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ABSTRACT Accurate user-transformer connectivity relationship (UTCR) plays a key role in fine manage-
ment of low-voltage distribution network (LVDN) i.e., load expansion, line loss management, and electrical
service restoration after outage. Limited data and low discriminability and noise in data increase the difficulty
to identify UTCR for the existing data analytics methods. To overcome these hurdles, this paper proposes a
novel UTCR algorithm which combining the data preprocessing with multi-dimensional priori knowledge
based on voltage characteristics in LVDN. Firstly, the prior knowledge related to UTCR are refined on
account of voltage correlation characteristics of users at different locations to provide theoretical foundation.
Then, Z-score and principal component analysis are combined to standardize and extract features from the
original voltage data to magnify the differences between data and reduce the impact of data noise. Further,
on the basis of the prior knowledge of voltage correlation characteristics, a knowledge-driven identification
model is proposed to identify users with wrong UTCR and their real UTCR. Finally, the performance of the
proposed algorithm is verified on simulated LVNDs. The comparison analysis between the proposed method
and other published methods and the impact of the number of principal components on the identification
accuracy are also investigated. The results indicate that the proposed method achieves higher recognition
accuracy than other published methods with low discriminability and noise in data.

INDEX TERMS User-transformer connectivity relationship identification, low-voltage distribution network,
data pre-processing, voltage correlation characteristics, knowledge-driven approaches.

I. INTRODUCTION
The massive use of fossil fuels has two drawbacks: resource
depletion and climate crisis, which violates the sustainable
development goal. To tackle this problem, many countries
around the world have taken carbon neutrality into the devel-
opment plan [1], [2]. Under this background, the pene-
tration level of new equipment, i.e., rooftop photovoltaic,
electric vehicle, and energy storage in LVDN increases
gradually [3]–[5]. The development of these devices can
effectively alleviate the pressure of environmental pollution
and energy tension, but it has brought impacts and chal-
lenges to the safe operation and power supply quality of
LVDN [6], [7]. In order to fully dig the potential of dis-
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tributed energy resources meanwhile operating the grid in
an efficient and reliable manner, a high-level operation and
maintenance management in LVDN is needed [8]. Of which,
accurate low-voltage physical topology connection informa-
tion is a vital foundation to support the intelligent construc-
tion of LVDN [9], [10]. Low-voltage topological connections
include the connections between distribution transformers,
phase sequences, feeders and users. This paper focus on
user-transformer connectivity relationship (UTCR) identifi-
cation, defined as the connection relationship between the ter-
minal user’s electricity meter and the distribution transformer
of LVDN.

With the development of economy and the continuous
advancement of urbanization, the number of users in LVDN
increases rapidly, and UTCR changes frequently. However,
affected by low efficiency of investigation and untimely
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update of information, the UTCR information that utilities
have usually existed many errors. Accurate UTCR is the
key to load expansion, line loss management, electrical ser-
vice restoration after outage, line transformation and other
services, and is also the premise to accurately identify the
connections among phase sequences, feeders and users [11],
[12]. The traditional methods relying on manual techniques
and signal injection devices are inefficient and need high
investment cost, which is hard to afford for grid companies.
Besides, it cannot update topology information automatically.
Therefore, it is important to study the automatic recognition
technology for UTCR.

Nowadays, deploying smart meters in LVDN is develop-
ment trend [13]. In particular, China has achieved 100%
penetration of smart meters in LVDN since 2019. In this
context, a large amount of users’ electricity consumption data
and network operation data can be obtained. New approaches
are intensively investigated to apply the data acquired by
smart meters for the planning and operation of distribution
systems, i.e., non-technical loss detection, non-intrusive load
monitoring, power quality assessment, fault location [14],
[15]. Similarly, with the advantages of low cost and con-
venient, new methods using smart meters data have been
widely employed for topology connectivity identification in
LVDN [10], [16]–[18]. [16] and [10] focus on the topology
and parameter estimation for LVDN with smart meters. [17],
[18] are methodologies utilizing voltage data and current data
from smart meters and transformers to recognize phase con-
nectivity relationship of users. All of the above studies need
accurate UTCR as a priori knowledge. By the data types they
require, the existing methods for UTCR recognition could be
categorized into five sets.

1) Power data: in [11], based on the power data of
users and transformers, a quadratic optimization model was
established to minimize the network loss fluctuation rate to
determine UTCR. In [12], the combination of linear regres-
sion and a Dirichlet-Categorical allocation model sampled
with Markov chain Monte Carlo was proposed to track and
identify low-voltage topology changes, in which the UTCR
information was included. In [19], a de-noised differential
evolution-based method was proposed for topology identifi-
cation.

2)Current data: in [20], the high-frequency features from
current data were extracted by Discrete Fourier Transform
and Inverse Discrete Fourier Transform. Further, an opti-
mization model based on Kirchhoff’s law of current was
constructed to get UTCR.

3) Voltage data: in [21], performing Fisher Z trans-
form on Pearson correlation coefficient matrix based on
the total harmonic voltage were proposed to determine
low-voltage connectivity. In [22], voltage correlation fac-
tors between all customers were calculated, and the users
with strong correlations were assumed to be on the same
transformer. In [23], voltage curve correlation analysis
between users and low-voltage buses was employed to
verify UTCR.

4) GIS data: in [24], new procedures that exploit the graph
theory and data structure properties were presented to detect
and correct errors in models of LVDN.

5) Multi-source data: in [25], regression and basic volt-
age drop relationships based on power data and voltage
data were employed to generate secondary connectivity and
impedance models. In [26], principal component analysis and
independent component analysis were employed to extract
features form voltage data. Then, the Pearson correlation
analysis between the users’ total current and transfer’s cur-
rent was used to realize UTCR recognition. In [27], a two-
stage approach for UTCR was proposed based on voltage
data and power data. At first stage, correlation analysis was
employed to ensure transformers with errors in UTCR, then
a linear regression formulation was built to correct the errors.
In [28], a multiple linear regression model using voltage and
power data of customers meters was established to estimate
topology, line parameters, and customer and line phasing
connections in LVDN.

