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ABSTRACT Artificial intelligence (AI) systems are increasingly used in health and personalized care.
However, the adoption of data-driven approaches in many clinical settings has been hampered due to their
inability to perform in a reliable and safe manner to leverage accurate and trustworthy diagnoses. A critical
and challenging usage scenario for Al is aiding the treatment of cancerous conditions. Providing accurate
diagnosis for cancer is a challenging problem in precision oncology. Although machine learning (ML)-based
approaches are very effective at cancer susceptibility prediction and subsequent treatment recommendations,
ML models can be vulnerable to adversarial attacks. Since adversarially weak models can lead to wrong
clinical recommendations, such vulnerabilities is critical — especially when Al-guided systems are used to
aid medical doctors. Therefore, it is indispensable that healthcare professionals employ trustworthy Al tools
for predicting and assessing disease risks and progression. In this paper, we propose an adversary-aware
multimodal convolutional autoencoder (MCAE) model for cancer susceptibility prediction from multi-omics
data consisting of copy number variations (CNVs), miRNA expression, and gene expression (GE). Based on
different representational learning techniques, the MCAE model learns multimodal feature representations
from multi-omics data, followed by classifying the patient cohorts into different cancer types on multimodal
embedding space that exhibit similar characteristics in end-to-end setting. To make the MCAE model
robust to adversaries and to provide consistent diagnosis, we formulate robustness as a property, such
that predictions remain stable with regard to small variations in the input. We study different adversarial
attacks scenarios and take both proactive and reactive measures (e.g., adversarial retraining and identification
of adversarial inputs). Experiment results show that the MCAE model based on latent representation
concatenation (LRC) exhibits high confidence at predicting cancer types, giving an average precision
and Matthews correlation coefficient (MCC) scores of 0.9625 and 0.8453, respectively and shows higher
robustness when compared with state-of-the-art approaches against different attack scenarios w.r.t. ERM and
CLEVER scores. Overall, our study suggests that a well-fitted and adversarially robust model can provide
consistent and reliable diagnosis for cancer.

INDEX TERMS Cancer genomics, cancer type prediction, adversarial machine learning, out-of-distribution
detection, deep learning, representation learning, multimodal information fusion.

I. INTRODUCTION

Cancer is caused when cells turn abnormal, divide rapidly,
and spread to other tissues and organs and may be further
driven by a series of genetic mutations of genes induced by
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selection pressures of carcinogenesis in the cells [1], [2].
The so-called marker genes including oncogenes and tumor
suppressor genes are often responsible for cancer growth.
When a gene is over- or under-expressed as a differentially
expressed gene, the gene becomes uncontrollable prolifer-
ation or immortality of cancer cells [1], [2]. Although the
difference in the average of expression values between two
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sample classes is frequently employed in transcriptomics
analyses, such difference is not the only way a gene can be
expressed differentially [3]. With more than 200 different
types identified to date, cancer has become the second leading
cause of death worldwide [4]. According to the National
Cancer Institute! an estimated 17.35 million new cancer
cases were diagnosed in the United States in 2018, of which
609,640 people died; while there were 18 million new cases
of which 9.5 million deaths were reported worldwide. The
number of new cases in the United States is expected to rise
to 23.6 million by 2030, which again is anticipated to increase
by 70% by 2035.

Early detection of tumors is particularly important for bet-
ter treatment of patients. Further, knowing the types or sub-
types of cancer is a prerequisite for recommending the best
possible treatment, a notable issue being the discrimination of
tumor samples from normal ones [5], [29]. Once biologically
relevant features have been identified, they can be used to
improve the accuracy of diagnostic protocols [6]. A treatment
paradigm that integrates molecular profiling approaches is
accelerating clinical oncology, by which molecularly targeted
agents can be identified that have improved the clinical out-
comes of patients across multiple cancer types [6]. Therefore,
providing accurate diagnosis for such a highly aggressive
disease is a challenging problem [7].

Further, with the rapid development of new technologies in
gene sequencing and with an increased importance of genetic
knowledge in cancer treatment, several projects and diverse
genomic data sets associated with cancer have emerged; e.g.,
the cancer genome atlas (TCGA) [8] is the most well-known
source for omics data.? TCGA analyzed over 11,000 cancer
cases from 33 prevalent forms of cancer as a part of the
Pan-Cancer Atlas project [9] and makes available somatic
mutation, gene expression (GE), DNA methylation (DNAm),
copy number variations (CNVs), miRNA expressions data,
as well as clinical and pathology information [10]. By acquir-
ing insights from these data, treatment can be focused on
preventive measures [11]. However, this requires the omics
data, pathological reports, and imaging data to be integrated
and analysed to understand the genetic and epigenetic causes
of cancer before recommending appropriate treatment [12].

Artificial intelligence (Al)-based systems are increasingly
getting better at optimizing treatment decision making for
cancer patients [6], [12]-[15]. Machine learning (ML), in par-
ticular deep learning (DL) techniques can process large-scale
data to learn biologically relevant patterns, by addressing
issues such as the curse of dimensionality and heterogene-
ity [6]. Compared to ML-based approaches, DL approaches
based on deep neural network (DNN) architectures found to
be more effective to provide a more reliable and accurate
diagnosis of cancer. Similar to our multimodal real-world
experience [16], clinical decision-making in oncology also

1 https://www.cancer.gov/about-cancer/understanding/statistics
2A collection of biomolecules inside living organisms, e.g., genomics,
metabolomics, and proteomics
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involves multimodal data [17]. However, since omics data
are generated from multiplatform and heterogeneous sources,
the high-dimensionality and heterogeneity impose great chal-
lenges to bioinformatics tools and algorithms [18].

Further, accurate diagnoses of cancer may be specific to
patients with particular cancer subtypes and molecular traits.
Since one type of omics data may not cover these biomarkers,
providing diagnoses solely based on unimodal data may not
be accurate and reliable. For example, breast cancer patients
can be broadly categorized into different groups depending
on the presence of ER, PGR, and HER2/neu proteins in
normal cell growth, where ER, PGR, and HER2 represent
a subset of breast cancer with different biological behavior
and are mainly involved in determining breast cancer sub-
types. This signifies the necessity of multimodal learning
paradigms to provide reliable diagnosis of cancer by com-
bining omics, bioimaging, and clinical outcomes. Therefore,
numerous studies have been proposed to accurately diagnose
cancer based on different types of data such as omics, radi-
ology scans, molecular profiling, histopathology slides, and
clinical factors by employing ML and DL techniques [17].
As of omics data, CNVs, DNAm, GE, and miRNA expression
data are more widely used [19] in uni- and multimodal ML
settings.

