall
allocated users to edge servers decreases with increasing the
number of app users as proximity and capacity constraints
of edge servers may leave app users unallocated. The ERA
algorithm outperforms PRDS, TPDS, MCFH, Greedy, and
Best-Fit. The reason is that ERA assigns more app users of
a similar service to each edge server than to others, allow-
ing for more app users to be served on a multi-tenant edge
server with similar resources. As a result, various application
components, such as data and programs, can be reused, lead-
ing to faster computation without increasing the computing
resources. Allocated app users per edge server also follow
a similar pattern as overall app user allocation. Therefore,
each edge server serves more app users under the ERA
algorithm compared to PRDS, TPDS, MCFH, Greedy, and
Best-Fit, as shown in Fig. 5c. The ERA algorithm enables

57984 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

FIGURE 5. Experimental results show the performance of ERA algorithm with varying number of app users per app vendor. In all the figures vertical line
represents the error bar with a confidence interval of 95%.

FIGURE 6. Experimental results show the performance of ERA algorithm with varying number of edge servers. In all the figures vertical line represents the
error bar with a confidence interval of 95%.

each edge server to serve more app users of similar services
than other state-of-the-art and baseline techniques. Therefore,
the number of app vendors per edge server is lower in the

ERA algorithm than others, as shown in Fig. 5d. The exper-
imental results in Fig. 5e illustrate that as the number of app
users increases, so does the number of edge servers required.

VOLUME 10, 2022 57985



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

FIGURE 7. Experimental results show the performance of ERA algorithm with varying number of app vendors. In all the figures vertical line represents the
error bar with a confidence interval of 95%.

The ERA performs well as it motivates the app vendors to
switch on edge servers used by more services subject to
proximity and capacity constraints. When the number of app
users exceeds a threshold, all the approaches use the approx-
imately maximum available edge servers at some point, e.g.,
700 app users in our experiments. The results illustrated in
Fig. 5f show that as the number of app users increases, the
service response time to users increases. The ERA algorithm
maximizes the number of app users per server who belong
to similar services, enabling app users to utilize most of
the cache contents and lowering the number of swapping
for application programs and data. As a result, the resource
overhead is reduced, and ERA outperforms other systems in
our experiments.

2) EXPERIMENTS 2
In this experiment, the number of edge servers is varied
from 10 to 100, and the app vendors and app users per
vendor are kept constant at 25 and 500, respectively. Fig. 6a
shows how the average cost of each app vendor changes as
the number of edge servers increases. As only a few edge
servers are available to app users at the start (10 edge servers),
a smaller number of app users receive computational services.
Consequently, the app vendors’ cost is less. ERA algorithm
outperforms PRDS, TPDS, MCFH, Greedy, and Best-Fit as
the number of available edge servers increases. The reason is
that the ERA algorithm reduces the required number of edge
servers per app vendor by allocating resources appropriately
to maximize the usage of multi-tenant edge servers. In each

of the PRA, PRDS, MCFH, and TPDS, the cost incurred by
each app vendor is approximately flattenedwhen edge servers
exceed a threshold, e.g., 70 in our experiment. This happens
because the number of available edge servers exceeds the
required edge servers, resulting in numerous edge servers
being unutilized. On the other hand, Greedy and best -Fit
does not allocate resources in order, resulting in a non-optimal
number of edge servers in use. Therefore, the cost of each app
vendor increases with increasing edge servers in Greedy and
best-Fit.

The findings depicted in Fig. 6b show that the number of
allocated app users increases as the availability of the edge
servers increases in a given geographical area. When the
number of edge servers is large enough, such as 80 in our
experiment, all approaches almost allocate all app users to
edge servers. ERA algorithm performs well as it allocates
resources to more app users of a similar service on each
edge server. Due to the same reason, the ERA algorithm
allocates more app users per edge server compared to PRDS,
TPDS, MCFH, Greedy, and Best-Fit, as shown in Fig. 6c.
These outcomes show that the resource utilization under the
ERA algorithm is higher than the PRDS, TPDS, MCFH,
Greedy, and Best-Fit. When edge servers are 10, the number
of users per edge server in ERA, PRDS, MCFH, and TPDS
is very high because the app vendors fully utilize a limited
number of edge servers. In that case, many app users can
not be allocated to any edge server. After that, the edge
server utilization decreases to a certain point, e.g., 50 edge
servers in our experiment, because resources on some edge

