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ABSTRACT In order to get accurate position tracking and effective system constraint together for tank gun
control systems, a fuzzy system-based barrier adaptive iterative learning control scheme is proposed. Firstly,
the error tracking strategy is applied to solve the initial position problem of tank gun iterative learning
control systems. Then, a barrier Lyapunov function is adopted to controller design for the system constraint.
In addition, a fuzzy system is used as an approximator to compensate for the nonparametric uncertainties,
and difference learning learning approach is used to estimate the optimal parameters of fuzzy systems. It is
shown that the system constraints are guaranteed and position tracking error converges to a tunable residual
set as the iteration number increases.

INDEX TERMS Tank gun control systems, iterative learning control, fuzzy systems, Barrier Lyapunov
function.

I. INTRODUCTION
Iterative learning control (ILC) is well-known for the struc-
tural simplicity and model-free feature, and the prominent
ability in repeated tracking control or periodic disturbance
rejection [1], such that it is suitable for the controller designs
of repetitive motion systems and repetitive process systems.
By utilizing the repetitive nature in the learning process, ILC
algorithms can improve the tracking performance gradually
and derive perfect tracking over the iteration domain, which
has enticed sustained research interest from control commu-
nity during the past decades, resulting in a large number
of reports on the subject [2]–[9]. To overcome the several
difficulties or limitations of traditional ILC, Lypunov-based
ILC has been studied in the past two decades, which is
also called as adaptive ILC. Adaptive ILC can be regarded
as a combination of ILC and adaptive control [10]–[12],
which tunes control parameters between successive iterations
instead of directly adjusting the control input.

Tanks are different from normal weapons in that they play
both offensive roles and defensive roles in modern battles,
i.e., they can improve soldiers’ surviving ability and enhance
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efficiency of artillery firepower meanwhile. During fighting,
tank need fire shells in complicated battlefield circumstances.
Thereby, tank gun control systems have to face some char-
acteristics, including frictional moment, gear backlash and
parameter drifts. This makes the underlying control problem
challenging and nontrivial. Some reports on the subject, such
as PID control [13], variable structure control [14], opti-
mal control [15], adaptive control [16], active disturbance
rejection control [17], have been published during the past
decades. Thanks to the above-mentioned advantages of adap-
tive ILC, the design of tank gun adaptive ILC systems has
enticed sustained research interest from control community
during the recent years.

Currently, in the research of ILC on tank gun control
systems, there are some major challenges and interesting
topics, three of which will be addressed in this work. The first
challenge is about system constraint of tank gun control sys-
tems during operations. In a real application, sometimes, the
system output, or the tracking error, should remain in a certain
compact set for system specification and safety consideration.
The violation of such a constraint may cause damage to the
system or even hazards to human operators or users. Over the
past three decades, several corresponding solutions to system
constraints, e.g., maximal output admissible set strategy [18],
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constrainedmodel predictive control [19], reference governor
approach [20], convex optimization strategy [21] and barrier
Lyaponov function approach [23], have been proposed. In the
field of ILC, adaptive ILC with system constraints has been
explored during the past decade [24]–[26]. These achieve-
ments further promotes the barrier adaptive ILC research and
application of tank gun ILC systems [27]. Overall, the related
result is very few.

The second issue is about initial position problem of tank
gun ILC systems. As for general systems, zero initial error is
a fundamental prerequisite for traditional ILC systems. That
is, if the prerequisite is broken, traditional ILC algorithms
can not work well, and even if the nonzero initial error in
traditional ILC systems is very slight, the divergence of the
tracking error may still happen [22]. It should be noted that
the zero initial-error condition cannot be met because the
perfect system resetting in each iteration is not be practi-
cally implementable. Hence, it is necessary to develop ILC
schemes which can work well under nonzero initial error
condition [28]–[30]. Over the past years, several adaptive ILC
algorithms for tank gun control systems have been reported in
literature, most of which cover the initial position problem of
ILC. In [31]–[33], the velocity tracking problem of tank gun
control systems are discussed, with alignment condition [31],
time-varying boundary layer method [32] and error-tracking
strategy [33] being applied to overcome nonzero initial sys-
tem errors, respectively. The angle position tracking control
for tank gun control systems with periodic reference signal is
studied in [34], where an adaptive repetitive control strategy is
used to compensate for nonparametric uncertainties. To date,
few literature has reported ILC algorithms for tank gun con-
trol systems with system constraints under zero initial error
condition [27]. How to design an error-tracking ILC algo-
rithm for tank gun control systems with system constraints
is still unclear.

