IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received April 2, 2022, accepted May 8, 2022, date of publication May 17, 2022, date of current version June 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175861

End-to-End PSK Signals Demodulation Using
Convolutional Neural Network

WEN-JIE CHEN', JIAO WANG “2, AND JIAN-QING LI*“2, (Member, IEEE)

!'Southwest China Institute of Electronic Technology, Chengdu 610036, China

2School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Jian-Qing Li (lijq@uestc.edu.cn)

ABSTRACT Demodulation techniques are of central importance for achieving intelligent receiving.
Improvement in demodulation performance enhances the overall performance of a communication system
correspondingly. However, conventional demodulators require dedicated hardware platforms leading to
high implementation costs and time-consuming development. This work proposes a unified architecture
for end-to-end automatic demodulated modulated signals. The proposed demodulator utilizes the residual
unit and fully convolutional network (R-FCN) to extract the time-domain feature of the modulated signal
and determine the transmitted symbols to realize the demodulation of a received signal. Simulations show
that the proposed method has better demodulation performance compared to existing methods. It is further
demonstrated that when the signal-to-noise ratios (SNR) exceed 2dB, the proposed demodulator exhibits
similar demodulation performance to symbol-unsynchronized data compared to conventional demodulators.

INDEX TERMS Convolutional neural network, demodulation, residual network.

I. INTRODUCTION

Phase shift keying (PSK) is a digital modulation scheme that
transmits information by shifting the carrier wave between
different phases. In a pure PSK, both the amplitude and
the frequency of the transmitted carrier are typically kept
constant [1]. Because PSK is more efficient and less prone
to errors than frequency shift keying (FSK) and other mod-
ulation forms. It is used extensively in digital microwave
communication, mobile communication, satellite communi-
cation, broadband access, and cable television systems [2].
The current research for wireless communication systems
mainly starts with accurate and high energy efficiency or
high spectrum utilization, while signal demodulation directly
impacts wireless transmission performance.

With the rapid development of computer science and hard-
ware, machine learning has been developed accordingly.
Deep learning (DL) [3] is a sub-class of machine learning
(ML) that focuses on utilizing convolutional neural networks
(CNNs) to extract helpful features in raw data automati-
cally. Inspired by the architecture and functionality of the
artificial neural networks (ANN), deep learning uses algo-
rithms to learn abstract features directly from input data in
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a hierarchical manner with features from higher levels of the
hierarchy formed by the composition of lower-level features.
Researchers have been exploring its use in communication
fields since the introduction of DL [4]. Currently, DL has been
applied to channel estimation [5], [6], modulation recognition
[7]-[9], channel code recognition [10], [11], communication
system simulation [12], [13] and decoding [14]-[16].

Signal demodulation based on learning methods has been
widely studied in recent years, and the application of neu-
ral networks is more common than other algorithms such
as support vector machines (SVM). Depending on the data
processing method, the signal demodulation methods can
be divided into the sampling points grouping-based and
the phase shifts detecting-based. According to the differ-
ent neural network models used, the signal demodulation
methods can be divided into four types: multilayer percep-
tron (MLP) [18]-[20], deep belief network (DBN) [21],
long short-term memory (LSTM) [22], and CNN [25]-[28].
In [17], an ANN demodulator was proposed to demodu-
late the FSK signal. It can efficiently demodulate the FSK
signal transmitted in a complex noise context and signifi-
cantly enhance the anti-interference capability. And Kaizhi
and Hu [23] presented a pattern recognition theory-based
PSK demodulation algorithm that recognizes PSK order
and simultaneously eliminates phase shift interference. The
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authors from [19] designed an electrocommunication sys-
tem for deep learning-based demodulation. In [21], two
data-driven frameworks of signals demodulation techniques,
including the DBN-SVM-based approach and the adap-
tive boosting (AdaBoost)-based approach, are summarized.
In [22], the LSTM unit-aided intelligent deep neural network
(DNN)-based DL demodulator was proposed to demodulate
the received signals. Better performance than the benchmark
systems was obtained. Elbaz and Zibulevsky [24] proposed to
employ the prior information of transmitted speech messages
to train a DNN and LSTM for Frequency modulation (FM)
demodulation. Onder et al. [20] considered that wireless
channels often got substantial interference. So, they designed
a feedforward neural network demodulator to demodulate the
transmitted signal over unknown channels. The network was
pre-trained with pilot signal then further trained in multi-
path transmission scenario. It obtained better BER perfor-
mance in the Rayleigh channel than the traditional correlation
demodulator.