57986 VOLUME 10, 2022



S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

servers may be allocated to only a few app users. After a
certain number of edge servers in a given geographical area,
such as 50 in our investigation, the number of app users per
edge server increases. The reason is that when edge servers
exceed 50, the ERA, PRDS, MCFH, and TPDS reorder the
resource allocation in a way that abandons the resources of
edge servers used by very few app users and relocates app
users among a limited number of edge servers. Hence, if the
number of edge servers in a given geographical area exceeds
a threshold, this limits the number of edge servers in use
and results in high utilization of these edge servers by a
fixed number of app users. The number of app users assigned
to each edge server in the Greedy and Best-fit approach
follows the opposite behavior compared to the ERA, PRDS,
MCFH, and TPDS. This happens as Greedy and Best-fit do
not allocate computing resources to app vendors in any order.

The results illustrated in Fig.6d present that the number
of services per edge server decreases with the increasing
number of edge servers. The reason is that the app vendors
can assign more app users on single edge servers as the
number of choices increases. Fig.6d shows that the ERA
algorithm makes proper use of the multi-tenant edge servers.
The findings in Fig. 6e illustrate that, up to a point, the number
of edge servers used in each technique is nearly identical,
e.g., 30 in our experiments, as there is a lower availability of
edge servers. As described above, the overall required edge
servers are lower in the ERA algorithm. The observations
in Fig. 6f depict that service response time decreases as the
availability of edge servers increases. The ERA algorithm
works well because it maximizes cache content utilization
while increasing data and software reuse.

3) EXPERIMENT 3
Fig. 7 shows the experimental results, which compare the
algorithm’s performance with a variation of app vendors
ranging from 5 to 50, with app users per vendor and edge
servers set at 500 and 50, respectively. The results depicted in
Fig. 7a show that the average cost per app vendor decreases
with an increase in app vendors as the fixed cost of the edge
servers distributes among them. The solution achieved by the
ERA algorithm is more cost-effective than other approaches
as it allocates resources effectively to maximize the multi-
tenancy use. The reason is that the ERA algorithmmaximizes
the number of app users of similar services on each edge
server that effectively utilizes the multi-tenant edge server.
Fig. 7b shows that the overall allocated users to edge servers
decrease with app vendors. It happens because an increase in
app vendors leads to an increase in app users, which causes
edge servers to become unavailable owing to proximity and
capacity restrictions. The ERA algorithm performs better
than PRDS, TPDS, MCFH, Greedy, and Best-Fit. The reason
is that ERA assignsmore app users of a similar service to each
edge server than to others, allowing for more app users to be
served on a multi-tenant edge server with similar resources
because of various application components, such as program
and data, can be reused. Due to the same reason, in the

ERA algorithm, each edge server can serve more app users
compared to PRDS, TPDS, MCFH, Greedy, and Best-Fit,
as shown in Fig. 7c. Compared to other state-of-the-art and
baseline methodologies, the ERA algorithm allows each edge
server to serve more app users of similar services. Thus, the
number of app providers per edge server is lower under the
ERA algorithm, as shown in Fig. 7d. The findings in Fig. 7e
show that when the number of app vendors increases, the
number of edge servers required increases as well. The ERA
performs well as it motivates the app vendors to switch on
edge servers used by more services subject to proximity and
capacity constraints. The results in 7f show that as the number
of app vendors grows, so does the service response time to app
users. The ERA algorithm performs well, as discussed above
in Experiments 1 and 2.

VIII. CONCLUSION
In this paper, we addressed the problem of allocating
multi-tenant edge computing resources to different IoT
apps (services) vendors. We proposed an ERAGame, a game-
theoretic approach that formulates the Edge Resource Allo-
cation (ERA) problem as a potential game. The goal of
the proposed game is to maximize resource utilization and
increase app users assigned to Edge servers while minimizing
costs incurred by app vendors. To accomplish this objective,
the ERAGame employs the ERA algorithm for convergence
to the Pure Nash Equilibrium (PNE) solution. This way, the
ERA problem can be solved in a distributed manner. The
ERA algorithm takes at most maxqi,x (T × qi,x) iterations to
reach the PNE. We got bound O(log n) for the price of stabil-
ity of ERAGame under the ERA algorithm. We conducted
extensive experiments and compared the ERA algorithm’s
performance with baseline and state-of-the-art approaches.
The experimental findings validate that the ERA algorithm
allocates the optimal bundle of computing resources by max-
imizing resource utilization and assigns the most app users to
edge servers at a lower cost.