The methods in the first and second categories using cur-
rent and power data are suitable for scenarios where con-
sumers’ power consumption characteristics are obvious and
there is no electricity theft and unmetered load. However,
in practice, it is also common that the obtained power con-
sumption data of consumers is incomplete and cannot fully
reflect the power consumption of LVDN, resulting from poor
communication quality, human error, unregistered meters,
and electricity theft. The methods in the fourth category need
GIS data. GIS data for LVDN are not available for many
areas such as China. The application scenarios of the methods
using GIS data are limited. For the methods based on linear
regression in the fifth category, on the one hand, it requires a
lot of data, including the voltage, active and reactive power
data of all users in LVDN. Nevertheless, it is difficult to
provide complete data in many areas, which reduces the
effective application scenarios of the methods. On the other
hand, there are many parameters involved in the regression
model, and parameter thresholds need to be set. How to select
appropriate parameter thresholds increases the difficulty of
applying the methods.

Voltage-based methods in the third category have strong
robustness to electricity theft and unmetered load. The volt-
age correlation characteristics analysis among users or that
between users and transformer was employed in the exist-
ing voltage-based methods individually. However, the volage
correlation characteristics of users depend on their loca-
tion. There may be contradictory correlation characteristics
between users located in different locations. Hence, the exist-
ing voltage-based methods only using one correlation charac-
teristic are not sufficient to accurately identify UTCR.

Besides, the existing voltage-based methods lack data pre-
processing, and have less robustness to data discrimination
and noise. In practice, the voltage data collected from LVDN
with three-phase unbalanced governance tend to be central-
ized. And the difference between user’s voltage character-
istics is small, which affects the accuracy of the algorithm.
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Moreover, affected bymetermeasurement errors and commu-
nication problems, the data collected by smart meters often
contains some noise. Low discriminability and noise in data
affect the performance of the existing voltage-basedmethods.

In conclusion, despite its importance, how to identify
UTCR accurately with voltage data and enhance the robust-
ness of the identification method to data discrimination
and noise has not been well investigated. To overcome
these hurdles, this paper introduces data preprocessing and
multi-dimensional priori knowledge in UTCR algorithm
based on voltage characteristics in LVDN. The improvements
on existing voltage correlation approaches include:

1) The voltage correlation characteristics of users at dif-
ferent locations are deduced, and the prior knowledge
related to UTCR are further refined, which provides a
theoretical basis for the recognition algorithm.

2) Z-score and principal component analysis are com-
bined to standardize and extract features from the orig-
inal voltage data to magnify the differences between
data and reduce the impact of data noise.

3) Based on the prior knowledge of voltage correla-
tion characteristics, a knowledge-driven identification
model is proposed to identify users with wrong UTCR
and their real UTCR.

4) Compared with the existing methods, the proposed
algorithm achieves higher UTCR identification accu-
racy, and has better robustness to data discrimination
and noise.

The rest of this paper is organized as follows. Section II
describes the problem formulation. Section III deduces the
prior knowledge of UTCR based on voltage data. Section IV
describes the mathematical model of the proposed UTCR
algorithm. The tests and results are illustrated in Section V.
At last, Section VI presents the conclusion of the study and
the future work.

II. PROBLEM FORMULATION
Distribution system is the final portion of electric power
system and feeds power from transmission system to users.
It includes medium-voltage distribution network and LVDN.
At present, the topology of medium-voltage distribution net-
work is available for grid companies. The information that
utilities have about LVDN is limited to UTCR which defined
as the connectivity between meters and transformer.

An illustration of a simple distribution network is presented
in Fig.1. It can be seen from Fig.1, the meters M1, M2,
M3, and M4 are powered by the distribution transformer T1.
Hence, these meters are considered to belong to LVDN#1.
Similarly, the meters M5, M6, M7, and M8 are powered by
the distribution transformer T2, these users are considered to
belong to LVDN#2. Smart meters located in consumer side
measure consumers’ power consumption, voltage, current,
power factor, and other data at regular time intervals.

Data concentrator units (DCU) are installed near the dis-
tribution transformer in LVDN to collect smart meter data

FIGURE 1. Illustration of a simple distribution network.

through wireless and power line communication [12]. Ter-
minal meters installed at the low-voltage buses of distribu-
tion transformer measure the total power consumed, voltage,
current, power factor of each low-voltage bus. As a result,
the power consumption, voltage, current, power factor, and
other data of consumer and transformer in LVDN can be
available for Grid company by DCU and terminal meters.
DCU stores the ID of smart meters needed to be collected.
This ID information can be regarded as the UTCR that power
grid companies can obtain at present. Ideally, DCU contains
only the ID information of all meters powered by the LVDN
which it located in. However, in practice, it is quite common
that the ID information of smart meters in the DCU is not
consistent with the actual UTCR. This may have the follow-
ing situations:

1) DCU contains the ID information of part of meters
powered by the LVDN which it located in;

2) DCU contains not only the ID information of all meters
powered by the LVDN which it located in, but also the
ID information of meters in other LVDN;

3) DCU contains not only the ID information of part of
meters powered by the LVDN which it located in, but
also the ID information of meters in other LVDN.

The reasons for the discrepancy between the information
in DCU and the actual UTCR include: 1) due to LVDN
operation mode adjustment, some users are transferred to
other LVDN, but the ID information in the DCU is not
updated in time; 2) in the complex wiring area, it is difficult to
distinguish UTCR, and the wrong ID information of meters
was manually recorded. Accurate UTCR is not only the basis
for the refinement of LVDN line loss management and energy
saving, but also affects the accurate recognition of the follow-
ing full topology of LVDN. Hence, it is very important and
necessary to investigate how to identify UTCR.

III. PRIOR KNOWLEDGE RELATED TO UTCR
Under the constraints of power flow, voltage and current
data between nodes in LVDN are correlated in time and
space. This section first deduces the temporal and spatial
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FIGURE 2. Illustration of a feeder line in LVDN.

characteristics of measured data in LVDN from the node
voltage calculation formula. On this basis, the prior knowl-
edge related to UTCR is further analyzed. The details are
elaborated as follows.