The multimodal information fusion (MIF) — a concept of
integrating information from multiple modalities is widely
used to predict an outcome measure [20]. Subsequently,
computing methods for cancer diagnosis, survival analysis,
and prognosis have been developed based on multiple data
sources. The MIF provides several benefits over unimodal
machine learning paradigm [20]:

o Multiple modalities of the same phenomenon enable
making more reliable predictions.

o Complementary information from multiple modalities
can be captured, e.g., the integration of genomics, pro-
teomics, bioimaging, texts, or even clinical outcomes to
support each other.

« A multimodal neural network can still operate when one
of the modalities is missing (e.g., we can still rely on
GE, miRNA, and CNVs modalities in case of missing
bioimaging modalities).

« Since a multimodal neural network can be trained end-
to-end to represent the data, both supervised and unsu-
pervised learning tasks can be accomplished on learned
representations.

Further, discriminative models may offer very limited per-
formance guarantees when trained on a dataset, which has not
been generated by the same process as the training distribu-
tion [21]. Suppose a DNN model is trained on omics data.
Assuming the model that shows high confidence when eval-
uated w.r.t. the performance measures on the test set is then
deployed for cancer diagnosis in a clinical setting. Similarly,
it is not guaranteed that the model performs as expected or
equally, as both training and test sets would be sampled from
the same population. As a result, the model may tend to show
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average or poor performance on unseen data. If the test set
that represents the population to a large extent and coming
from the same distributions as the training set, statistical
learning theory can answer this question through assump-
tions or manual inspection. Further, statistical learning theory
would fail to relate the errors unless additional information,
e.g., domain knowledge is available. Even though the DNN
model may be an efficient predictive model, it is not guar-
anteed what would be the prediction in the case of input
samples that slightly differ from the training set [22]. Using
a brute-force approach, it possible to find small variations
of specific samples that change the model’s behavior (e.g.,
predictions and explanations [23], such instances become so-
called adversarial examples (AEx) when unwanted noises
are added in input samples with major content moderation.
In adversarial ML theory, AEx are used to introduce different
types of adversarial attacks on the models, either to sabotage
their internal functionality.

Adversarial inputs (e.g., images) that look almost identical
to original clean images® with small perturbations may be
enough to misguide or fool even a robust model, unless the
model does not have minimum level of adversarial robust-
ness. Bendale et al. [25] show that it is easy to generate images
that humans would never classify as a particular object class,
whereas a model may still classify such images as that given
class with high confidence. Consequently, a user may end up
with an incorrect image label predicted, which becomes even
more extreme if the test data comes from another distribu-
tion than the training set called out-of-distribution (O0OD).4
Suppose a convolutional neural network (CNN) that has
been trained on millions images to solve the dog vs. cat
classification problem shows high confidence at accurately
recognizing images of both classes. In an adversarial sce-
nario, the classification task can be described as follows: a
user inputs an image of an elephant to get the prediction;
there is a high probability that a user will get a response of
an incorrect image label, i.e., either dog or cat, forcing the
classifier to make such a wrong prediction. However, if we
are given an independently sampled set generated from the
same distribution, the model is less likely to make wrong
predictions, at lest, on more than a certain number of samples
with a high probability.

The ability of a model to recognize unknown or mali-
cious inputs is important for many classification-based sys-
tems [26]. Therefore, high accuracy alone is not enough to
provide trustworthy diagnosis in clinical settings, as it is also
desirable that a deployed model is capable of detecting AEx
or anomalous inputs [27]. Further, the use of more complex
inputs in DNN magnifies the difficulty of distinguishing
anomalous and in-distribution (ID) inputs [27]. Assuming a
less complex CNN model trained on GE data shows 90%
confidence at predicting different cancer types correctly when

3For example, humans could easily distinguish the adversarial MNIST
digits [24], often barely recognizable by humans if trivial amounts of noises
are added into an image.

4Samples that are far away from the training distribution.

54388

evaluated on a sufficiently large test set. Once the model is
deployed and ready for inferencing, predicting® for a single
instance is trivial. Suppose for a given representation of a GE
example, the model predicts breast cancer with a probability
of 90%, “how confident are we that: i) the input to the
model is a GE example and not a CNV?, ii) the model will
consistently make the correct prediction?, iii) the diagnosis
will not end up with a wrong diagnosis decision?.” Since
the deployed model may be vulnerable to adversarial attacks,
ML security researchers recommend not to trust the model
blindly — especially in the presence of an adversary. Even if
we assume there are no adversaries, we still would not have
certainty that the input image is a GE sample.

The robustness of a model is difficult to interpret [23]. The
only model that is fully robust for all inputs is the trivial model
that returns the same prediction for all outputs, even in the
presence of the strongest adversarial attacks [23]. For all other
models, there is a decision boundary and some data points
will be close to the decision boundary and are hence not
robust, given that some parts of the neighborhood of inputs
near the decision boundary will always be on each side of the
decision boundary [23]. Therefore, no model is fully robust in
practice. If a model can detect if an input belongs to the pop-
ulation distribution of the training data, it can be considered
robust enough [23]. However, adversarial attacks are more
critical in healthcare, especially when Al-guided systems are
used to provide diagnosis aid to a doctor, e.g., in the case of
an OOD data point, a learning algorithm may not only make
wrong or erroneous prediction but also misguide medical
doctors in clinical diagnosis [21]. Since diagnosis decisions
provided by an Al system are critical and wrong decisions
are not acceptable, it is essential to ensure that the model is
robust to adversaries. This requires improving the adversarial
robustness of the model by employing both proactive and
reactive defense measures.