Recently, many researchers applied CNN to resolve the
digital modulation signals’ demodulation problems (see,
e.g.,[25]-[28]). The authors in [25] proposed three ML
demodulators based on CNN, the DBN, and AdaBoost.
Particularly, the CNN-based demodulator transforms the
modulated signal into an image and identifies the
demodulation symbols of the received signal by the image
classification. In [27], the mixed-signal demodulation was
investigated based on the deep convolutional network. This
method attempts to demodulate symbol sequences from mix-
ing signals, respectively. However, all aforementioned meth-
ods need to take samples at each symbol period as the input
to their neural networks, and then they use neural networks
to binarize them. Nevertheless, grouping the baseband data
strictly according to the symbol period is challenging to
achieve, primarily when frequency offset or sampling error
occurs. To address this issue, Zhang et al. [26] proposed the
1-D CNN-based binary phase-shift keying (BPSK) demodu-
lator, which uses 1-D CNN to detect the location and form
of the phase jump of the BPSK signal, thereby obtaining the
demodulation results. This method needs neither complicated
preprocessing nor sample sequence grouping, yet an increase
in the number of phase jumps will call for a corresponding
rise in the number of CNNs that need to be built. Therefore,
this approach is no longer practical when the modulation
order is raised.

We can see that CNN is a widely used neural network
model for signal demodulation from the above. For the most
part, in CNN-based signal demodulation approaches, the
input vector of received signal supported by the CNN is fre-
quently required grouping of the sampling sequences. Then
a CNN model is used to demodulate the modulated signal
within one sampling period into one symbol. However, as the
number of modulating orders increases, the number of cat-
egories increases exponentially. With the aid of the residual
network, we first use the entire modulated signal as input to
the CNN demodulator instead of a single symbol period to
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solve the sampling points grouping problem. Subsequently,
we use N multi-category classifiers at the final classification
layer to demodulate N symbols information stream instead of
a single binary classifier.

This paper presents a residual unit and fully convolutional
networks (R-FCN)-based end-to-end demodulator, which can
be applied to different modulation schemes with a few mod-
ifications. This approach allows learning and extracting fea-
tures directly from the received modulated signal without any
a priori knowledge of the channel model. As a comparison,
MLP, LSTM, CNN, and the conventional methods are also
studied. Then, we investigate the BER of BPSK, QPSK, and
8PSK signals with different SNRs. In order to train the model,
three modulate signals of single-carrier modulated signal
samples with additive white gaussian noise (AWGN) are gen-
erated in various SNR circumstances. Furthermore, we inves-
tigate how symbol-unsynchronized data affect the demod-
ulation performance for QPSK signals. Results show that
the proposed demodulator is relatively insensitive to symbol-
unsynchronized data compared to conventional algorithms.

The rest of this paper is organized as follows. Section II
briefly introduces the signal model and a typical CNN model.
Section III gives a description of the presented CNN demod-
ulator in detail. The results of the experiment and perfor-
mance analysis are given in Section IV, and the conclusion
in Section V.

Il. BACKGROUND

A. SYSTEM MODEL

As shown in Fig. 1, this PSK signal transmission system
consists of three main parts, a transmitter, a transmission
channel, and a receiver. The transmitter comprises a baseband
modulator, a baseband-shaping filter, and a carrier wave mod-
ulator [29]. The receiver is composed of a preprocessor and
a neural network demodulator. At the transmission end, after
baseband modulation, baseband-shaping filtering, and carrier
wave modulation, the information bits that have turned into
an intermediate frequency (IF) signal is then up-conversed
into a high frequency (HF) signal, which is more suitable for
channel transmission. In the transmission channel, AWGN is
added to the transmission signal. The receiving signal is first
down-converted into an IF signal at the receiving end. Next,
it is preprocessed then sent to the neural network to get the
demodulated information bits.