In practice, the service drop line between feeder and house-
hold is short. Hence, the voltage drop between users and
feeder line is ignored in the theoretical derivation to better
understand the voltage characteristics among users. More-
over, the reverse power flow is not consideredin the theoret-
ical derivation. The illustration of a feeder line in LVDN is
depicted in Fig.2.

1) Voltage space characteristic analysis
As shown in Fig.2, on the basis of voltage drop formula,

the voltage of node u at time t , U t
u can be approximated by

U t
u ≈ U t

u − 1 −
RuPtLu + XuQ

t
Lu

U t
u−1

≈ U t
u − 2 −

Ru−1PtLu−1 + Xu−1Q
t
Lu−1

U t
u−2

−
RuPtLu + XuQ

t
Lu

U t
u−1

≈ U t
0 −

R1PtL1 + X1Q
t
L1

U t
0

−
R2PtL2 + X2Q

t
L2

U t
1

· · ·

−
RuPtLu + XuQ

t
Lu

U t
u−1

≈ U t
0 −

u∑
i=1

RiPtLi + XiQ
t
Li

U t
i−1

, u = 1, 2, · · · , n (1)

where, U t
0 is the voltage of low-voltage bus at time t , U t

u−1 is
the voltage of node u-1 at time t , Ru and Xu are the resistance
and reactance of line u, respectively, PtLu and QtLu are the
active power transmitted by line u at time t , respectively,
including the active and reactive power loss of line u, Ri
and Xi are the resistance and reactance of line i, respectively,
PtLi and QtLi are the active power transmitted by line i at
time t , respectively, including the active and reactive power
loss of line i, n is the total number of nodes in the feeder.
(Ri PtLi + XiQtLi) /U

t
i−1 is the voltage drop at line i in terms

of power and voltage.
Further, the voltage drop of adjacent nodes at time t ,1Gtu

is given by

1Gtu = U t
u+1 − U

t
u ≈ −

Ru+1PtLu+1 + Xu+1Q
t
Lu+1

U t
u

< 0

(2)

The influencing factors of node voltage and voltage drops
are shown in (1) and (2), respectively. According to (1) and
(2), voltage space characteristics are summarized as follow:

1) U t
u depends on the voltage of low-voltage bus (U

t
0), the

total load (PtLj and Q
t
Lj) and a combination of distance

of lines between the consumer and the source node i.e.,
Ri, i=1, 2, . . .u.

2) Without consideration of reverse power flow in LVDN,
the voltage amplitude of the nodes along the line grad-
ually decreases.

2) Voltage time characteristic analysis
According to (1), the voltage changes of node u at adjacent

time 1U t
u is given by

1U t
u = U t+1

u − U t
u ≈ U t+1

0 − U t
0

−

u∑
i=1

RiP
t+1
Li + XiQ

t+1
Li

U t+1
i−1

+

u∑
i=1

RiPtLi + XiQ
t
Li

U t
i−1

u = 1, 2, · · · , n (3)

where, U t
u and U

t+1
u are the voltage of node u at time t and

t+1, respectively,U t
0andU

t+1
0 are the voltage of low-voltage

bus at time t and t+1, respectively, PtLj andQ
t
Lj are the active

power transmitted by line j at time t , respectively, including
the active and reactive power loss of line j.

According to (3), voltage time characteristics are summa-
rized as follow:

1) 1U t
u depends on the variation characteristic of the

total load and the voltage of low-voltage bus, and a
combination of distance of lines between the consumer
and the source node i.e., Ri, i=1, 2, . . .u.

Further, the prior knowledge related to UTCR are refined
on the basis of the voltage space and time characteristics. For
nodes near the low-voltage bus, the line distance from it to
the low-voltage bus is short. Then, the distance of each line
between these nodes and the low-voltage bus are also short.
Hence, resistance (Ri) and reactance (Xi) of each line between
these nodes and the low-voltage bus are small. Therefore, for
nodes near the low-voltage bus, we assume

−

u∑
i=1

RiP
t+1
Li + XiQ

t+1
Li

U t+1
i−1

+

u∑
i=1

RiPtLi + XiQ
t
Li

U t
i−1

≈ 0 (4)

Plugging (4) into (3), we obtain 1U t
u≈1U

t
0. Due to the

differences in the voltage of low-voltage bus and the total load
of different LVDN, the users near the low-voltage bus have
the greatest voltage similarity to the bus which they connect
to. For example, the voltage curves of M1 and M5 in Fig.1
are the most similar to that of the low-voltage bus of T1 and
T2, respectively.

The Person correlation coefficients of voltage pro-
files (PCCVP) are introduced to describe the similarity
among voltage profiles in this study. The more similar the
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voltage profiles, the greater the PCCVP. The calculation for-
mula is as follows:

ρrs =
cov(r, s)
σrσs

=
E[(X − µr )(Y − µs)]

σrσs
(5)

where, ρrs is the Pearson correlation coefficient between
voltage series; cov(r ,s) is the covariance of the voltage series
of node r and s; σr and σs are the standard deviations of the
voltage series of node r and s, respectively; X and Y are the
voltage series of node r and s; µr and µs are the mean values
of X and Y , respectively.

Therefore, for users close to distribution transformer, the
PCCVP between them and the low-voltage bus can be com-
pared to determine their UTCR. The prior knowledge related
to UTCR is summarized as follows:

Prior knowledge 1: For the users near distribution trans-
former, the PCCVP value between them and the low-voltage
bus to which they are connected is the highest among low-
voltage buses

However, for nodes far away from the low-voltage bus,
affected by the total load variation and long line distance,
1U t

u could be significantly different from 1U t
0. The voltage

profile similarity between the nodes far away from distribu-
tion transformer and the low-voltage bus would be low. It’s
uncertain which low-voltage bus has the largest PCCVP value
with them. In other words, the transformer connectivity of
low-voltage bus which has the largest CCVP value to them
may be same as them or not, on a case-by-case basis. Hence,
it’s hard to determine the UTCR of users far away from the
low-voltage bus by comparing PCCVP between them and
low-voltage buses.