In tank gun control systems, there exist complicated uncer-
tainties and external disturbances. Parametric uncertain-
ties are common parametric uncertainties in nonlinear sys-
tems [22], including tank gun control systems. ILC can deal
with unknown iterative-independent functions well through
learning method, whether they are time-invariant or time-
varying. Specifically, for the unknown time-invariant con-
stants in system model, both differential learning approach
and difference learning approach are effective to esti-
mate them; for unknown iteration-independent time-varying
parameters, difference learning approach is the proper esti-
mation tool. Compared to parametric uncertainties in tank
gun control systems, there still exist unparameterizable uncer-
tainties to be handled [1]. There are usually two strategies to
handle nonparametric uncertainties. While the nonparamet-
ric uncertainty meets Lipschitz(-like) continuous condition,
robust learning approach is a proper solution. On another
hand, both fuzzy systems and neural networks may be
approximate nonparametric uncertainties in the system mod-
els. Up to now, there have been several literature in which
fuzzy system-based ILC designwas reported [35]–[37]. Up to

FIGURE 1. The configuration of tank AC all-electric gun control system.

now, no work discusses the fuzzy system-based approxima-
tion to the nonparametric uncertainties in tank gun control
systems.

Inspired by the aforementioned studies, this work inves-
tigates the adaptive ILC design for tank gun control sys-
tems with the constraint requirement on the angle position
tracking error and angular velocity tracking error. To address
this requirement, we adopt a filtering-error based barrier
Lyapunov function to design controller. To overcome the
obstacle of nonzero initial error in ILC design, we construct
a desired error tracking trajectory for implementing error
tracking strategy. We show that under the proposed adaptive
ILC scheme, the difference between the tracking error and
the desired error trajectory converges along the iteration axis.
The main contributions of this work can be summarized as
follows:

(i) The error-tracking ILC design stratey is considered for
tank gun control systems with error constraints;

(ii) A novel construction method of desired error trajectory
for tank gun control systems is proposed;

(iii) To deal with the nonparametric uncertainty in the
considered tank gun ILC system, the approximation approach
of difference learning fuzzy system is adopted.

This paper is organized as follows. The description of
the system mathematical model is introduced in Section II.
A barrier error-tracking adaptive iterative leaning controller
is designed in the Section III. In addition, the stability
of the proposed control method is shown in Section IV.
In Section V, numerical simulation results are presented to
compare the proposed error-tracking barrier adaptive ILC
against the barrier-free adaptive ILC. Finally, Section VI con-
cludes the work.

II. PROBLEM FORMULATION
In this work, the considered all electric gun control system
adopts a speed-current dual closed-loop control strategy. The
control structure of this control system is shown in Fig. 1. The
system is made up of a vertical subsystem and a horizontal
subsystem, where the vertical subsystem is actually a AC
servo driving system.

The block diagram of this AC servo driving system,
a careful reduction of a complex nonlinear simulation model,
is shown in Fig. 2. The definition of corresponding variables
and parameters in this figure is presented in Table 1.
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FIGURE 2. Transfer function block diagram of AC servo driving system.

TABLE 1. The definitions of symbols.

Now, three relation formulas may be derived from Fig. 2 as
follows:

(Kau(s)− Keωm(s))Kt
R+ Ls

= Te(s), (1)

Te(s)− TL(s)
Js+ B

= ωm(s) (2)

and

ωm(s) = isθ (s). (3)

For the fact that LR � 1 holds [38], we may deduce

1
R+ Ls

=
1

R(1+ Ls/R)
≈

1
R
. (4)

Substituting (1) into (4), we have

(Kau(s)− Keωm(s))Kt
R

= Te(s). (5)

Then, through algebraic operation, from (2), we can easily
get

Te(s) = (Js+ B)ωm(s)+ TL(s). (6)

The two above formulas yields

Kt (Kau(s)− Keωm(s))
R

= TL(s)+ (Js+ B)ωm(s). (7)

By substituting (3) into (7), we have

iRJs2θ (s)+ (KtKe + RB)isθ (s)− KtKau(s)+ RTL(s) = 0.

(8)

Further, we can get the time domain expression of (8) as

θ̈ = −(
B
J
+

KeKt
J (R+ Ls)

)θ̇ +
KaKt

iJ (R+ Ls)
u

−
Tf + TL
iJ

. (9)

Define x1 = θ, x2 = θ̇ and y = x1. From (9), we get the
dynamics of tank gun control systems in the kth iteration as
follows:

ẋ1,k = x2,k ,

ẋ2,k = −(
B
J
+
KeKt
JR

)x2,k +
KaKt
iJR

uk

−
Tf ,k + TL,k

iJ
yk = x1,k

(10)

The control objective of this work is to design an adaptive
learning controller uk to let yk accurately track yd as iteration
number increases.