To date many studies have focused on multimodal diag-
nostic, prognostic, or survival analysis, but to our knowl-
edge, no study has focused on improving the robustness of
such multimodal neural network architectures for a similar
purpose. In this paper, we propose an efficient approach to
provide reliable diagnosis of cancer by means of cancer sus-
ceptibility prediction. We train a multimodal convolutional
autoencoder (MCAE) architecture on multi-omics data by
employing different representation learning (RL) techniques,
followed by training classifiers on the embedding space to
classify the cohorts into specific cancer groups. To improve
the adversarial robustness of the MCAE, we take both proac-
tive (e.g., adversarial retraining) and reactive (e.g., identi-
fication of AEX) measures. We impose content moderation
and OOD adversarial attacks on the MCAE model with gen-
erated AEX, followed by performing adversarial retraining.
Finally, we assess the model’s robustness in a non-targeted
attack scenario. Since it is impossible to build a fully robust

SIn this paper, we use ‘cancer type prediction’ and ‘cancer susceptibility
prediction’ interchangeably.
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classifier, we model “‘robustness’ as a property to make sure
that the predictions remain stable to small variations in the
input (minor perturbations), i.e., that such input variations do
not flip the prediction to a completely different cancer type.
We hypothesize that a well-fitted and adversarially robust
model can provide consistent and reliable cancer diagnosis
based on multi-omics data. The overall contributions of this
paper can be summarized as follows:

« We tackle the curse of dimensionality of omics data by
employing autoencoder-based representational learning
techniques. We learn and construct a multimodal latent
space from multimodal feature space (from multi-omics
data), where both shared latent representation (SLR)
and latent representation concatenation (LRC) tech-
niques based on convolutional autoencoder (CAE) were
employed.

o We not only study and observe different adversarial
attack scenarios, but also take both proactive and reac-
tive measures (e.g., adversarial retraining and identifica-
tion of AEX) to ensure models are robust to adversaries
and behave as intended. To the best of our knowledge,
we are the first to improve adversarial robustness of
DNN models towards providing trustworthy diagnosis
of cancer.

« We provide comprehensive evaluations of our approach,
both quantitative and qualitatively. Further, we provide
comparative analyses with baseline models and state-of-
the-art approaches.

o We prepare a labeled multimodal omics dataset for can-
cer type prediction task, which can be used for predictive
modeling and to develop explainable Al systems for
cancer diagnosis.

The rest of the paper is structured as follows: Section II
reviews some related work, covering both unimodal and
multimodal ML-based approaches for cancer diagnosis, and
outlines a short overview of different adversarial attacks
scenarios. Section III describes our proposed approach.
Section IV discusses our experimental results both quanti-
tative and qualitatively. Section V summarizes our research
contribution, discussing potential limitations and pointing out
possible outlooks, before concluding the paper.

Il. RELATED WORK

In this section, unimodal and multimodal ML approaches
for cancer diagnosis are discussed. Besides, ‘“‘reactive” and
“proactive” countermeasures against different adversarial
attacks scenarios (e.g., content moderation and OOD attacks)
are covered.

A. UNIMODAL APPROACHES

Numerous approaches have been proposed for analyzing
genomic profiles of patient cohorts for treatment deci-
sion making [18], [28]. Genomics, bioimaging, and clini-
cal data are used to identify rare and common transcripts,
isoforms, and non-coding RNAs in cancer [19]. Besides,
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different types of somatic mutation data such as point muta-
tion, single nucleotide variation (SNV), small insertion and
deletion (a.k.a. INDELSs), copy number aberration (CNA),
translocation, and CNVs are also used. While RNA-Seq
data is more widely used to identify rare and common tran-
scripts, isoforms, and protein-coding RNAs in cancer, single
nucleotide polymorphism data is used to identify segmental
variations across multiple cancer genomes [13]. In a previous
approach [29], we considered copy number segmentation as
an important feature. We assumed the higher the segmenta-
tion means, the higher the copy number in that region. Based
on this assumption, we calculated the length of a copy number
and its value based on a difference between start and end
positions of a CNV. Then, we represented copy number loss
and gain w.r.t. negative segmentation and positive segmen-
tation means, respectively. Copy numbers with segmentation
values between a specific range were considered as noise and
discarded from the rest of the calculation. Since a manual
approach for CNV extraction like this often fails to extract
recurrent CNV features in the case of simultaneous analysis
of multiple samples [30], we used the MSeq-CNV tool for
more efficient CNV extraction [31]. The extracted features
we then used to train a Convolutional-LSTM (Conv-LSTM)
network for cancer type prediction based on a snapshot neural
ensemble method.

Sun et al. [32] proposed GeneCT, which constrains input
genes into the oncogenes and tumor suppressors categories
to determine the cancerous status and transcription factors to
classify cohorts into the tissue of origin, achieving an overall
accuracy of 97.8%. Lyu et al. [10] and Mostavi et al. [33]
embedded the RNA-Seq data from the Pan-Cancer atlas
project into 2D images and trained a CNN to classify
33 tumor types. Lyu et al. [10] trained a CNN model with a 2D
mapping of the GE samples, achieving an accuracy of 95%.
Besides, they provided a data interpretation approach based
on guided-gradient class activation maps (Grad-CAM) [34].
Based on different designs of gene embeddings and con-
volution schemes, Mostavi et al. [33] implemented 1D-,
2D-Vanilla-, and 2D-Hybrid CNN models, the latter of which
achieved a classification accuracy of 93.9%. Further, they
extended the 1D-CNN model for the prediction of breast
cancer subtypes and achieved an average accuracy of 88.42%
among subtypes.

Inspired by these approaches, we proposed an explainable
approach called OncoNetExplainer [18] for cancer type pre-
diction based on GE data of 9,074 cancer patients covering
33 different cancer types from the Pan-Cancer Atlas. Similar
to their approach, our approach first embeds high dimensional
RNA-Seq data into 2D images, followed by training vanilla
CNN and VGG16 networks on an embedding space with
the Grad-CAM+-+ [35] technique. By averaging all the nor-
malized heatmaps from the same class, we generated class-
specific heatmaps, where a higher intensity pixel represents
a higher significance to the final prediction, which indicates
higher importance of corresponding genes and the GE values.
Relevant driver- and ranked top-k genes are then identified
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across cancer types w.r.t. intensity rankings and mean abso-
lute importance threshold. To provide a comparison with
baselines, we validated the findings based on annotations
provided by TumorPortal® and the SHAP [36] interpretability
technique.