This study opened many new avenues for future investi-
gation of the ERA problem. 1) the effects of mobility and
trajectories of app users on ERAGame can be investigated.
2) Future research could look into app users’ mobile partic-
ipation in ERAGame, including existing app user departures
and new app user arrivals. 3) ERAGame can be improved to
accommodate the diverse capabilities needs of app users over
time. 4) The impact on the quality of the user experience in
ERAGame can be investigated.

REFERENCES
[1] G. Li, J. He, S. Peng, W. Jia, C. Wang, J. Niu, and S. Yu, ‘‘Energy efficient

data collection in large-scale Internet of Things via computation offload-
ing,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4176–4187, Jun. 2019.

[2] S. Kumar, A. Goswami, R. Gupta, S. P. Singh, and A. Lay-Ekuakille,
‘‘A game-theoretic approach for cost-effective multicast routing in the
Internet of Things,’’ IEEE Internet Things J., early access, Apr. 1, 2022,
doi: 10.1109/JIOT.2022.3164028.

[3] A. Boukerche, S. Guan, and R. E. De Grande, ‘‘A task-centric mobile
cloud-based system to enable energy-aware efficient offloading,’’ IEEE
Trans. Sustain. Comput., vol. 3, no. 4, pp. 248–261, Oct. 2018.

VOLUME 10, 2022 57987

http://dx.doi.org/10.1109/JIOT.2022.3164028


S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

[4] X. Chen, ‘‘Decentralized computation offloading game for mobile
cloud computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[5] J. Cohen, ‘‘Embedded speech recognition applications in mobile phones:
Status, trends, and challenges,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., Mar. 2008, pp. 5352–5355.

[6] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
‘‘Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture,’’ in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jul. 2012, pp. 59–66.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[8] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu,
‘‘EEDTO: An energy-efficient dynamic task offloading algorithm
for blockchain-enabled IoT-edge-cloud orchestrated computing,’’ IEEE
Internet Things J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[9] X. Zhang, Z. Li, C. Lai, and J. Zhang, ‘‘Joint edge server placement and
service placement in mobile edge computing,’’ IEEE Internet Things J.,
early access, Nov. 13, 2021, doi: 10.1109/JIOT.2021.3125957.

[10] X. Chen, Y. Cai, L. Li, M. Zhao, B. Champagne, and L. Hanzo, ‘‘Energy-
efficient resource allocation for latency-sensitive mobile edge computing,’’
IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2246–2262, Feb. 2020.

[11] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, ‘‘ULOOF: A user level online offloading framework for
mobile edge computing,’’ IEEE Trans. Mobile Comput., vol. 17, no. 11,
pp. 2660–2674, Nov. 2018.

[12] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, ‘‘Offloading
in mobile edge computing: Task allocation and computational fre-
quency scaling,’’ IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584,
Aug. 2017.

[13] J. Zhang, H. Guo, J. Liu, and Y. Zhang, ‘‘Task offloading in vehicular
edge computing networks: A load-balancing solution,’’ IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

[14] S. Batewela, C.-F. Liu, M. Bennis, H. A. Suraweera, and C. S. Hong,
‘‘Risk-sensitive task fetching and offloading for vehicular edge
computing,’’ IEEE Commun. Lett., vol. 24, no. 3, pp. 617–621,
Mar. 2020.

[15] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and S. Mumtaz,
‘‘Intelligent delay-aware partial computing task offloading for multi-user
industrial Internet of Things through edge computing,’’ IEEE Internet
Things J., early access, Oct. 27, 2021, doi: 10.1109/JIOT.2021.3123406.

[16] H. Hu, Q. Wang, R. Q. Hu, and H. Zhu, ‘‘Mobility-aware offloading and
resource allocation in a mec-enabled iot network with energy harvesting,’’
IEEE Internet Things J., vol. 8, no. 24, pp. 17541–17556, Dec. 2021.

[17] Y. Zhang, X. Zhao, Z. Zhou, P. Qin, S. Geng, C. Xu, Y. Wang, and
L. Yang, ‘‘Robust resource allocation for lightweight secure transmission
in multicarrier NOMA-assisted full duplex IoT networks,’’ IEEE Internet
Things J., vol. 9, no. 9, pp. 6443–6457, May 2022.

[18] J. Huang, M. Wang, Y. Wu, Y. Chen, and X. Shen, ‘‘Distributed offload-
ing in overlapping areas of mobile edge computing for Internet of
Things,’’ IEEE Internet Things J., early access, Jan. 20, 2022, doi:
10.1109/JIOT.2022.3143539.