III. CONTROL SYSTEM DESIGN
Define e1,k = x1,k − x1,d , e2,k = x2,k − x2,d ,eeek (t) =
[e1,k , e2,k ]T , where x1,d = yd , x2,d = ẏd . From (10), we can
obtain

ė1,k = e2,k ,

ė2,k = −(
B
J
+
KeKt
JR

)x2,k +
KaKt
iJR

uk −
Tf ,k + TL,k

iJ
− ẋ2,d .

Let ε1,k = e1,k − e∗1,k and ε2,k = e2,k − e∗2,k , where e
∗

1,k
and e∗2,k are formed as follows:

e∗1,k (t) = e1,k (0)h(t)+ e2,k (0)h(t) sin(t),

e∗2,k (t) = e2,k (0)ḣ(t)+ e2,k (0)ḣ(t) cos(t), (11)

where tε is a time point between 0 and T ,

h(t) =

 (1−
t
tε
)3, 0 < t < tε

0, tε ≤ t ≤ T
(12)

From the above constructions, we can see that (i) eee∗k (0) =
eeek (0), (ii) eee∗k (t) = 0 for t ∈ [tε,T ], and (iii) eee∗k (t) is
continuously differentiable for 0 < t < T . If eeek (t) can follow
eee∗k (t) over [0,T ], then the excellent trajectory tracking from
xxxk (t) to xxxd (t) may be achieved during [tε,T ]. In the next
step, we will design an adaptive iterative learning controller
to achieve the control task. For the sake of brevity, in this
paper, arguments are sometimes omitted when no confusion
is likely to arise.

According to the definitions of ε1,k and ε2,k , we have
ε̇1,k = ε2,k ,

ε̇2,k = −(
B
J
+
KeKt
JR

)x2,k +
KaKt
iJR

uk

−
Tf ,k + TL,k

iJ
− ẋ2,d − ė∗2,k .

(13)

Let

sε,k = αε1,k + ε2,k (14)

52464 VOLUME 10, 2022



Z. Hong et al.: Fuzzy System-Based Position Tracking ILC for Tank Gun Control Systems

with α > 0. Then, combining (13) with (14) yields

ṡε,k = αε2,k − (
B
J
+
KeKt
JR

)x2,k +
KaKt
iJR

uk

−
Tf ,k + TL,k

iJ
− ẍd − ė∗2,k . (15)

Define a barrier Lyapunov function in the kth iteration as

Vk =
s2ε,k

2$ (b2s − s
2
ε,k )

(16)

with$ = KaKt
iJR . The time derivative of Vk is

V̇k =
b2s

(b2s − s
2
ε,k )

2
sε,k [$−1αε2,k −$−1(

B
J
+
KeKt
JR

)

× x2,k + uk −
Tf ,k + TL,k
$ iJ

−$−1ẍd −$−1ė∗2,k ]

=
b2s

(b2s − s
2
ε,k )

2
sε,k [pppTϕϕϕk −

Tf ,k + TL,k
$ iJ

+ uk ], (17)

in which ppp = [$−1α,−$−1(BJ +
KeKt
JR ),−$−1ẍd ,−$−1],

ϕϕϕk = [ε2,k , x2,k , 1, ė∗2,k ]
T .

Without loss of generality, we make the following assump-
tion as

−
Tf ,k + TL,k
$ iJ

= f (xxxk (t))+ dk (t) (18)

where f (xxxk (t)) is an unknown real continuous nonlinear
function, dk (t) represents the bounded noncontinuous distur-
bance. According to (17) and (18), we have

V̇k =
b2s

(b2s − s
2
ε,k )

2
sε,k [pppTϕϕϕk + f (xxxk )+ dk + uk ]. (19)

To compensate for the unknown nonlinear function f (xxxk (t)),
a fuzzy system f̂ (xxxk (t), θθθk (t)), which performs as the approx-
imator of f (xxxk (t)), is described as follows:

f̂ (xxxk (t), θθθk (t)) =

m∑
l=1
θl,k (t)

2∏
j=1
µfj,l (xj,k (t))

m∑
l=1

2∏
j=1
µfj,l (xj,k (t))

=

m∑
l=1

θl,k (t)zl(xxxk ) (20)

where

zl(xxxk ) =

2∏
j=1
µfj,l (xj,k (t))

m∑
l=1

2∏
j=1
µfj,l (xj,k (t))

. (21)

Let θθθk = [θ1,k , θ2,k , . . . , θm,k ]T and zzzk = [z1,k , z2,k , . . . ,
zm,k ]T . Then, (20) can be rewritten into a compact form as
follows:

f̂ (xxxk (t), θθθk (t)) = θθθTk zzzk . (22)