According to the voltage time characteristics analyzed in
above, the voltage changes of node u at adjacent time depends
on the variation characteristic of the total load and the voltage
of low-voltage bus, and a combination of distance of lines
between the consumer and the source node. Due to the dif-
ferences in the voltage of low-voltage bus and the total load
of different LVDN, the voltage correlation between users will
show different characteristics when they connect to different
LVDN and phase sequence. Let �k be the PCCVP between
user k and other users, as described as below.

�k = {ρk1, ρk2, . . . , ρkl, . . . , ρkK } (6)

where, ρkl is the PCCVP between user k and user l, K is the
number of users.

The following situations exist among users in different
LVDN:

1) The PCCVP of users in the same phase is strong, while
that of users in different phases is weak. Therefore,
the PCCVP sequence between users connected to same
LVDN will show significant fluctuation, which means
the standard deviation of PCCVP sequence is large.
Users in other LVDN have weak voltage correlation
with users connected to same LVDN. Therefore, the
standard deviation of PCCVP sequence between users

in other LVDN and users connected to same LVDN is
small.

2) The PCCVP between users connected to same LVDN
is strong, while that between users in other LVDN and
users connected to same LVDN is weak. Therefore,
the mean value of PCCVP sequence between users
connected to same LVDN is large, while themean value
of PCCVP sequence between users in other LVDN and
users connected to same LVDN is small.

The above two characteristics can be used to determine
the UTCR of users far from low-voltage bus, and the prior
knowledge related to UTCR is summarized as follows:

Prior knowledge 2: The standard deviation and mean of
PCCVP sequence between users connected to same LVDN
are large, while that between users in other LVDN and users
connected to same LVDN is small.

The above prior knowledge is derived from the node volt-
age formula in the power grid. Since the node voltage formula
is freely available, there is no cost to provide this prior
knowledge.

IV. KNOWLEDGE-DRIVEN UTCR IDENTIFICATION
ALGORITHM
Knowledges in this section are the prior knowledge related to
UTCR which are deduced in Section III. Knowledge factor
ϑ is defined as empirical rules derived from knowledge, and
knowledge factor ϑ can be expressed as:

ϑ : {if M then N } (7)

Formula (7) is an empirical rule of causal logic that if M
is true, then N is true. M is the conditional event, which
is the triggering condition of the knowledge factor. In this
paper, conditional event can be set as the voltage correlation
between multiple users, the convergence degree of node spa-
tial location distribution or the similarity of high frequency
components of load current and other indicators exceeding
the threshold. N is the conclusion event, representing the
empirical judgment under the truth of the conditional event
M , such as the judgment of topological relations including
upstream and downstream relationship, hierarchical relation-
ship and position relationship of nodes. Knowledge-based
UTCR identification algorithm is established in this section
based on the prior information in Section III. The input data in
the proposed method include the voltage curves of consumer
and low-voltage buses in LVDNs to be recognized. The output
result is user-transformer connectivity.

The flowchart for the proposed knowledge-driven UTCR
identification algorithm is presented in Fig.3. As shown in
Fig.3, the proposed method consists of two parts. The first
part is the data pre-processing. In this part, Z-score and
principal component analysis are combined to standardize
and extract features from the original voltage data to magnify
the differences between data and reduce the impact of data
noise. The second part is the recognition for UTCR, in which
Prior knowledge 1 and 2 are employed to verify the UTCR
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FIGURE 3. Flowchart of the knowledge-driven UTCR identification
algorithm.

of users near to low-voltage buses and users far away from
low-voltage buses.

A. DATA STANDARDIZATION AND MAIN FEATURE
EXTRACTION
In practice, the voltage data collected from LVDN with
three-phase unbalanced governance tend to be centralized.
And the difference between user’s voltage characteristics is
small, which affects the accuracy of the algorithm. Data stan-
dardization process, i.e., Z-score standardization is employed
to improve the robustness of the proposed method on data
discrimination. Moreover, affected by meter measurement
errors and communication problems, the data collected by
smart meters often contains some noise. Besides, a long
period of data is also required to describe the overall law
of voltage for all users in the LVDN. In order to reduce
the influence of noise and time complexity of the algorithm,
dimensionality reduction technique is used to retain the main
characteristics of the voltage data. Of which, the principal
component analysis (PCA) algorithm is introduced, since it
has better performance in topology recognition compared
with other dimensionality reduction technique, i.e., T-SNE.

1) Z-score standardization processing
Voltage correlation characteristics are used for UTCR

recognition. Hence, in the data re-processing, it is expected to
retain the data distribution characteristics in the original data

set. In addition, there are differences in voltage fluctuation
characteristics between users located in different phases, and
the influence of statistical variance needs to be eliminated.
As a feature scaling method, Z-Score standardization trans-
forms the original data into a distribution with a mean value
of 0 and a standard deviation of 1. Z-Score standardization
does not change the characteristics of data distribution, de-
averaging, and standardized variance, which can satisfy the
data processing requirements in UTCR recognition.

The smart meters located on low-voltage buses and user
side are defined as the metering point. The original voltage
data matrix U is constructed based on the voltage data of
the low-voltage buses and user of the LVDN to be identified
and its neighboring LVDN, U=[UL1; UL2; . . . ; ULe; UC1;
UC2; . . . ; UCe], where UL1 and UC1 respectively represent
the voltage matrix of the low-voltage buses and users of the
first LVDN, as shown in eq.(8) and eq.(9), e represents the
total number of LVDN.

UL1 =

 u1L1A u2
L1A

· · · uT
L1A

u1
L1B

u2
L1B

· · · uT
L1B

u1
L1C

u2
L1C
· · · uT

L1C

 (8)

UC1 =


u1
C11

u2
C11

· · · uT
C11

u1
C12

u2
C12

· · · uT
C12

...
...

...
...

u1
C1f

u2
C1f

· · · uT
C1f

 (9)

where, uTL1 A, u
T
L1 B and uTL1 C represent the voltage values of

low-voltage bus of phase A, B and C in the first LVDN at time
T , respectively; uTC1f represents the voltage of the f -th user at
time T in the first LVDN; f is the total user ID number in the
DCU of the first LVDN.

The Z-Score standardization calculation formula for volt-
age data of metering points is shown as below.