PSK is a digital modulation process that transmits infor-
mation by shifting the carrier wave between different phases.
This paper focuses on studying modulated signals demodu-
lation corrupted by additive white Gaussian noise (AWGN).
We suppose that the transmitted information bitstream is
independent identically distributed (i.i.d.) and that the trans-
mitter uses the PSK signal waveform to send digital informa-
tion. When the PSK digital modulation scheme is used, the
transmitted signal x(t) is expressed as

x(t) =AcosQuft +wy),n=1,.... M (1)
where A denotes the amplitude, f; is the carrier frequency of
the modulated signal, w,, is the absolute phase of the n-th
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FIGURE 2. A typical CNN consists of an input layer, convolutional layers, pooling layers, and an output layer.

symbol. M is the modulation order. Each symbol of MPSK
modulation corresponds to & bits, and there are M symbols in
total.

At the receiver, the received signal y(¢) in the communica-
tion system is given by:

@

where x(t) represents the transmitted pulse-shaped signal,

c(t) is the channel pulse response, and n(¢) denotes AWGN

noise with power 2.

WE) = x(1) % e(t) + n(1)

B. CONVOLUTIONAL NEURAL NETWORK

CNN s are artificial neural networks that are so far generally
used to analyze visual images [30]. Inspired by early findings
in the study of biological vision, a typical CNN consists of
an input layer, convolutional layers, pooling layers, and an
output layer, as shown in Fig. 2.

As the most critical module in the CNN, the convolutional
layer is vital in applying the model. The parameters of the
neural network consist of a set of learnable convolutional
kernels, all of which are set as a small receptive field and
then expanded to the entire input data by means of a sliding
window convolution. During forward propagation, each con-
volution kernel computes the dot product of the filter with
the previous layer of input in the width and height direc-
tions of the input data, and then generates a two-dimensional
activation map for that convolution kernel. The convolution
operation can be expressed as:

+50) 3)

m
I _ / -1
= f QW) X i
=1
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FIGURE 3. Max pooling with a 2 x 2 filter and stride = 2.

where w! and b]l. represent the weights and bias of the [-th
convolution kernel, respectively, and f'(-) represents the acti-
vation function.

Another important concept of CNNss is pooling. A pooling
layer is a nonlinear down-sampling layer, and it is often added
after the convolutional layers to reduce the dimensionality
of the feature map. Pooling operation increases the receptive
field’s size and helps make a representation approximately
invariant to local translation. Two standard functions used in
the pooling operation are average pooling and max pooling
which help extract background and textures, respectively,
where max pooling is the most common (see Fig. 3). When
the background is noisy or complicated, max pooling is
usually used to summarize the most activated presence of a
feature.

C. RESIDUAL NETWORK
As the depth of a convolutional neural network grows, the
gradient of the loss function approaches zero, leading to
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FIGURE 5. Architecture of the CNN-based demodulator.

higher training error. To address this problem, He et al. [31]
presented a residual learning framework (ResNet). A resid-
ual neural network (ResNet) is an artificial neural network
(ANN) that builds on the known structure of cortical pyra-
midal cells. Residual neural networks do this by skipping
connections or shortcuts to skip specific layers. A typical
ResNet model is accomplished by double- or triple-layer skip
connections, which includes rectified linear unit (ReLU)) and
batch normalization (BN) in between.

A residual unit is shown in Fig. 4. Denoting the input of
the residual unit as x and output as H (x), unlike plain CNN,
which tries to learn the actual output H (x), Residual networks
learn the residual-F(x) = H(x)-x. Formally, a residual unit
for a ResNet is defined as:

xk+1 = Leaky ReLU(F (x) + xx) 4)

where xy, is the input of the k-th residual unit, and xx 1 is the
output of the k-th residual unit. Leaky ReL.U represents the
activation function, i.e., o (x) = max (0, x + 8- min (0, x),
where B is a small constant, such as 0.1 [32].

lll. THE PROPOSED APPROACH

In this section, we first introduce the architecture of the
proposed demodulator network in brief. Then, we describe
in detail the end-to-end R-FCN demodulator architecture and
give an optimized training scheme. Finally, the methods of
modulation and the parameters of experimental signals are
provided.