In the representation of (20), m is the number of fuzzy
rules, wl,k (t) is the consequent parameter, and µfjl (xj,k (t))
is the fuzzy membership function for the fuzzy system
f̂ (xxxk (t), θθθk (t)). The fuzzy system is expressed as a series
of radial basis functions expansion with the basis functions
as zl(xxxk ). It is well known that the fuzzy system (20) can
uniformly approximate real continuous nonlinear function on
a compact set Ac ⊂ R2×1. There exists optimal weight θθθ∗

such that

sup
xxxk∈Ac

|f (xxxk (t))− θθθ∗Tzzzk | ≤ ε∗ (23)

for arbitrary ε∗ > 0 [39].
According to (23), we have

sε,k f (xxxk (t)) ≤ sε,kθθθ∗Tzzzk + |sε,k |ε∗ (24)

On the basis of (19) and (24), we have

V̇k =
b2s sε,k (ppp

Tϕϕϕk + θθθ
∗Tzzzk + uk )

(b2s − s
2
ε,k )

2
+

b2s |sε,k |ρ

(b2s − s
2
ε,k )

2
, (25)

where ρ , ε∗+supt∈[0,T ](dk ). On the basis of (24), we design
the iterative learning controller as follows:

uk = −γ sε,k − pppTk ϕϕϕk − θθθ
T
k zzzk − ρksat−1,1

(
%sε,k

δ + |sε,k |

)
,

(26)

pppk = satp,p̄(pppk−1)+
b2sµ1sε,kϕϕϕk
(b2s − s

2
ε,k )

2
,p−1p−1p−1 = 0, (27)

θθθk = satθ,θ̄ (θθθk−1)+
b2sµ2sε,kzzzk
(b2s − s

2
ε,k )

2
, θ−1θ−1θ−1 = 0, (28)

ρk = sat0,ρ̄(ρk−1)+
b2sµ3|sε,k |

(b2s − s
2
ε,k )

2
, ρ−1 = 0, (29)

where % > 1, 0 < δ < 1, γ > 0, µ1 > 0, µ2 > 0, µ3 > 0,
andpppk , θθθk and ρk are used to estimateppp, θθθ and ρ, respectively.
For the definition of saturation function sat·,·(·), seen [27].
Remark 1: In (26), to get better control performance,

sat−1,1
(

%sε,k
δ+|sε,k |

)
is adopted in the design of robust control

term, instead of sign(sε,k ) and sat−1,1
( sε,k
δ

)
.

Remark 2: As shown in (27), the optimal weight of adap-
tive iterative learning fuzzy system in this work is estimated
by using difference learning approach; whereas in the existing
adaptive fuzzy system control algorithms, the optimal weight
is estimated by using differential learning approach.

IV. CONVERGENCE ANALYSIS
Theorem 1: Consider the closed-loop tank gun adaptive

learning control system consisting of the plant (10), the fuzzy
system-based adaptive iterative learning controller (26) and
the difference learning laws (27)-(29). The tracking perfor-
mance and system stability are guaranteed as follows:

t1) Constraints on the system signals will not be violated
as |sε,k (t)| ≤ βbs, |ε1,k (t)| ≤

βbs
α
, |ε2,k (t)| ≤ 2βbs, with the

definition of β given in (49);
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t2) As the iteration number k increases, the system error
converges in the sense that |sε,k (t)| ≤ δ

%−1 for t ∈ [0,T ],
which means |e1,k (t)| ≤ δ

α(%−1) and |e2,k (t)| ≤
2δ
%−1 hold for

t ∈ [tε,T ] as the iteration number k increases;
t3) All signals in the closed-loop tank gun control system

are bounded.
Proof:

t1) Substituting (26) into (25) yields

V̇k ≤
b2s

(b2s − s
2
ε,k )

2
(sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

T
k zzzk + |sε,k |ρ)

−
γ b2s s

2
ε,k

(b2s − s
2
ε,k )

2
− sε,kρksat−1,1

(
%sε,k

δ + |sε,k |

)
. (30)

where p̃ppk = ppp − pppk and θ̃θθk = θθθ∗(t) − θθθk . Note that we can
see ρk ≥ 0 for any k from (29).