The majority of these approaches did not systematically
evaluate the effectiveness of different representation learning
techniques from high dimensional data (e.g., qualitative eval-
uation of the learned embeddings) and assess their impact on
the classification accuracy, even though they outperformed
previous approaches. In a recent approach Itzhacky et al. [37],
devised a novel deep learning method for predicting gene
dependencies and drug sensitivities from GE measurements.
By combining dimensionality reduction strategies, they are
able to learn accurate models that outperform shallow DNN
or ML models. Chen et al. [38] proposed gene superset
autoencoder (GSAE), a multilayer autoencoder with a priori
defined gene sets that retain the crucial biological features
in the latent layer. They introduced the concept of the gene
superset, an unbiased combination of gene sets with weights
trained by the autoencoder, where each node in the latent
layer is a superset in order to reduce the number of weights
to be estimated. Using a GSAE model at its latent layer, they
demonstrated that gene supersets retain sufficient biological
information w.r.t. tumor subtypes and clinical prognostic sig-
nificance.

B. MULTIMODAL APPROACHES

Although the development of unimodal representations has
been widely studied and focused on unimodal RL, many cur-
rent clinical methods fail to effectively utilize the large-scale
multimodal data available today for cancer patients [39].
Therefore, there has been a shift to multimodal learning [16].
Further, the performance of unimodal information fusion
architectures is greatly limited by their inability to detect and
combine useful and complementary information from hetero-
geneous representations stemming from a set of distinctive
modalities [40], [41]. The ability to represent multimodal data
efficiently forms the backbone of many predictive models.
The concept of multimodal ML has emerged, which aims
to build a ML model capable of processing and relating
information from multiple modalities [16]. Subsequently,
recent approaches are more focused on multimodal repre-
sentations from different types of data involving simple or
shared concatenation of unimodal ones [16]. A multimodal
representation is a representation of data using information
from multiple entities [16].

Nevertheless, when it comes to multimodal genomics data
for precision oncology, the diagnosis decision may rely on
different types of data since one type of omics data may not
cover the patient’s biomarkers. Such datasets can be char-
acterized as multimodal. From a biological perspective, pro-
viding cancer diagnosis based on multiple input types (e.g.,
genomics, proteomics, or imaging data) is analogous to

6http://Www.tumorportal.org/
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creating knowledge together from multimodal perspec-
tives [42]. Further, how to combine different types of data
from heterogeneous sources, how to deal with different levels
of noise and artifacts, and how to deal with missing data
are a few challenges in the multimodal RL. The majority of
multimodal methods have so far focused on representation
fusions [41], either by combining representations before the
classification, called feature level fusion, or by combining the
results of classifications performed in single-mode represen-
tations in another analysis, called decision level fusion [43].

A substantial disadvantage of information fusion, however,
is that the model is not able to handle missing data (a.k.a.
mode collapse’). Another issue is that the reconstruction
losses can go out of bounds during the pre-training phase
of modality-specific RL. To overcome these limitations, it is
common to pre-train such representations using an autoen-
coder on unsupervised data [16]. Further, a well-trained
model is subject to enough data, as DNNs require a lot
of labeled training data. A major advantage of DNN-based
joint representations comes from their often superior perfor-
mance and the ability to pre-train the representations in an
unsupervised manner [44]. The multi-layer nature of a DNN
and its successive layers are hypothesized to represent the
data in a more abstract way [16]. Each modality starts with
several individual neural layers followed by a hidden layer
that projects the modalities into a joint space [45]. Then,
it is common to capture the output of the deepest layer as a
form of data representation from individual modalities [16],
[45]. The joint representation is then passed through multiple
hidden layers or used directly for prediction. Such multi-
modal RL generates distributed vectors by mapping multiple
modalities of information to a single mathematical space
based on a distance or similarity measure [41]. In such a
network topology, multimodal representation and fusion are
jointly learned [20] and the latent representation concatena-
tion architecture learns a single latent representation from
each modality.

A multimodal autoencoder architecture (MAE) proposed
by Ngiam et al. [46] extended the idea of using an autoen-
coder in the MIF setting. They used stacked denoising
autoencoders to represent each modality individually and
then fused them into a multimodal representation using
an encoding layer [16], [45]. Besides, it is common to
fine-tune the representation on supervised learning tasks.
This helps an MAE to learn from the prior distribution flex-
ibly by capturing features from a target distribution [45],
[47], [48]. Therefore, MAE-based approaches have been
applied in a variety of settings such as natural language
understanding (e.g., document and dialogue modeling) [45],
emotion recognition [47], and near-infrared spectroscopy
resting state prediction from multimodal electroencephalo-
graphic signals [49]. Besides, to make the most of multi-
modal data, a large amount of literature is devoted to the

TA phenomenon in multimodal ML, where a model may fail due to
missing modalities (one or multiple) or corrupt modality.
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construction of integration methods for predicting cancer
survival [48]. In particular, the multimodal system proposed
by Wang et al. [48] is extended by adding the capability
of handling multimodalities, by discarding a small por-
tion of patient data during the multimodal fusion approach,
which does not have all modalities in the multimodal net-
work. A fully connected layer is then added for supervised
learning tasks such as cancer subtypes predictions. Fur-
thermore, by concatenating multimodal data to one matrix,
Zhang et al. [50] developed multiple kernel ML methods by
combining min-redundancy max-relevance (nNRMR) feature
selection algorithm for glioblastoma multiforme prognosis
prediction. Some integration strategies such as joint strategy
and alignment strategy have been proposed to deal with mul-
timodal data. While methods based on joint strategy fuse mul-
tiple data sources through concatenation (e.g., Sun et al. [51]
present a triple modal DNN to learn effective representation
from gene expression, CNV, and clinical data; Gao et al. [52]
use GE, CNVs, and clinical data to construct a multimodal
graph neural network), methods based on alignment strategy
maximize the common information learned from different
data sources through alignment (e.g., to boost prediction
performance, Wang et al. [53] design a novel cluster-boosted
multitask learning framework for survival analysis). Cheerla
et al. [39], who developed an unsupervised encoder to com-
bine four data sources into one single feature matrix, can
force different modalities from same patient cohorts, while
avoiding mode collapse. To achieve a modality-invariant rep-
resentation from multimodal data, Tong et al. [54] proposed
a cross-modality autoencoder to maximize the consensus
among modalities. However, by utilizing only common infor-
mation, these approaches could miss valuable complemen-
tary properties among multiple modalities.