A. ARCHITECTURE OF THE PROPOSED DEMODULATOR

Fig. 5 describes the structure of the proposed CNN-based
demodulator that consists of an input layer, feature extraction,
classification layer, and output layer. In the input layer, the
signal time-domain waveform of the received signal is input.
The task of the feature generator is to extract feature maps
automatically from the signal time-domain waveform of the
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TABLE 1. Proposed R-FCN demodulator structure.

Module Layer Output size
Input Input 4096x1
Max pooling Res stack 2048%32
Max pooling Res stack 1024%32
Encoder Max pooling Res stack 512x32
Max pooling Res stack 256%32
Up-sampling Res stack 512x32
Up-sampling Res stack 1024x32
Decoder Res stack 1024x32
Res stack 1024x32
Output Conv + Softmax 1024xM
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‘){ Residual ‘ ‘ Residual Up P
unit unit || sampling

Upsampling Residual Stack

(b)
| Residual Residual 1_’
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FIGURE 6. The residual stacks: (a) The max-pooling residual stack, (b) The
up-sampling residual stack, (c) The residual stack.

received signal. The feature maps are used as the input of
the classification layer. Multiple multi-category classifiers
are used in the final classification layer to implement the
received signal demodulation. Each multi-category classifier
demodulates one of the symbols. The number of classifiers
corresponds to the number of symbols in the signal to be
demodulated.

B. PROPOSED R_FCN STRUCTURE

The proposed R-FCN demodulator consists of an input layer,
an encoder, a decoder, and an output layer. See Table 1 for
detailed architecture. There are 4096 nodes in the input layer,
the same length as the input vector. The encoder comprises
four max-pooling residual stacks. Fig. 6a shows the archi-
tecture for the max-pooling residual stack, consisting of two
residual units and a max-pooling layer. The encoder performs
convolution and max-pooling operations to extract and sum-
marize features. The obtained feature maps are then sent to
the decoder.
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As shown in Figs 6, the decoder comprises two up-
sampling residual stacks and two residual stacks. In this work,
the number of samples per symbol have a fixed number
of 4. Thus, there are two more max-pooling layers in the
demodulator than the number of up-sampling layers, and two
more max-pooling layers are used to down-sample the incom-
ing signals. When changing the number of sample points,
the architecture of the demodulator changes correspondingly.
The output layer contains only a single convolutional layer.
Its output indicates the demodulation results for the incoming
signals, whose dimension is determined by the modulation
order (M). The output length is calculated by the input length
and the number of samples per symbol.

During training, optimizations are made for a CNN better
to fit the communication signal demodulation task [34]. First,
we use Leaky ReLU [32] as the nonlinear activation function
after each convolutional layer. It allows faster convergence
than traditional nonlinear activation functions and doesn’t
omit negative values compared to ReLU. However, the acti-
vation function used in the demodulation layer is the Softmax
function so that the output values of each Softmax function
can be controlled in the [0,1] interval. Since the activation
function used in the demodulation layer is different from the
other layers, the Xavier initialization method [33] is used
to initialize the weights to ensure the consistency of the
input and output variances throughout the network. Second,
the batch normalization [35] technique is used after each
convolution layer to make its output (input for the next layer)
follow a standard distribution, improving the generalization
performance.

C. DATASETS

The size and variety of the dataset significantly impact the
effectiveness of deep learning techniques. This paper eval-
uates the proposed demodulation algorithm on three widely
used digital modulation schemes-BPSK, QPSK, and 8PSK.
We use MATLAB to generate random binary bitstreams then
modulate them with the above three modulation schemes.
In our experiments, we set the frequency of carrier wave f,
at 23.325KHz, the sampling rate f; at 93.3KHz. We select
23.325Kbps of symbol rate to obtain the most sampling
points. In addition, we add AWGN to signals to train the
demodulator, which attributes to the enhancement of noise
immunity. The channel SNR is calculated by the ratio of
energy per symbol to the spectral noise density (E;/Np) and
oversampling factor. The relationship between Es/Np and
SNR, both expressed in dB, is as follows:

SNR(dB) = E,INy(dB) — 10 % 1og 10(0.5*sps)  (5)

where sps is the number of samples per symbol (oversam-
pling factor). For an actual input signal oversampled by a
factor of 4, the E;/Ny exceeds the corresponding SNR by
10x10g10(0.5%4).