While sε,k > δ
%−1 , due to δ

%−1 > 0, it is obvious that

(% − 1)sε,k > δ and (%−1)sε,k+sε,k
δ+|sε,k |

> 1 hold. According to
this and the definition of saturation function, we can see that
sat−1,1

(
%sε,k
δ+|sε,k |

)
= sat−1,1

(
(%−1)sε,k+sε,k

δ+|sε,k |

)
= 1. Therefore,

sε,ksat−1,1

(
%sε,k

δ + |sε,k |

)
= |sε,k |,∀sε,k >

δ

% − 1
. (31)

While sε,k < − δ
%−1 < 0, it is obvious that (% − 1)sε,k <

−δ and (%−1)sε,k+sε,k
δ+|sε,k |

< −1 hold. According to this and the

definition of saturation function, we get sat−1,1
(

%sε,k
δ+|sε,k |

)
=

sat−1,1
(
(%−1)sε,k+sε,k

δ+|sε,k |

)
= −1, such that

sε,ksat−1,1

(
%sε,k

δ + |sε,k |

)
= |sε,k |,∀sε,k < −

δ

% − 1
. (32)

From (29), we know ρk ≥ 0 holds for each iteration. Hence,
combining (31) with (32), we can derive that

sε,kρksat−1,1

(
%sε,k

δ + |sε,k |

)
= |sε,k |ρk ,∀|sε,k | >

δ

% − 1
.

(33)

Combining (30) with (33), while |sε,k | > δ
%−1 , we deduce

that

V̇k ≤
b2s

(b2s − s
2
ε,k )

2
(sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

T
k zzzk )+

b2s |sε,k |(ρ − ρk )

(b2s − s
2
ε,k )

2

−
γ b2s s

2
ε,k

(b2s − s
2
ε,k )

2

=
b2s

(b2s − s
2
ε,k )

2
(sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

T
k zzzk + |sε,k |ρ̃k )

−
γ b2s s

2
ε,k

(b2s − s
2
ε,k )

2
(34)

holds.
Define a candidate barrier Lyapunov functional as follows:

Lk = Vk +
1

2µ1

∫ t

0
p̃ppTk p̃ppkdτ +

1
2µ2

∫ t

0
θ̃θθ
T
k θ̃θθkdτ

+
1

2µ3

∫ t

0
%̃2kdτ. (35)

whose time derivative is

L̇k ≤
b2s (sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

∗T
k zzzk + |sε,k |ρ̃k )

(b2s − s
2
ε,k )

2
+

1
2µ1

p̃ppTk p̃ppk

+
1

2µ2
θ̃θθ
T
k θ̃θθk +

1
2µ3

ρ̃2k −
γ b2s s

2
ε,k

(b2s − s
2
ε,k )

2
(36)

According to the learning laws (27)-(29), the three inequal-
ities can be respectively deduced as follows:

b2s
(b2s − s

2
ε,k )

2
sε,kp̃pp

T
k ϕϕϕk +

1
2µ1

p̃ppTk p̃ppk

=
1

2µ1
(ppp− pppk )

T (2pppk − 2satp,p̄(pppk−1)+ ppp− pppk )

= −
1

2µ1
[pppk − satp,p̄(pppk−1)]T [pppk − satp,p̄(pppk−1)]

+
1

2µ1
[satp,p̄(pppTk−1)satp,p̄(pppk−1)+ ppp

Tppp

− 2pppT satp,p̄(pppk−1)]

≤
1

2µ1
[satp,p̄(pppTk−1)satp,p̄(pppk−1)+ ppp

Tppp

− 2pppT satp,p̄(pppk−1)], (37)

b2s
(b2s − s

2
ε,k )

2
sε,kθ̃θθ

T
k zzzk +

1
2µ2

θ̃θθ
T
k θ̃θθk

=
1

2µ2
(θθθ∗ − θθθk )T (2θθθk − 2satθ,θ̄ (θθθk−1)+ θθθ

∗
− θθθk )

= −
1

2µ2
[θθθk − satθ,θ̄ (θθθk−1)]

T [θθθk − satθ,θ̄ (θθθk−1)]

+
1

2µ2
[satθ,θ̄ (θθθ

T
k−1)satθ,θ̄ (θθθk−1)+ θθθ

∗Tθθθ∗

− 2θθθ∗T satθ,θ̄ (θθθk−1)]

≤
1

2µ2
[satθ,θ̄ (θθθ

T
k−1)satθ,θ̄ (θθθk−1)+ θθθ

∗Tθθθ∗

− 2θθθ∗T satθ,θ̄ (θθθk−1)] (38)

and

b2s
(b2s − s

2
ε,k )

2
|sε,k |ρ̃k +

1
2µ3

ρ̃2k

=
1

2µ3
[−ρ2k + ρ

2
− 2ρsat0,ρ̄(ρk−1)+ 2ρksat0,ρ̄(ρk−1)]

=
1

2µ3
[sat0,ρ̄(ρk−1)sat0,ρ̄(ρk−1)+ ρ2 − 2ρsat0,ρ̄(ρk−1)]

−
1

2µ3
[ρk − sat0,ρ̄(ρk−1)]2

≤
1

2µ3
[sat0,ρ̄(ρk−1)sat0,ρ̄(ρk−1)+ ρ2 − 2ρsat0,ρ̄(ρk−1)].