[19] D. T. Nguyen, L. B. Le, and V. Bhargava, ‘‘Price-based resource allocation
for edge computing: A market equilibrium approach,’’ IEEE Trans. Cloud
Comput., vol. 9, no. 1, pp. 302–317, Jan./Mar. 2021.

[20] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
‘‘A game-theoretical approach for user allocation in edge computing envi-
ronment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 3, pp. 515–529,
Sep. 2020.

[21] P. Lai, Q. He, J. Grundy, F. Chen, M. Abdelrazek, J. G. Hosking, and
Y. Yang, ‘‘Cost-effective app user allocation in an edge computing envi-
ronment,’’ IEEE Trans. Cloud Comput., early access, Jun. 11, 2020, doi:
10.1109/TCC.2020.3001570.

[22] B. Jia, H. Hu, Y. Zeng, T. Xu, and Y. Yang, ‘‘Double-matching resource
allocation strategy in fog computing networks based on cost efficiency,’’
J. Commun. Netw., vol. 20, no. 3, pp. 237–246, Jun. 2018.

[23] J. Wang, L. Zhao, J. Liu, and N. Kato, ‘‘Smart resource allocation
for mobile edge computing: A deep reinforcement learning approach,’’
IEEE Trans. Emerg. Topics Comput., vol. 9, no. 3, pp. 1529–1541,
Jul. 2021.

[24] H. Yuan and M. Zhou, ‘‘Profit-maximized collaborative computation
offloading and resource allocation in distributed cloud and edge computing
systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1277–1287,
Jul. 2021.

[25] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, ‘‘Quality
of experience (QoE)-aware placement of applications in fog comput-
ing environments,’’ J. Parallel Distrib. Comput., vol. 132, pp. 190–203,
Oct. 2019.

[26] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
‘‘Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on SARSA,’’ IEEE Access, vol. 8,
pp. 54074–54084, 2020, doi: 10.1109/ACCESS.2020.2981434.

[27] J. Sun, Q. Gu, T. Zheng, P. Dong, A. Valera, and Y. Qin, ‘‘Joint opti-
mization of computation offloading and task scheduling in vehicular edge
computing networks,’’ IEEE Access, vol. 8, pp. 10466–10477, 2020, doi:
10.1109/ACCESS.2020.2965620.

[28] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, ‘‘Efficient mobility-
aware task offloading for vehicular edge computing networks,’’ IEEE
Access, vol. 7, pp. 26652–26664, 2019, doi: 10.1109/ACCESS.2019.
2900530.

[29] Y. Zhang, X. Dong, and Y. Zhao, ‘‘Decentralized computation offloading
over wireless-powered mobile-edge computing networks,’’ in Proc. IEEE
Int. Conf. Artif. Intell. Inf. Syst. (ICAIIS), Mar. 2020, pp. 137–140, doi:
10.1109/ICAIIS49377.2020.9194840.

[30] M. Aazam, M. St-Hilaire, C.-H. Lung, and I. Lambadaris, ‘‘MeFoRE: QoE
based resource estimation at fog to enhance QoS in IoT,’’ in Proc. 23rd Int.
Conf. Telecommun. (ICT), May 2016, pp. 1–5.

[31] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and Y. Yang,
‘‘Optimal edge user allocation in edge computing with variable sized
vector bin packing,’’ in Proc. Int. Conf. Service-Oriented Comput. Cham,
Switzerland: Springer, 2018, pp. 230–245.

[32] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct./Dec. 2017.

[33] T. Ouyang, Z. Zhou, and X. Chen, ‘‘Followme at the edge: Mobility-aware
dynamic service placement for mobile edge computing,’’ IEEE J. Sel.
Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[34] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, ‘‘Heterogeneous cloudlet
deployment and user-cloudlet association toward cost effective fog com-
puting,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 16, p. e3975,
Aug. 2017.

[35] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, ‘‘Online resource allo-
cation for arbitrary user mobility in distributed edge clouds,’’ in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 1281–1290.

[36] J. Xu, L. Chen, and P. Zhou, ‘‘Joint service caching and task offloading for
mobile edge computing in dense networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2018, pp. 207–215.

[37] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking,
J. Grundy, and Y. Yang, ‘‘Edge user allocation with dynamic qual-
ity of service,’’ in Proc. Int. Conf. Service-Oriented Comput. Cham,
Switzerland: Springer, 2019, pp. 86–101.

[38] Q. Peng, Y. Xia, Z. Feng, J. Lee, C.Wu, X. Luo,W. Zheng, S. Pang, H. Liu,
Y. Qin, and P. Chen, ‘‘Mobility-aware and migration-enabled online edge
user allocation in mobile edge computing,’’ in Proc. IEEE Int. Conf. Web
Services (ICWS), Jul. 2019, pp. 91–98.