U t′
u =

U t
u − µ(U

t
8)

σ (U t
8)

, u ∈ 8 (10)

where, U t′
u represents the Z-Score standard value of the u−th

metering point’s voltage at time t , U t
8 is a column vector,

including the voltage value of all metering points at time t ,
µ(U t

8) represents the average voltage value of all metering
points at time t , σ (U t

8) represents the voltage standard devi-
ation of all measurement points at time t , F is the set of
measurement points.

Let U t′
8 be the data set of measuring points standardized

by Z-Score at time t . Then, the standardized voltage data set
of measuring points Uzscan be expressed as below.

Uzs = [U1′
8,U

2′
8, · · · ,U

T ′
8 ] (11)

The dimensions of the standardized data set Uzs are con-
sistent with the dimensions of the original voltage data set U.
2) Feature extraction based on PCA
PCA algorithm is an unsupervised dimensionality reduc-

tion algorithm based on linear transformation [29]. It uses
orthogonal transformation to transform correlated variables
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FIGURE 4. Schematic diagram of PCA.

into a group of linearly unrelated variables, so as to obtain the
main content that can replace the data and achieve dimension-
ality reduction and feature extraction by abandoning other
minor dimensions.

PCA is widely used to eliminate data redundancy and data
noise. The schematic diagram of PCA is shown in Fig.4.
In Fig.4, W is original data matrix of dimension m×l, C is
the covariance matrix ofW, P is the transformation matrix of
dimension l×a, a is the number of principal components to
be retained, Z is the matrix after dimensionality reduction; D
is the covariance matrix of Z.

Perform PCA dimensionality reduction processing on the
voltage standardized data set Uzs, then obtain a data matrix
Uzs´ of dimension N×a, which retains a−dimensional main
feature, where N is the total number of measurement points.

B. UTCR RECOGNITION MODEL BASED ON PRIOR
KNOWLEDGE
There are two problems to be solved in the UTCR identi-
fication: 1) which users’ UTCR are error; 2) what the real
UTCR of the users with the error are. Prior knowledge 1
and 2 mentioned in Section II contain voltage correlation
characteristics of users at different LVDN. Hence, in this
section, Prior knowledge 1 and 2 are combined to build the
UTCR recognition model to verify the users with the UTCR
error and their real UTCR. The details are shown as follows.

Step 1: Calculate the PCCVP between measurement points
on the basis of matrix Uzs´, and obtain the PCCVP matrix R,
which can be divided into four block matrices, as shown as
below.

R =
[
R1 R2
R3 R4

]
(12)

Where,R1 is an square matrix with dimensionN1×N1, which
represents the PCCVP between the low-voltage bus of the
LVDN to be identified and the low-voltage bus of LVDN
adjacent to it, N1 represents the total number of low-voltage
buses of the LVDN to be identified and the adjacent LVDN;
R2 is a matrix with dimension N1×N2, which represents the
PCCVP between the users and the low-voltage buses; R3 is a

matrix with dimension N2×N1, which is the transpose of the
matrix R2; R4 is an square matrix with dimension N2×N2,
which represents the PCCVP between the users contained in
LVDN to be recognized and adjacent LVDN; N2 represents
the total number of users of the LVDN to be identified and
the neighboring LVDN.

Step 2: The column vectors in R2, described as R2(:,h),
h =1,2. . . ,N2 is the PCCVP value between the user h and
low-voltage buses of multi-LVDNs. For the user h, the LVDN
which the low-voltage bus corresponding to the maximum
value in R2(:, h) connect to is used as its initial UTCR.
Step 3: Compare the existing UTCR stored in DCU of

LVDNswith the initial UTCR obtained in step 2. For the g−th
LVDN, g= 1, 2, . . . , b, b is the number of LVDN, if the users
in it with inconsistent results in the comparison, these users
are treated as suspected meter and form suspected user set ξg.
After this, we obtain a total of b suspected user sets.

The larger the voltage amplitude of the user is, the closer
it is to the low-voltage bus. On this basis, a location index
ζ is developed to determine the users close to distribution
transformer.

Step 4: For each LVDN, perform the following steps. 4-
1) Average users’ voltage value during measurement period by

Uu
ave = (

T∑
t=1

U t
u)/T (13) (13)

where, Uu
aveis the average voltage value of consumer uin

the measurement period, T is the number of intervals in the
measurement period.

4-2) Sort the users by average voltage value obtained in
above from the highest to the lowest. The sorting result
reflects the sorting of users by electrical distance between
users and the low-voltage buses from nearest to farthest.

4-3) ζg =dτ*Mge, τ is a threshold coefficient, τ ∈ [0,0.5],
Mg is the number of users stored in the DCU of the g-th
LVDN. The value of τ is related to the three-phase voltage
unbalance and smart meter incomplete ratio in LVDN. Fur-
ther, extract top ζg users from the sorted result in step 4-2) to
form set ηg as the set of consumers near the low-voltage buses
in the g-th LVDN. After this, we obtain a total of b consumer
sets near the low-voltage buses.

Step 5: Let Eg=ξg∩ζg, the users in set Eg represent the
users both exist in the sets ξg and ζg. Their UTCR are
erroneous and are modified as the results in step 2). These
users are further removed from the set ξg, and ξg is updated to
ξ1g, g= 1, 2, . . . , b.
Step 6: Divide the users in each LVDN into a set of sus-

pected users and a set of non-suspected users. For example,
the set of suspected users and the set of non-suspected users
in the g-th LVDN are represented by ξ1g and λ1g respectively.
For each user in set ξ1g, extract the PCCVP value between
it and non-suspected users in the LVDNs from the matrix
R4. Each user has a total of b voltage correlation coefficient
series. The g-th voltage correlation coefficient series of the
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k-th in ξ1gis described as Rk,gg, as shown as follows.

Rk,gg = {ρ1 gk,1g1, ρ1 gk,1g2, . . . ρ1 gk,1go, . . . , ρ1 gk,1gO}

(14)

where, ρ1gk,1goare the PCCVP value between the k−th user
in ξ1g and the o−th user in λ1g, o represents the number of
users in the set λ1g, g = 1,2, . . . , b.
Step 7: Calculate the mean value E1g,k and standard devia-

tion series F1g,k of b voltage correlation coefficient series of
the k−th user in ξ1g, namely, based on Rk,gg.