The data is produced from simulations in different chan-
nel SNR (—4 dB to 8 dB) environments for training sets
and validation sets concerned in this work. A group of
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FIGURE 7. Training loss and accuracy curves vs. epoch numbers when
training the R-FCN demodulator for QPSK signals.

data (10000 samples, 90% for training, 10% for valida-
tion) is generated for every 2 dB of SNR change. Eight
groups of data are generated in total. Due to the differ-
ence in bit error ratio (BER) among the three modulation
schemes, the SNR range of the BPSK, QPSK, 8PSK test
sets are set to be —5dB to 8 dB, —5dB to 10 dB, and
—5 dB—15d B, in the order given. One thousand samples are
generated for every 1 dB of SNR change for each modulation
scheme.

IV. SIMULATION RESULTS
In this section, we conduct a series of simulation experiments

to demonstrate the effectiveness and robustness of the pro-
posed R-FCN demodulator.

A. TRAINING OF THE NETWORKS

The R-FCN demodulator is used to demodulate the three
modulation data sets (BPSK, QPSK, and 8PSK). We train the
network on the training sets, and the validation sets are par-
titioned in Section III. Categorical cross-entropy and Adam
are used as the loss function and optimization algorithm for
training, and the initial learning rate is set to be 0.001. If the
verification loss is not reduced over eight epochs, the learning
rate is reduced to one-tenth of the previous learning rate.
In addition, the mini-batch method is used to partition the
input training data sets into several batches to improve the
stability of convergence. In this work, the mini-batch size is
set to be 64. Fig. 7 shows the accuracy and loss value curves
of the QPSK demodulation training. The horizontal axis rep-
resents the number of training epochs, the left vertical axis
represents the loss value, and the right vertical axis represents
the accuracy demodulation. We see that the demodulation
accuracy increases with the increase of the epochs, while the
loss value decreases with the rise of the periods. Moreover,
both reach a stable state after about 100-epoch. The training
curves for BPSK and 8PSK signals are similar. For simplicity,
we will not detail them.
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FIGURE 8. The BER performance of different training signal sets for BPSK
signals.

B. IMPACT ON DATA SETS

In previous signal recognition tasks (e.g., modulation recog-
nition, channel coding recognition), signals with all SNR
levels are needed for analysis of the impact of SNR level
on recognition accuracy. We use another training method
to analyze the influence of SNR on BER performance in
this case because the proposed CNN-based demodulation
task is different from the traditional classification task. First,
we train on each of the eight data groups to get eight cor-
responding demodulators, and then we train on all samples
to get a demodulator. Those nine demodulators are used to
demodulate the test data sets, respectively. Furthermore, the
BER of each demodulator in different SNR circumstances is
obtained. Experimental results show that the model trained
on low SNR samples has a higher BER when demodulating
high SNR. In comparison, the model trained on high SNR
samples has a higher BER when demodulating low SNR
samples. Therefore, training samples bringing two of the best-
performing demodulators are combined into one training set.
So, we use that set to train the tenth demodulator. Fig. 8,
Fig. 9, Fig. 10 show BER performances of the R-FCN demod-
ulators trained on three modulation schemes of training sets
with different SNRs. In order to improve the readability of
images, some test result curves are deleted because some
demodulators have similar BER performances. Due to the
difference in BER among the three modulation schemes, the
SNR range of the BPSK, QPSK, 8PSK test sets are set to be
—5dB to 8 dB, —5 dB to 10 dB, and —5 dB—15 dB, in the
order given.

We have three observations from Fig. 8, Fig. 9, Fig. 10.
First, the difference in SNR of the training sets leads to
different BER performances of the CNN demodulator. When
training sets contain data with two levels of SNRs, the
trained CNN demodulator has the best BER performance,
which is called the optical demodulator. Second, each mod-
ulation scheme has its optimal demodulator. The optimal
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FIGURE 9. The BER performance of different training signal sets for QPSK
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demodulators were obtained for BPSK, QPSK, 8PSK with
SNR equal to 2 dB to 4 dB, 4 dB to 6 dB, and 6 dB to 8 dB,
respectively. We can see that when the order of modulation
rises, training data with higher levels of SNR are needed to
yield the corresponding optimal demodulator. Last, we note
that the CNN demodulator trained with all training sets has
a higher BER performance than the optimal demodulators.
This result indicates that higher SNR data and lower SNR data
affect each other. Therefore, a suitable training set is required
to obtain the desired demodulator.