[39] S. Ghosh and D. P. Agrawal, ‘‘A high performance hierarchical caching
framework for mobile edge computing environments,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6, doi:
10.1109/WCNC49053.2021.9417323.

[40] M. Sarra, B. Samia, S. Khaled, and D. Mehammed, ‘‘New caching sys-
tem under uncertainty for mobile edge computing,’’ in Proc. 4th Int.
Conf. Fog Mobile Edge Comput. (FMEC), Jun. 2019, pp. 129–134, doi:
10.1109/FMEC.2019.8795356.

[41] J. Ren, G. Yu, Y. Cai, and Y. He, ‘‘Latency optimization for resource
allocation in mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5506–5519, Aug. 2018.

[42] R. Buyya and S. N. Srirama, Fog and Edge Computing: Principles and
Paradigms. Hoboken, NJ, USA: Wiley, 2019.

[43] S. Srikantaiah, A. Kansal, and F. Zhao, ‘‘Energy aware consolidation for
cloud computing,’’ in Proc. Workshop Power Aware Comput. Syst. OSDI,
2008, pp. 1–5.

[44] G. Velkoski, M. Simjanoska, S. Ristov, and M. Gusev, ‘‘CPU utilization in
a multitenant cloud,’’ in Proc. Eurocon, Jul. 2013, pp. 242–249.

[45] D. Bozdag, U. Catalyurek, A. H. Gebremedhin, F. Manne, E. G. Boman,
and F. Özgüner, ‘‘A parallel distance-2 graph coloring algorithm for dis-
tributed memory computers,’’ in Proc. Int. Conf. High Perform. Comput.
Commun. Berlin, Germany: Springer, 2005, pp. 796–806.

57988 VOLUME 10, 2022

http://dx.doi.org/10.1109/JIOT.2021.3125957
http://dx.doi.org/10.1109/JIOT.2021.3123406
http://dx.doi.org/10.1109/JIOT.2022.3143539
http://dx.doi.org/10.1109/TCC.2020.3001570
http://dx.doi.org/10.1109/ACCESS.2020.2981434
http://dx.doi.org/10.1109/ACCESS.2020.2965620
http://dx.doi.org/10.1109/ACCESS.2019.2900530
http://dx.doi.org/10.1109/ACCESS.2019.2900530
http://dx.doi.org/10.1109/ICAIIS49377.2020.9194840
http://dx.doi.org/10.1109/WCNC49053.2021.9417323
http://dx.doi.org/10.1109/FMEC.2019.8795356


S. Kumar et al.: Game-Theoretic Approach for Increasing Resource Utilization in Edge Computing Enabled IoT

SUMIT KUMAR received the M.Tech. degree
in computer science and engineering from
the National Institute of Technology (NIT)
Hamirpur, India, in 2011. He is currently pursu-
ing the Ph.D. degree in edge computing enabled
Internet of Things with applications in game the-
ory with the Indian Institute Technology (BHU)
Varanasi, India.

RUCHIR GUPTA (Senior Member, IEEE)
received the Ph.D. degree in peer-to-peer net-
works from the Indian Institute of Technology
Kanpur, India, in 2013. From 2017 to 2020, he was
an Associate Professor with the Indian Institute
Technology (BHU), Varanasi, India. He is cur-
rently working as a Professor with the School of
Engineering, Jawaharlal Nehru University (JNU),
Delhi. His research interests include peer-to-peer
networks, social networks, game theory, NLP, and
machine learning.

K. LAKSHMANAN received the Ph.D. degree
in computer science and automation from the
Indian Institute of Science (IISc), Bengaluru,
India, in 2013. He has experience working as a
Postdoctoral Fellow at the Indian Institute Tech-
nologyBombay, India, and theNational University
of Singapore, Singapore. He is currently an Assis-
tant Professor of computer science and engineer-
ing at the Indian Institute of Technology (BHU)
at Varanasi, Varanasi, India. His research inter-

ests include machine learning, stochastic optimization, and reinforcement
learning.

VIPIN MAURYA received the B.Tech. degree
in computer science engineering from the
B.B.S. College of Engineering and Technology,
Prayagraj, India, in 2018. He is currently pursuing
the Ph.D. degree in wireless sensor network with
the Indian Institute Technology (BHU) at Varanasi,
Varanasi, India.

VOLUME 10, 2022 57989