(39)
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By the property of saturation function, from (37)-(39), we can
see that there exist positive numbers c1, c2 and c3, which
satisfy

b2s
(b2s − s

2
ε,k )

2
sε,kp̃pp

T
k ϕϕϕk +

1
2µ1

p̃ppTk p̃ppk ≤
c1
2µ1

, (40)

b2s
(b2s − s

2
ε,k )

2
sε,kθ̃θθ

T
k zzzk +

1
2µ2

θ̃θθ
T
k θ̃θθk ≤

c2
2µ2

(41)

and

b2s
(b2s − s

2
ε,k )

2
|sε,k |ρ̃k +

1
2µ3

ρ̃2k ≤
c3
2µ3

, (42)

respectively. Then, substituting (40)- (42) into (36), we
derive

L̇k ≤ −
γ b2s s

2
ε,k

(b2s − s
2
ε,k )

2
+

c1
2µ1
+

c2
2µ2
+

c3
2µ3

. (43)

Since Lk (0) = 0 holds in each iteration, from (43),
we have

Lk (t) ≤
c1T
2µ1
+
c2T
2µ2
+
c3T
2µ3

, (44)

which implies that

Vk (t) =
s2k (t)

2$ (b2s − s
2
ε,k (t))

≤
c1T
2µ1
+
c2T
2µ2
+
c3T
2µ3

.

(45)

Through simple algebraic calculation,

b2s − s
2
ε,k (t) ≥

s2ε,k (t)

2$ ( c1T2µ1
+

c2T
2µ2
+

c3T
2µ3

)
(46)

Define λ = 1
2$ ( c1T2µ1

+
c2T
2µ2
+
c3T
2µ3

)
. From (54), we have

b2s ≥ (1+ λ)s2ε,k (t), (47)

which means

|sε,k (t)| ≤ βbs. (48)

with

β =

√
1

1+ λ
(49)

It follows from (48) that

|ε1,k (t)| ≤
βbs
α
, (50)

|ε2,k (t)| ≤ 2βbs (51)

hold [40]. This proves t1) of the theorem.
t2) According to the definition of ε1,k and ε2,k and the

property of e∗1,k and e∗2,k , we can see ε1,k (0) = 0 and
ε2,k (0) = 0. Then, by the definition of Vk , we can conclude
that

Vk (0) = 0. (52)

Integrating (34) from 0 to t , we deduce that

Vk ≤ Vk (0)+
∫ t

0

b2s
(b2s − s

2
ε,k )

2
(sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

T
k zzzk

+ |sε,k |ρ̃k )dτ −
∫ t

0

γ b2s s
2
ε,k

(b2s − s
2
ε,k )

2
dτ. (53)

holds if |sε,k | > δ
%−1 . Combining (35), (52) with (53) yields

Lk − Lk−1

= Vk − Vk−1 +
1

2µ1

∫ t

0
(p̃ppTk p̃ppk − p̃pp

T
k−1p̃ppk−1)dτ

+
1

2µ2

∫ t

0
(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)dτ

+
1

2µ3

∫ t

0
(ρ̃2k − ρ̃

2
k−1)dτ

≤

∫ t

0

b2s
(b2s − s

2
ε,k )

2
(sε,kp̃pp

T
k ϕϕϕk + sε,kθ̃θθ

T
k zzzk + |sε,k |ρ̃k )dτ

−

∫ t

0

γ b2s s
2
ε,k

(b2s − s
2
ε,k )

2
dτ − Vk−1 +

1
2µ1

∫ t

0
(p̃ppTk p̃ppk

− p̃ppTk−1p̃ppk−1)dτ +
1

2µ2

∫ t

0
(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)dτ

+
1

2µ3

∫ t

0
(ρ̃2k − ρ̃

2
k−1)dτ. (54)

Applying the property (ppp − pppk−1)T (ppp − pppk−1) ≥ (ppp −
satp,p̄(pppk−1))T (ppp− satp,p̄(pppk−1)), from (27), we obtain

1
2µ1

(p̃ppTk p̃ppk − p̃pp
T
k−1p̃ppk−1)+

b2s
(b2s − s

2
ε,k )

2
sε,kp̃pp

T
k ϕϕϕk

≤
1

2µ1
[(ppp− pppk )T (ppp− pppk )− (ppp− satp,p̄(pppk−1))

T

×(ppp− satp,p̄(pppk−1))]+
b2s

(b2s − s
2
ε,k )