Therefore, research simultaneously utilizes the common
and complementary information between multimodal data.
Wang et al. [55] create a sample similarity network for
each data source, which is then fused to construct an inte-
grated patient view. In another approach [56], the similarity
network fusion algorithm is utilized to generate a sample
similarity matrix, and mRMR is utilized to conduct a fea-
ture selection to obtain sample feature matrix. Based on
these two matrices, they construct a graph convolutional
network (GCN) to predict cancer survival. As the clini-
cal decision-making in oncology involves multimodal data
such as radiology scans, molecular profiling, histopathol-
ogy slides, and clinical factors, a new approach called Deep
Orthogonal Fusion (DOF) model has been proposed by
Braman et al. [17]. To predict the overall survival of glioma
patients from diverse multimodal data, the DOF model
first learns to combine information from multimodal inputs
into a comprehensive multimodal risk score, by combining
embeddings from each modality via attention-gated tensor
fusion. Then, to maximize the information gained from each
modality, they introduce a new loss function called multi-
modal orthogonalization loss that increases model perfor-
mance by incentivizing constituent embeddings to be more
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complementary. Recent approaches [17], [19], [39], [40] that
benefited from MIF have shown that cancer diagnosis based
on multimodal data is both clinically and biologically more
accurate than approaches based on unimodal information
fusion. However, the majority of MIF approaches fundamen-
tally rely on autoencoder-based RL. In particular, convolu-
tional, variational, and generative adversarial autoencoders
are more widely used to learn representations from multi-
modal data [44] to be used for different downstream learning
tasks such as cancer type prediction, survival predictions,
prognostic biomarker discovery, etc.

C. ADVERSARIAL ATTACKS AND DEFENSES

Numerous approaches have been proposed to creating AEX,
and some of them are already tackled by a countermea-
sure [24]. The concept of AEx was first formulated by
Dalvi et al. [57] as a game between adversary and classifier,
in which the attack and defence on AEx can be correlated as
an iterative game. The first gradient approaches are the earli-
est approaches to generating AEx and attacking linear support
vector machines (SVM) [58]. Szegedy et al. [59] introduced
the concept of AEx in neural networks, where AEx was
generated using an L-BFGS method® as follows [24]:

miny clly ] +Jo (', 1)
st ¥ e[0,1], )

where ¢ is a constant used to approximate values of AEx
by linear-searching with ¢ > 0, making it computationally
expensive to find the optimal value of c¢. Subsequently, Good-
fellow et al. [60] proposed a fast method called Fast Gradient
Sign Method (FGSM) to generate AEx. The simplicity and
effectiveness of FGSM lie in the fact that it needs to perform
a one-step gradient update along the direction of the sign of
gradient at each pixel, where the perturbation is expressed
as [60]:

n = esign(Vilo(x, 1)), @)

where the magnitude of the perturbation € is computed using
back-propagation. The corresponding adversarial example x’
for x is calculated as x* = x + n [24]. Then the sign
of gradient in FGSM is replaced with the raw gradient:
n = V,J(@,x,I). Since a one-step attack is not only easy
to transfer to another domain but also easy to defend [24],
Dong et al. [61] improved FGSM by employing momentum
to generate AEx more iteratively, where the gradients were
calculated as follows:

VXJQ (x,’, l)
[Vedo (7. 1) |

AEx are then subsequently generated by x;,, = x; +
€ sign g;+1. DeepFool [62] is another method used to gen-
erate AEx by finding the closest distance from the original

input to the decision boundary. To overcome the non-linearity

g+1 = ug: + 3)

8Broyden—Fletcher—Goldfarb—Shanno is an iterative method for solving
nonlinear optimization problems.
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in high dimensional feature space, iterative attack is intro-
duced with a linear approximation: starting from an affine
classifier (AC), the minimal perturbation for an AC is the
distance to the separating affine hyperplane F = {x :
wlx + b = 0}, where the perturbation of an AC f is n™ =
- ”fvﬁ‘f; w [24]. As a binary differentiable classifier, following
iterative method is applied to approximate the perturbation by
considering f linearized around x; at each iteration [24]:

argmin |7l
ni

st. F(x)+VF @) ni=0. 4)

For multi-class setting, the closest hyperplanes evolve for a
more general £, norm, p € [0, 0o). Thus, DeepFool provides
less perturbation compared to FGSM [24].

D. OOD ATTACKS AND DETECTORS

Several approaches have been proposed to identify OOD
accurately. Sehwag et al. [63] categorized them into unsuper-
vised and supervised approaches: unsupervised approaches
include reconstruction-error based approaches using autoen-
coders, classification based approaches and probabilistic
models. Further, some research works have treated OOD
attacks and subsequent detection as anomaly detection prob-
lems. The majority of outlier detectors based on unlabeled
data fail to scale up to complex data modalities [63]. In con-
trast, supervised detectors have been found most successful
with complex input modalities like images and language [63].
Supervised approaches model features of ID data at output or
in the feature space for detection. Lee et al. [64] explain that
choosing test samples from far away from the training distri-
bution is a fundamental requirement for deploying a model
in many real-world applications. However, DNNs with the
softmax classifier is known to produce highly overconfident
posterior distributions even for AEx. Jie et al. [21] proposed a
likelihood ratio method for deep generative models for OOD
detection. Since OOD is heavily affected by population-level
background statistics, they demonstrated that the likelihood
ratio method could rectify this issue.