C. THE PROPOSED APPROACH VERSUS OTHER
DEMODULATORS

Fig. 11, Fig. 12, and Fig. 13 show the BER performance
curves of the conventional demodulator, coherent demodula-
tor, MLP demodulator [17], LSTM demodulator [22], CNN
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FIGURE 12. Comparison of different demodulation methods of QPSK
signals in AWGN channel.

demodulator [28], and R-FCN demodulator by the demodu-
lation of BPSK, QPSK, and 8PSK signals, respectively. All
demodulators use the same training sets and test sets to make
a fair comparison. As shown in Fig. 11, the BER performance
of the proposed R-FCN demodulator is like the other methods
when the SNR is below —1 dB and is significantly better
when SNR is over 0 dB. Similarly, in Fig. 12, the BER
performance of the proposed R-FCN demodulator is slightly
worse than the conventional demodulator in the low SNR.
Still, it outperforms other methods by about 1 dB in the
high SNR. In addition, from Fig. 13, we can find that the
BER performance of the LSTM demodulator is worse than
the other five demodulators. It can be seen in Fig. 13 that
at SNR ranges from —5 dB to 15 dB, the BER curve of
the optimal R-FCN demodulator is always lower than the
other three demodulators. Specifically, the proposed R-FCN
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demodulator can still achieve better reliability performances
compared with the state-of-the-art demodulation methods.

D. EFFECT OF SYMBOL SYNCHRONIZATION

In digital communication systems, symbol synchronization
provides information about each discrete symbol’s start time
and end time. In traditional demodulation methods, the speed
and accuracy of symbol synchronization significantly impact
the reception response speed and BER of digital wireless
communication systems.

To analyze how symbol synchronization affects demodula-
tion performance, we compare the BER performance between
the proposed algorithm and the conventional methods at
different symbol starting points, as shown in Fig.14. P=1
indicates that the starting point of the input data is the first
bit of the signal (i.e., symbol synchronization). P=2 means
that the demodulation starts from the second bit of the input
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data (i.e., symbol-unsynchronized), P=Random (Because the
number of sample points used in the simulation experiment
is 4, so P = 1,2,3,4) means that the symbol starting posi-
tion of the input data is randomly selected. We can see that
the symbol-unsynchronized input data affects two demodu-
lation algorithms’ BER performance. Nevertheless, it has a
more negligible impact on the R-FCN demodulator. More-
over, when the SNR is greater than or equal to 2 dB, the
BER performance of the R-FCN demodulator for symbol-
unsynchronized data is close to the traditional algorithm for
symbol-synchronized signals. However, when the SNR is less
than 0 dB, the CNN demodulator’s BER performance (for
symbol-unsynchronized signals) is worse than the conven-
tional algorithm for all three modulation schemes. Besides,
we see that from the two curves of P=2 and P=Random, the
BER performance of the traditional demodulator is affected
by the bit starting point. Nevertheless, the R-FCN demod-
ulator is insensitive to the bit starting point. Specifically, a
CNN-based R-FCN demodulator will obtain better robust-
ness than the traditional demodulator.

V. CONCLUSION

In this paper, we have proposed a CNN-based architecture
for demodulating the modulated signals by integrating CNN
into the communication system. The proposed end-to-end
R-FCN demodulator takes advantage of CNNSs are superior in
extracting high-level features, and ResNets address the prob-
lem of gradients vanishing. They are being used to improve
the performance of the demodulator. Experiments show that
the proposed R-FCN demodulator has better BER perfor-
mance than conventional demodulators. In addition, we fur-
ther investigate how symbol-unsynchronized data affect
the demodulation performance for QPSK signals. Results
show that the proposed demodulator is relatively insensi-
tive to symbol-unsynchronized data compared to traditional
methods.
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