2
sε,kp̃pp

T
k ϕϕϕk

≤
1

2µ1
(2ppp− pppk − satp,p̄(pppk−1))

T (satp,p̄(pppk−1)− pppk )

+
b2s

(b2s − s
2
ε,k )

2
sε,kp̃pp

T
k ϕϕϕk

≤
1
µ1

(ppp− pppk )T [satp,p̄(pppk−1)− pppk +
µ1b2s sε,kϕϕϕk
(b2s − s

2
ε,k )

2
]

= 0. (55)

Applying the property (θθθ∗ − θθθk−1)T (θθθ∗ − θθθk−1) ≥ (θθθ∗ −
satθ,θ̄ (θθθk−1))

T (θθθ∗ − satθ,θ̄ (θθθk−1)), from (28), we derive

1
2µ2

(θ̃θθ
T
k θ̃θθk − θ̃θθ

T
k−1θ̃θθk−1)+

b2s
(b2s − s

2
ε,k )

2
sε,kθ̃θθ

T
k zzzk

≤
1

2µ2
[(θθθ∗ − θθθk )T (θθθ∗ − θθθk )− (θθθ∗ − satθ,θ̄ (θθθk−1))

T

×(θθθ − satθ,θ̄ (θθθk−1))]+
b2s

(b2s − s
2
ε,k )

2
sε,kθ̃θθ

T
k zzzk
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≤
1

2µ2
(2θθθ∗ − θθθk − satθ,θ̄ (θθθk−1))

T (satθ,θ̄ (θθθk−1)− θθθk )

+
b2s

(b2s − s
2
ε,k )

2
sε,kθ̃θθ

T
k zzzk

≤
1
µ2

(θθθ∗ − θθθk )T [satθ,θ̄ (θθθk−1)− θθθk +
µ2b2s sε,kzzzk
(b2s − s

2
ε,k )

2
]

= 0. (56)

Similarly, applying the property (ρ − ρk−1)2 ≥ (ρ −
satρ,ρ̄(ρk−1))2, from (29), we have

1
2µ3

(ρ̃2k − ρ̃
2
k−1)+

b2s
(b2s − s

2
ε,k )

2
|sε,k |ρ̃k

≤
1
µ3

(ρ − ρk )
[
sat0,ρ̄(ρk−1)− ρk + µ3

b2s
(b2s − s

2
ε,k )

2
|sε,k |

]
= 0. (57)

Substituting (55)-(57) into (54) leads to

Lk − Lk−1 ≤ −
∫ t

0

γ b2s s
2
ε,k

(b2s − s
2
ε,k )

2
dτ − Vk−1, (58)

which means

Lk (t) ≤ L0(t)−
1
2$

k−1∑
j=0

s2ε,j(t). (59)

Note that (59) is a deduction on the premise of |sε,k | > δ
%−1 .

From (44), we can see that L0(t) is bounded for t ∈ [0,T ].
Suppose that |sε,k | > δ

%−1 always holds as the iteration
number increases, then

Lk (t) < 0 (60)

would happen when the iteration number k increases to a
certain extent. Therefore,

|sε,k (t)| ≤
δ

% − 1
(61)

holds for t ∈ [0,T ] as the iteration number k increases.
It follows from (61) that

|ε1,k (t)| ≤
δ

α(% − 1)
(62)

and

|ε2,k (t)| ≤
2δ
% − 1

(63)

hold for t ∈ [0,T ] as the iteration number k increases [40],
which implies

|e1,k (t)| ≤
δ

α(% − 1)
(64)

and

|e2,k (t)| ≤
2δ
% − 1

(65)

hold for t ∈ [tε,T ] as the iteration number k increases. This
proves t2) of the theorem.

FIGURE 3. Position trajectory x1 (barrier ILC).

t3) As shown in (48)-(51), sε,k , ε1,k , ε2,k , are bounded
during each iteration. Based on this and the effect of sat-
uration functions, pppk , θθθk and ρk are also guaranteed to be
bounded. Further, we can verify uk and all other signals in
the closed-loop system are bounded. This proves t3) of the
theorem.
In this work, the error constraint is achieved by constrain-

ing the maximum of |sε,k | in a predetermined range, which is
useful to improve the robustness and the safety of closed-loop
tank gun control systems.