Vernekar et al. [65] proposed an efficient approach to gen-
erate OOD samples based on a manifold learning network.
OOD samples are used to train a classifier with an extra
class (i.e., n + 1 classes, where the (n + 1)th class represents
OOD samples). DeVries et al. [22] show that, after training
a DNN using IsoMax, ODD samples can be identified by
simply calculating the entropy of the network’s output prob-
abilities. Their combined approach (IsoMax for training and
ES for ODD during inference) was found to be fast, scalable,
and unexposed. Based on the outlier exposure (OE), Rajati et
al. [66] proposed a novel loss function Outlier Exposure with
Confidence Control (OECC). They show that efficient opti-
mization of OECC achieves SotA results in OOD detection
with OE on both image and text classification tasks without
needing many OOD samples. Shalev et al. [67] proposed to
use multiple semantic dense representations instead of using
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sparse representations w.r.t the target labels. Choi et al. [68]
proposed to scale OOD detection to high-dimensional data to
learn a tractable likelihood approximation of training distri-
bution and use it to reject unlikely inputs. They also exposed
that the likelihood models on natural data are either suscepti-
ble to OOD errors or assign large likelihoods to samples from
other datasets [68].

Liang et al. [64] propose OOD image detection in neural
networks (ODIN), a simple and effective method that does not
require any change to a pre-trained model. ODIN is based on
the observation that using feature scaling and adding small
perturbations to the input can separate the softmax score
distributions between in- and OOD images, allowing for more
effective detection. Qing et al. [69] proposed two-head deep
CNN architectures by maximizing the discrepancy between
two classifiers. The two-head CNN consists of one common
feature extractor and two classifiers with different decision
boundaries but can correctly classify ID samples. Further,
since many discriminatively trained DNN classifiers only
produce reliable predictions for ID samples, detecting OOD
samples is challenging. Assuming an OOD example is out-
side of the closed boundary of an ID instance, typical DNN
classifiers have no knowledge of this boundary. Since OOD
samples are expected to be outside of the closed boundary of
ID samples, a model is incapable of detecting OOD samples
during the inferencing, recent approaches have been proposed
to embed the logic into the learning algorithm and explicitly
train the classifier with OOD samples close to the ID bound-
ary. However, SotA approaches often fail to cover the entire
ID boundary effectively, thus resulting in a sub-optimal OOD
detector [67], [70].

Yu et al. [71] proposed an unsupervised OOD detec-
tion approach based on maximum classifier discrep-
ancy (UMCD). In their approach, a two-head neural network
is constructed consisting of n extractors and two gradient-
based classifiers. Using a two-step process, supervised train-
ing for classifying ID samples correctly is followed by
unsupervised training to maximize the discrepancy to detect
OOD samples. In a very recent approach, an outlier detection
approach called self-supervised outlier detection (SSD) is
proposed by Sehwag et al. [63]. SSD works based on only
unlabeled ID data in which self-supervised representation
learning followed by a Mahalanobis distance-based detection
is employed in the feature space. Further, they formulate a
few-shot OOD detection technique in which the detector has
access to only 1 to 5 samples from each class of the targeted
OOD dataset. Yet, they show that only a few OOD samples
are sufficient to guide the classifier’s decision boundary to
be bounded around the ID regions evidenced by their OOD
detection results.

Iil. PROPOSED APPROACH
In this section, we cover our approach in detail.

A. PROBLEM STATEMENT
The problem of classifying the patients is grouping them
into a specific cancer type based on their unimodal or
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multimodal genomic profiles consisting of CNVs, miRNA,
and GE. It involves: i) cancer diagnosis utilizing cancer
type prediction from the individual patients’ genomic pro-
files, ii) improving adversarial robustness to defend different
types of adversarial attacks. We formulate the first problem
as a multi-class classification problem and train a classi-
fier in both unimodal and multimodal settings. In the fol-
lowing, we introduce essential terminology, notations, and
definitions.

An instance x is an M -tuple: x = (vy, v2, ..., vyr), where
a; is a feature name and v; for 1 < i < M is the value of g; for
x from a real-valued domain R. A pair D = (}N( , f/) is called
a dataset, where X is an N-tuple of M-instances and Y is an
N-tuple of labels / € L. Each y; is called the label of x € X.
The set of all labels Y of Y is called the decision space, where
Y = O1,...,yn). Let D = (5(, f/) be a dataset, let X be an
N-tuple of M -instances, X be the set of all instances in X ,and
Y the N-tuple of labels [ € L.

Let ® is a set of parameters, where a parameter is a pair
(param, value). A classifier is a parameterized function f :
X x ® — R that maps an input instance x from a feature
space X to a decision y € L and returns an output called
prediction. A prediction y = f(x;, 0) is accurate for model
f and parameter 6 if and only if § = ¥ [i] for x = X[,
where 1 < i < M. If classifier f requires k different input
types (i.e., unimodal datasets) with shared labels Y to gener-
ate the decisions, we form a multimodal dataset by combining
multiple unimodal datasets, where modalities refer to the way
to integrate multiple input modalities [16]. We write D =
{d1,d>, ..., d;} amultimodal dataset, where each input type
dy represents individual modalities in which dj € RN*M g
equal to a unimodal dataset. Figure 1 shows how different
input modality combinations are used to create unimodal and
multimodal datasets.’

Literature has defined robustness as an invariant over the
relation of two inputs without having to rely on specifications
of the model and the ground truth [23]. Since we aim to
improve both overall robustness of the model and individual
diagnosis robustness, we formulate both local and global
robustness. For an input sample x, the problem of local
robustness is to ensure that the prediction y for model f
remains consistently the same for all inputs x in the neighbor-
hood of x, where the neighborhood is defined w.r.t. a distance
function &, where the maximum distance A is computed
as [23]:

V'8 (x,x) < A= fx)=f (x). 3)

The above distance can be formulated as the amounts of
noise to all input features or arbitrary changes to a few input
features or more complicated transformations (e.g., OOD
samples). Since this definition does not require knowledge
about the ground truths for f(x) or f (x’ ), it is reasonable to
hypothesize that the prediction will stay consistent within a

9Considering the length of the manuscript, we cover the details of data
selection and preprocessing in supplementary materials.
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neighborhood, regardless it is correct or not [23]. In addition
to local robustness, the global robustness property for model
f is formulated as an average robustness for all inputs in
modality k, thereby measuring the global robustness as the
average distance from each input to the nearest AEx [23].