E1 g,k =
{
µkg1, µkg2, . . . , µkgv, . . . , µkgb

}
(15)

F1 g,k =
{
σkg1, σkg2, . . . , σkgv, . . . , σkgb

}
(16)

where, µkgv and σkgv are the mean value and standard devi-
ation of the v−th voltage correlation coefficient sequence of
the k−th user in ξ1g, respectively, v = 1, 2, . . . , b, g = 1, 2,
. . . , b.

For the k−th user in ξ1g, if the µkgv and σkgv of the v−th
LVDN are both greater thanµkgg and σkgg of the g−th LVDN,
its UTCR is erroneous and is corrected to connect to the v−th
LVDN, otherwise its UTCR is subjected to results in step 2,
g = 1, 2, . . . , b.

V. CASE STUDY
The proposed method was modelled in MATLAB R2019a.
Simulations for case study were run on 11th Gen Intel(R)
Core (TM) i5-1135G7 @ 2.40GHz with 16.0 GB memory.
The case study includes five parts. At first, the data used in
case study are described. Then, the identification procedure
is given to show how the proposed method identifies the
consumer phase in detail. Further, the performance of the
proposed method is evaluated. After that, the comparisons
between the proposed method and other published methods
are carried out. Finally, the influence of the number of princi-
pal components defined in Section III.A on the identification
accuracy is investigated.

A. DATA DESCRIPTION FOR CASE STUDY
In order to verify the effectiveness of the proposed method,
two LVDNs model based on real LVNDs in Guangdong
are established in MATLAB to simulate the adjacent LVDN
scenario. The connectivity of two adjacent LVDN on 10kV
line is shown in Fig.5, and the network topology of twoLVDN
are shown in Fig.6 and Fig.7.

The LVDN1 has 9 low-voltage feeders and serves 170 con-
sumers including 150 single-phase consumers and 20 three-
phase consumers. The LVDN2 has 9 low-voltage feeders
and serves 315 consumers including 274 single-phase con-
sumers and 41 three-phase consumers. The smart meter
in three-phase consumers can record the power consump-
tion, voltage, current of each phase. Hence, a three-phase
consumer can be treated as three single-phase consumers.
In other words, there are 210 single-phase consumers in
the LVDN1 and 397 single-phase consumers in the LVDN2.
In two LVDNs, BLV− 150×4 overhead wire is used in the

FIGURE 5. Diagram of adjacent LVDNs on 10kV line.

feeders, BLV−50×2 overhead wire is used in branch lines,
and BLV−16×2 overhead wire is used in the service drop
line between feeder and household.

Based on the three-phase four-wire power flow calculation
method proposed in [30], the voltage database of low-voltage
buses and users of two LVDNs are obtained. Of which, load
data of users in Guangdong are used in this power flow
calculation.

B. IDENTIFICATION PROCEDURE
The 1-day voltage measurement data with 96 measurements
of users and low-voltage buses of two LVDNs are taken
from the database in this case. The user number in LVDN1
and LVDN2 starts with G and H, respectively. The UTCR
of LVDN1 is set to be recognized. Assuming that there are
10 users in the adjacent LVDN2 mixed into the LVDN1’s
DCU file, the user names are H3, H5, H10, H12, H20,
H32, H55, H56, H70, H120, respectively, to simulate the
scenario with UTCR errors in LVDN. Further, set the PCA
retained feature dimension a = 30, and the threshold param-
eter defined in step 4-3) of Section III.B τ = 0.3.

In the simulated UTCR error scenario, treating the
three-phase consumer as three single-phase consumers, there
are a total of 220 single-phase meters in LVDN1, and a total
of 387 single-phase meters in LVDN2. At first, construct
the original voltage data matrix U according to the method
described in Section III.A. U is a 613 × 96−dimensional
matrix, in which the first six rows of elements are the
low-voltage bus voltage timing data of LVDN1 and LVDN2,
and the remaining elements are voltage timing data of users
in two LVDNs. Then, the original voltage data matrix U was
standardized and feature extracted by Z-Score normalization
method and PCA dimensionality reduction method described
in Section III.A, and a 613 × 30−dimensional data matrix
Uzs´ is obtained. On this basis, the PCCVPmatrixR of meter-
ing points is calculated, and the preliminary UTCR of two
LVDN is obtained from Step 1 and Step 2 in Section III.B.

In this initial UTCR, 210 users of LVDN1 except H3, H5,
H10, H12, H20, H32, H55, H56, H70 and H120 connect to
LVDN1, and 387 users of LVDN2 connect to LVDN2. The
PCCVP values between the above 10 users and the 6 low-
voltage buses in the two LVDNs are given in Tab.1. Where,
B1∼B3 are low-voltage buses of LVDN1with phase A, B and
C, respectively, B4∼B6 are low-voltage buses of LVDN2
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FIGURE 6. Diagram of LVDN1 network topology.

TABLE 1. PCCVP value between 10 users and 6 low-voltage buses.

with phase A, B and C, respectively. And the value marked
in red is the maximum CCVP between user and low-voltage
buses.

It can be seen from Tab.1 that the low-voltage buses with
the largest PCCVP value of user H3, H5, H10, H12, H20,
H32, H55, H56, H70, H120 all belong to LVDN2. How-
ever, the ID information of these 10 users is in LVDN1.
In other words, for these 10 users, the existing UTCR stored
in DCU of LVDNs and the initial UTCR obtained by Step

2 in Section III.B are inconsistent, so these 10 users are
included in the suspected user set ξ1. Further, perform Step
4 in Section III.B, two consumer sets near the low-voltage
buses are obtained, as shown in Tab.2.

It can be seen from Tab.2 that the above 10 suspected
users are not in consumer sets near the low-voltage buses.
According to Step 5 in Section III.B, the updated suspected
user set ξ11 is still equal to the set of suspected users set ξ1.
Then, perform Step 6 and Step 7 in Section III.B for these
10 suspected users and the mean value E1g and standard
deviation series F1g are obtained, as shown in Tab.3.