V. NUMERICAL SIMULATION
In this simualation, the values of parameter in the tank gun
control systems are given as follows [33]: R = 0.4�, J=
0.0067kg ·m2, i = 1039, L = 2.907×10−3H,Kt = 0.195N ·
m/A,Ke = 0.197 V/( rad·s−1), B = 1.43×10−4 N·m,Ka =
2, f (xxxk ) = 5.3+0.5 x1+0.7 x2+x1x2; d(xxxk ) = 0.2sign(x2)+
0.2 sin(0.5t)rand(t). x1,k (0) = 5 + 0.1rand(k), x2,k (0) =
0.8 + 0.02rand(k). Here rand(·) represent random numbers
between 0 and 1. xxxd = [4.5+ sin(π2 t),

π
2 cos(π2 )]

T .
For fuzzy approximation, the following membership

functions are chosen as µfj,l (xj,k (t)) = exp[− (xj,k−8+2×l)2

7 ],
l = 1, . . . , 7, j = 1, 2. The ILC law (26) and adap-
tive learning laws (27)-(29) are adopted for this simulation.
The control parameters and learning gains are chosen as:
m = 7,T = 6, tε = 0.8, α = 2, γ = 10, µ1 = 1,
µ2 = 4, µ3 = 0.05, % = 2, δ = 0.001, p = −50, p̄ = 50,
θ = −50, θ̄ = 50, ρ̄ = 20, bs = 1.

After 30 iteration cycles, the simulation results are depicted
in Figs. 3-10. Figs. 3-4 show the position trajectory and veloc-
ity trajectory during the 30th iteration, respectively. From
Figs. 3-4, we can see that the xxxk (t) can accurately xxxd (t) for
t ∈ [tε,T ]. The profiles of corresponding error are given in
Figs. 5 - 6, respectively. The error tracking profiles of tank
gun control system are given in Figs. 7 - 8. From Figs. 5-8,
we can see that eeek (t) can follow eee∗k (t) for t ∈ [0,T ] as the
iteration number increases. The system control input during
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FIGURE 4. Velocity trajectory x2 (barrier ILC).

FIGURE 5. Position state error e1 (barrier ILC).

FIGURE 6. Velocity state error e2 (barrier ILC).

30s is shown in Fig. 9. The converge history of sε,k is shown
in Fig. 10, where Jk := maxt∈[0,T ](|sε,k (t)|).

FIGURE 7. Difference between e1 and e∗1 (barrier ILC).

FIGURE 8. Difference between e2 and e∗2 (barrier ILC).

FIGURE 9. Control input(barrier ILC).

For comparison, the barrier-free ILC algorithm (66)-(68)
is adopted for simulation.

uk = −γ sε,k − ϑϑϑTk φφφ(Xk )−
2ηksε,k
ε + |sε,k |

, (66)
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FIGURE 10. Maximum of |sε,k | in the iteration domain(barrier ILC).

FIGURE 11. Maximum of |sε,k | in the iteration domain(barrier-free ILC).

ϑϑϑk = satϑ,ϑ̄ (ϑϑϑk−1)+ µ1sε,kφφφ(Xk ), θθθ−1 = 0, (67)

ηk = sat0,η̄(ηk−1)+ µ3|sε,k |, η−1 = 0, (68)

where γ = 10, µ1 = 1, µ3 = 0.05, ε = 0.001,
ϑ = −50, ϑ̄ = 50, η̄ = 20, Xk = [e∗1,k , e

∗

2,k , e1,k ,
e2,k , yd , ẏd , ÿd ]T , φφφ(Xk ) = [φ1,k , φ2,k , . . . , φm,k ]T . For j =
1, 2, . . . , 7, φj,k is defined as follows: φj,k = exp(− ‖X

XX k−cccj‖
bj

),
in which, bj = 7, and cccj evenly spaced on [−6, 6]× [−6, 6]×
[−6, 6]×[−6, 6]×[−6, 6]×[−6, 6]×[−6, 6]. Themaximum
of |sε,k (t)| during the kth iteration is shown in Fig. 11. Com-
paring Fig. 10 and Fig. 11, we can see that the barrier property
is observed in barrier ILC and no barrier property is observed
in barrier-free ILC. The above simulation results have ver-
ified the effectiveness of the proposed fuzzy system-based
adaptive ILC scheme.

VI. CONCLUSION
In this work, the accurate position control tracking problem is
studied for tank gun control systems. A fuzzy system-based
adaptive ILC scheme is proposed to get excellent tracking
performance. For constraining the system error during each

iteration, a barrier Lyapunov function is adopted to controller
design. Error tracking strategy is introduced to solve the
initial problem of tank gun ILC systems. The fuzzy system is
used as an approximator to compensate for the nonparametric
uncertainties in tank gun control systems. The optimal param-
eters of fuzzy systems are estimated by using difference learn-
ing learning approach. As the iteration number increases,
the position tracking error can converge to a tunable resid-
ual set. The theoretical analysis and simulations show that
the closed-loop tank gun ILC system has better control
performance.
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