It can be seen from Tab.3 that the mean and standard
deviation of PCCVP values between the 10 suspected user
and non-suspected users in the LVDN2 are higher than those
in LVND1. Therefore, these 10 suspected users are confirmed
as users with wrong UTCR, and their real UTCR is connected
to LVDN2. The recognition result is consistent with the
real situation, and the recognition accuracy is 100%, which
fully verifies the effectiveness and accuracy of the proposed
method.

C. PERFORMANCE EVALUATION OF THE PROPOSED
METHOD
In this section, the performance of the proposedmethod under
the conditions of different UTCR error rate, data measure-
ment error rate, three-phase imbalance level and data length
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FIGURE 7. Diagram of LVDN2 network topology.

TABLE 2. User sets of two lvdns near the low-voltage buses.

are investigated. In detail, by increasing the number of users
in LVDN2 into the DCU reading file of LVDN1, the data
scenario with increasing UTCR error rate is constructed.

UTCR error rate ε is defined as the ratio of the number of
users not belonging to LVDN1 to the total number of LVDN1
users, as below.

ε =
Nfalse

NLVDN1
(17)

where, Nfalse is the number of users not belonging to LVDN1,
NLVDN1 is the total number of LVDN1 users.

To construct the data scenario with an increasing data
measurement error rate η, every user’s measurement has been
added noise by introducing a Gaussian error whose mean
value is 0 and standard deviation is one third of the measure-
ment error rate η.
3 is set as the average value of three-phase voltage unbal-

ance in the measurement period to reflect the three-phase
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TABLE 3. The E1gand F1gof PCCVP values between the suspected user
and non-suspected users in the two LVDN.

FIGURE 8. UTCR identification accuracy under different ε and η.

unbalance level of LVDN, as described below.

3 = [
T∑
t=1

Umax
D (t)− Umin

D (t)
Umax
D (t)

× 100%]/T (18)

where,Umax
D (t) is the maximum voltage in low-voltage buses

at time t , Umin
D (t) is the minimum voltage in low-voltage

buses at time t , T is the number of intervals in a measurement
period.

Firstly, a comprehensive calculation is executed by grad-
ually increasing the value of ε and η with fixed data length
(15 dayswith 1440measurements). Under each data scenario,
UTCR identification is executed multiple times to obtain
average accuracy. The results are shown as below.

As shown in Fig.8, with the fixed ε value, as the mea-
surement error rate η increases, the recognition accuracy
rate decreases. When η is less than 0.4%, the recognition
accuracy of the proposed method drops slightly, which is
close to 100%. When η > 0.4%, the recognition accuracy
rate is greatly affected by the measurement error. When η is
in the interval of [0.4%, 1%], the downward slope is large.
In addition, the increase in η will magnify the impact of
UTCR error rate ε on the recognition accuracy. For example,
when η is less than 0.4%, the difference in the recognition

FIGURE 9. UTCR identification accuracy under different ε and 3.

accuracy of the six scenarios with different ε value is very
small, and the recognition accuracy are all close to 100%.
When η exceeds 0.4%, the recognition accuracy difference
of the six scenarios with different ε value becomes larger as
η increases. And the higher ε is, the lower the recognition
accuracy rate.

This is because the core of the proposed method is to com-
pare the PCCVP values between measurement points. The
superposition of measurement errors changes the PCCVP
value between different voltage curves. Specifically, the sim-
ilarity of voltage curves between users and the connected
low-voltage buses, and that between users located in the
same LVDN is reduced. At this time, it’s uncertain which
low-voltage bus has the largest CCVP value with them.
In other words, the LVDN where the low-voltage bus having
the largest CCVP value to them is located may be same or
different from the LVDN them are connected to, on a case-
by-case basis.

Then, a comprehensive calculation is executed by gradu-
ally increasing the value of ε and3with fixed data length (15
days with 1440 measurements) and fixed measurement error
rate of 0.4%. Under each data scenario, UTCR identification
is executed multiple times to obtain average accuracy. The
results are shown as below.

As shown in Fig.9, with fixed 3 value, the identification
accuracy increases gradually as 3 increases. The reason is
that the proposed method depends on the PCCVP value
among users and that between consumers and low-voltage
buses of LVDN. As three-phase imbalance level (3)
increases, the voltage discrimination of users connected to
different phases increases so that the identification accuracy
of the proposed method is gradually improved. In particular,
in the scenario where the ε is 0.5, the recognition accuracy
rate is increased by 8% when the 3 is 0.24% compared with
when the 3 is 0.12%. Therefore, in order to alleviate the
influence of measurement error, the data in the period with
large three-phase imbalance level can be selected to carry out
UTCR identification.

Further, the influence of data length is discussed. A com-
prehensive calculation is executed by gradually increasing the
value of η and length of data with fixed UTCR error rate of
0.3. Under each data scenario, UTCR is executed multiple
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FIGURE 10. UTCR identification accuracy under different data length
and η.

times to obtain average accuracy. The results are shown in
Fig.10.

It can be seen from Fig.10 that when there is no data mea-
surement error (η= 0), the recognition accuracy rate for each
data length is 100%. When there is a data measurement error
(η = 0.4%∼2%), the recognition accuracy rate increases as
the data length increases, and the growth rate gradually slows
down. This is because the difference in the PCCVP value
between users increases with the increase of the data length,
thereby improving the recognition accuracy. In particular,
when η= 0.4%, the recognition accuracy in the data scenario
of 6-8 days can be increased to 100%. Therefore, in order to
alleviate the influence of the measurement error, the data with
a longer time length can be selected for UTCR recognition.

D. COMPARISON ANALYSIS WITH OTHER PUBLISHED
METHODS
In this section, multiple data scenarios are constructed by
gradually increasing the value of ε and η with fixed data
length of one day to compare the performance of different
methods. At present, there are two methods to identify UTCR
based on AMI measurement data. One is to compare voltage
curve correlation between users [22], and the other is to com-
pare voltage curve correlation between users and low-voltage
buses [23]. The comparative analysis of the following four
identification methods is executed.

Method 1: comparing voltage curve correlation between
users [22];

Method 2: comparing voltage curve correlation between
users and low-voltage buses [23];

Method 3: removing Z-score standardization processing
and PCA feature extraction from the proposed method;

Method 4: the proposed method.
The UTCR recognition accuracy rates of the four methods

under different ε and η are shown in below.
As illustrated in Fig.11, several findings are:
1) Comparing Method 1 and Method 4, when the data

measurement error η= 0, the recognition accuracy of the two
methods is both 100%. But when there is a measurement error
i.e., η= 0.8%, η= 1.6%, the recognition accuracy of Method
4 is significantly higher than that of Method 1 in every

FIGURE 11. Recognition performance of 4 methods in different scenarios.

scenario. This indicates that it is not enough to accurately
identify UTCR by comparing the voltage curve correlation
alone when there is measurement error in data. On the basis
of Method1, Method 4 taking the correlation between users
as supplementary verification has better performance.

2) Comparing Method 2 and Method 4, when the data
measurement error η= 0 and ε is less than 0.2, the recognition
accuracy of the two methods is both 100%. However, when
ε is greater than 0.2, the recognition accuracy of Method
2 decreased obviously with the increase of η, while that of
Method 4 remained at 100%. The reason is that Method
2 identify UTCR by comparing the voltage curve correla-
tion between users. When there are many users in LVDN
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FIGURE 12. Recognition accuracy of 4 methods with different data
processing link under different η.

that do not belong to it, it is easy for Method 2 to identify
these users wrongly. The more users who do not belong to
LVDN in the initial meter reading file of LVDN, the higher
the error recognition rate of Method 2. When there is data
measurement error in LVDN, there is no linear relationship
between recognition accuracy andUTCR error rate inMethod
2. This is because the superposition of measurement errors
changes the PCCVP value between different voltage curves.
Specifically, the similarity of voltage curves between users
located in the same LVDN is reduced. In this case, the results
of Method 2 are stochastic. Except for the scenario where η
= 0.8% and ε = 0.3, the accuracy of Method 4 is higher than
that of Method 2 in every scenario. This demonstrates that the
recognition accuracy ofMethod 4 is more stable and superior.

3) Comparing Method 3 and Method 4, when the data
measurement error η = 0, the recognition accuracy of the
two methods is both 100%. But when there are measurement
errors i.e., η = 0.8%, η = 1.6%, the recognition accuracy of
Method 4 is higher than that of Method 3 in all scenarios.
This fully illustrate that the Z-score and PCA dimensionality
reduction links enhance the robustness of the recognition
method against data measurement errors.

Further, to show the role of data processing in the proposed
method clearly, the comparation analysis about the identifi-
cation results with and without data standardization and with
different dimensionality reduction techniques are carried out.
Define the proposed method without data standardization as
Method 4_1, the proposed method with T-SNE dimensional-
ity reduction as Method 4_2, the proposed method without
PCA dimensionality reduction as Method 4_3. Multiple data
scenarios are constructed by gradually increasing the value of
data measurement error rate η with UTCR error rate of 0.3 to
compare the identification results, as shown in Fig.12.

As shown in Fig.12, the recognition accuracy of Method
4 with Z-score standardization and PCA dimensionality
reduction is higher than that of other 3 Methods in all scenar-
ios. Comparing Method 4_1 and Method 4_3 with Method 4,
it is clearly that Z-score standardization and PCA dimension-
ality reduction are beneficial to improve the robustness of the

FIGURE 13. Recognition accuracy under different η and PCA main feature
values.

recognition method against data measurement errors, respec-
tively. And PCAdimensionality reduction perform better than
T-SNE dimensionality reduction method comparing Method
4_2 and Method 4.

E. SENSITIVITY ANALYSIS FOR THE THRESHOLD
COEFFICIENT
In this section, a comprehensive calculation is executed by
gradually increasing the value of η and PCA main feature
numbers a with fixed UTCR error rate of 0.3 and data length
of one day. The results are shown as below.

It can be seen from Fig.13 that the number of PCA main
features have different effects on the recognition accuracy
with different η. When η=0, the increase in the number of
PCA main features can increase the recognition accuracy to
100%. When 0 < η≤0.4%, the recognition accuracy first
increases and then decreases with the increase of the number
of PCA main features. When η≥0.8%, the recognition accu-
racy first increases with the increase of the number of PCA
main features and then tended to be flat. This demonstrates
that the number of PCAmain features for optimal recognition
accuracy is affected by the measurement error rate, and the
higher the measurement error rate, the greater the number of
PCA main features is needed. The above results verify the
effectiveness of the PCA dimensionality reduction method
on retaining a few main features to replace high-dimensional
data.

VI. CONCLUSION
To identifyUTCR intelligently and strengthen the algorithm’s
robustness to data discrimination and noise, in this paper,
statistical data processing methods and the prior knowledge
of voltage correlation characteristics in LVDN are combined
to develop a knowledge-driven UTCR identification method.
The performance of the proposed method is evaluated under
various conditions and compared with other published meth-
ods. Further, the influence of PCA main feature numbers is
investigated. From the study, the conclusions are elaborated
as follows.

54370 VOLUME 10, 2022



L. Zhou et al.: UTCR Identification Based on Knowledge-Driven Approaches

1) The proposed method can effectively distinguish the
users with wrong UTCR and identify their correct
UTCR. The data processing process with Z-score and
PCA feature extraction can enhance the robustness of
the proposed method to the data measurement error.

2) The recognition accuracy of the proposed method
decreases as UTCR error rate and measurement error
rate increase. However, it can be improved by selecting
data with high three-phase voltage imbalance level or
long length.

3) In the scenario where there is measurement error in
data, the proposed method outperforms the method in
reference [23] that only compares the voltage curve
correlation between users and low-voltage buses and
the method in reference [22] that only compares the
voltage curve correlation between users.

4) The number of PCA main features to achieve the best
recognition accuracy is affected by the measurement
error rate, and the higher the measurement error rate,
the greater the number of PCAmain features is needed.

The probability to reverse power flow on LVDN will be
increased as the penetration of renewable micro-generation
such as photovoltaic increases. Thus, how to recognize UTCR
with the reverse power flow will be investigated in the future.
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