B. CONSTRUCTIONS AND TRAINING OF MCAE

Data for individual modalities is first fed into the encoder
fo module of MCAE, such that each input modality Xj is
transformed into a modality-specific latent representation Z,
with a nonlinear mapping fy : X — Zj, where 0 are the
learnable parameters and Z; € RX is the learned embedding
in which K <« X. To parameterize fp, we employ neural
network-based RL called convolutional autoencoders (CAE),
owing to their function approximation properties and feature
learning capabilities from genomic data.

The learned representation is then fed into the decoder
module to reconstruct X', similar to the original input Xj.
Parameters for the modality-specific network are optimized
to minimize the error between the decoder’s output and the
input signal. The latent representations of all modalities are
then concatenated into a single representation Z. Then we
construct the MCAE classifier by feeding the latent space to
a fully connected softmax layer f. Eventually, f maps each
data point x to an output f(x) — y in the embedded space z
to classify the samples based on patient profiles.

1) REPRESENTATION LEARNING AND UNSUPERVISED
PERTAINING

In a recent approach [19], we performed the RL based (it
was a MAE architecture, technically) on the concept of
SLR (see fig. 2b) in which the shared feature representa-
tion was generated from multimodal genomics data. Learned
representations were then used for breast cancer subtype
prediction. The MAE model performed moderately well for
the sub-typing tasks. The key reason behind such a low
performance was lack of enough data and high pretraining
and reconstruction losses during the LR phase. Recently
Patrick et al. [42] proposed another multimodal concept of
learning called LRC (see fig. 2a). Based on several studies,
covering text classification, sequence data, and imaging, they
identified the following potential limitations of SLR:

o The reconstruction loss for LRC is significantly lower
compared to SLR.

o When a classifier is trained on features learned by LRC,
accuracy improves significantly, which is largely backed
by lower reconstruction loss.

Considering the limitations of MAE and SLR, MCAE is
constructed based on a CAE and LRC-based RL, as shown
in fig. 2a Besides, to provide a comparative analysis, another
variant of MCAE is trained based on SLR without covering
the training details, as shown in fig. 2b. We treat them as two
different models, namely f; for MCAE g, and f> for MCAE ;..
A simple AE can be used to reconstruct an output similar
to the original input. However, it cannot handle multimodal
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FIGURE 1. Unimodal and multimodal input combination: CNVs, GE, or miRNA expression.

inputs. Weights of the encoder module are learned from
both non-corrupted and unlabeled data. Subsequently, noisy
supervised data with missing modalities is not suitable for
learning latent features. Nevertheless, the difference among
input modalities is very large in terms of dimensionality.
For example, sometimes GE and CNVs modalities come
with about 20,000 features, but miRNA data has only 5,000
features. A non-trivial challenge in modality-specific RL and
limitations of MAE architecture is enough motivation to
employ multimodal RL and classification based on MCAE
architecture.

Although CNNs are known as effective feature extrac-
tors, instead of using manually engineered convolutional
filters in CNN, convolutional and pooling layers can be
stacked together to construct a stacked convolutional autoen-
coder (SCAE), to leverage better feature extraction capabil-
ity [72]. This makes CAE, compared to vanilla AE based
multimodal learning, more effective for very high dimen-
sional data [44]. In particular, CAE learns more optimal
filters by minimizing the reconstruction loss, which results
in more abstract features from the encoder (e.g., pixel-level
features, when genomic samples are embedded into 2D pixel-
space [33]). This helps stabilize the pre-training, and the
network converges faster by avoiding corruption in the fea-
ture space [73]. Since the individual latent representation is
required to have the same dimensionality [42], the MCAE
architecture is used to generate a combined representation
for all input modalities, instead of one latent representa-
tion for each input modality. From the network topologi-
cal point of view, MCAE creates hierarchical hidden units
by stacking multiple CAEs, which have a strong connec-
tion between nodes across the modalities. Training MCAE
involves pre-training to leverage the RL, followed by super-
vised fine-tuning on the learned representation.

Pre-training the MCAE model is similar to training a
two-stage CAE network: the first stage represents modality-
specific learning. The second stage corresponds to cross-
modality. Pre-training is performed greedily on each layer
of the network, which corresponds to RL with individual
CAEs. The individual modality of MCAE represents a spe-
cific modality for each type of data. Individual modality
CAE is not only a one-layer CAE but also a multilayer and
gradually shrinking CAE with a different number of layers
per modality. Assuming input X; € RP for each of k € RX
modalities is consisting of n samples, a convolutional layer of
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CAE calculates the convolutional feature map. Max-pooling
operation is then performed, which downsamples the output
of the convolutional layer by taking the maximum value in
each non-overlapping sub-region. Thus, X} is mapped and
transformed into a lower-dimensional embedding space Zj.
The latent-space representation Z; = g¢(Xy) is learned in the
bottleneck layer [42]:

Zy = hy = gp Xg) =0 (Wi @ Xi + bi), (6)

where the encoder is a sigmoid function g(.) parameterized by
¢, while the decoder function £ (.) is parameterized by ®. The
final feature maps Z; are latent variables, specific to modal-
ity k. In eq. 6, where ¢ are trainable parameters (including a
weight matrix Wy, € RP*? and a bias vector by € RY specific
to respective modality k, where p and g are the numbers of
input and hidden units), @ is the convolutional operation,
and o is the exponential linear unit (ELU) [74] activation
function. The decoder module reconstructs the original input
X from the latent representation Z; using the decoder func-
tion f(.). The hidden representation /; is mapped back as
a reconstructed version Xy, similar to the original input Xy,
as follows [42]:

Xe = fo (Zx) = fo (g6(X0)) , (7

where the parameters (6, ¢) are jointly learned to output
a reconstructed version of the original input. As this is
analogous to learning an identity function, such that X; =~
fo (86(X0))- fir (89(X)) is equivalent to W (Wk s hy + bk>,
which changes eq. 7 into:

Xk:‘lJ(Wk@hk +lA7k), (8)

where © is the transposed convolution operation, 6 are train-
able parameters, i.e., a weight matrix Wk € R"*P, a bias
vector by) specific to the modality k, and a sigmoid activation
function V. Let X,, X,, and X, be the CNVs, GE, and miRNA
expression input modalities, respectively. As shown in fig. 2,
samples for each input modality are first embedded into 2D
images, i.e., each genomic profile is reshaped into a 144 x 144
image by adding zero padding around the edges and normal-
izing the pixel values to [0,255]. Subsequently, each Xj is
transformed into the following hidden representations [19].

hc :0(W0®Xm+bc)
he ZU(W6®Xe+be)
h =0 W, 0X, +b,), 9
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FIGURE 2. The fusion architectures for multimodal representation of multi-omics data and cancer type prediction.

where {W,, W,, W,} are encoder’s weight matrices,
{b., b., b, } are bias vectors for CNV, GE, and miRNA modal-
ities, respectively. Last element of the hidden dimension is the
dimensionality of the modality-specific latent representation.
As each of the X, X,, and X, input modalities are very high
dimensional, with huge difference w.r.t. dimensionality, the
mean squared error is used as the reconstruction loss:

1 ¢ o \2
L. ¢)=— > (%= %) +1IWl3. (10)
where A is the activity regularizer and Wy are network weights
specific to input modality k. In stage-2, which is a cross-
modality, a concatenation layer is placed to concatenate indi-
vidual latent representations h,,, h, and h, into a single
representation dimensionality ¢:

hmcae =0 (Wmcae [hm @ h(:’ @ hr] + bmcae) ’ (11)

where @ is the concatenation operation. The whole MCAE is
pre-trained such that the outputs of the final de-convolution
operation on the hidden representation /., generate the
original representation [48]:

(i ® e @ by | = W (Wincae © ncae + bmcae ) - (12)

The above equation can be decomposed into the following
individual modality-specific representations:

X.=w (WC O fm + Em)
X.=w (We®ﬁe+13e)
v (W O hy + 13,) : (13)

A

X, =
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where {WC, We, Wr] are the decoder’s weight matrices,

l;C, l;e, 13, are bias vectors for the CNVs, GE, and miRNA
modalities, and W is the sigmoid activation function. How-
ever, fusing such multimodalities involves a variable number
of densely connected sigmoid layers.

2) SUPERVISED FINE-TUNING AND CLASSIFICATION
The latent vector .4 is feed into a fully-connected softmax
layer for the classification, by optimizing the following cate-
gorical cross-entropy (CE) loss using an AdaGrad optimizer
during back-propagation:
C
Lee=—)_ yilog (5x), (14)

m=1

where m € R is the number of classes, y; are ground-truths
for modality k and y; are the predicted outputs. The softmax
activation function (used in the last dense layer to transforms
the output into a vector of real numbers within the range of
(0, 1)). This can be considered as a probabilistic interpreta-
tion, i.e., the probability distribution over the classes, before
computing the CE loss. Further, effects of adding Gaussian
noise layers is observed to improve model generalization
for unseen test data. Gaussian noise is a natural choice as
a corruption process for real-valued inputs, which makes it
suitable for introducing noise to input values or between
hidden layers. The reconstruction loss of individual modality
Ly and CE loss L., of the entire MCAE architecture are then
combined and optimized jointly [42]:

n
Lincae = ZarLk + acLlee, (15)
i=0
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where «, and ¢, are the regularization weights assigned to
modality-specific (i.e., Ly) and CE specific (L) loss func-
tions, respectively.

C. FORMULATING THREAT MODELS

Yuan et al. [24] decomposed threat models from several
different aspects: i) adversarial falsification — negative and
positive samples are generated with false positive and false
negative attacks, respectively, ii) adversary’s knowledge — if
the deployed model is a white-box or a black-box, iii) adver-
sarial specificity - targeted or non-targeted attacks, and attack
[frequency —one-time or iterative attacks. These aspects can be
categorized into black-box and white-box attacks. In a white-
box attack scenario, it is assumed that the adversary has suffi-
cient knowledge about the model, including the training data,
model architectures, hyper-parameters, numbers of layers,
activation functions, and model weights [24]. To introduce
successful attacks on a white-box model, AEx is generated
by calculating model gradients.

In a black-box attack, it is assumed that the adversary has
no access to or knowledge about the model, but knows what
the model is for (e.g., model’s confidence score). Although
the majority of adversarial attacks are white-box attacks, they
can be applied to a black-box scenario too, due to the trans-
ferability of AEx [75]. Targeted attacks misguide a model to
a specific class in a multiclass classification problem, e.g.,
an adversary can fool the cancer types classifier to predict
all the AEx of type breast cancer. Targeted attacks maxi-
mize the probability of a targeted adversarial class, while a
non-targeted attack does not assign a specific class to the
model’s output, i.e., the class output can be arbitrary [24].
Since non-targeted attacks are easier to implement compared
to targeted attacks, we introduced only non-targeted attacks
in a black-box scenario, thereby introducing only two types
of adversarial attacks for each target model, as outlined in
Figure 3. We generate AEx from existing train samples using
FGSM and DeepFool. Then, we perform the adversarial
attacks, before retraining and evaluating the models.

D. ADVERSARIAL ATTACKS TO MODELS

We generate AEx with the content moderation across samples
by crafting original examples with FGSM and DeepFool.
As for the first one, gradients are computed using backpropa-
gation. That is, for a given trained model f and original input
data sample x, generating an adversarial example x" can be
formulated as a box-constrained optimization problem [24]:

min, [|x" — x|
st. f(x) =y
fx) =y
L#y
x e€][0,1], (16)

where y and y' are the predicted labels of x and x’, and || - ||
is the distance between two samples. Let n = x’ — x be the
perturbation added on x to minimize the perturbation while
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FIGURE 3. Different types of attack scenarios: up: content moderation
with fast gradient sign method [60], below: crafting adversarial samples
with DeepFool.

misclassifying the prediction, 6 is the model parameter, x is
the input, y is the target associated with x, and J (0, x, y) is the
cost used to train f . The cost function around the current value
of 6 can be linearized by obtaining an optimal max-norm
constrained perturbation as outlined in eq. 2.

For the latter, DeepFool is employed to generate AEX.
DeepFool is an iterative optimization-based approach, which
provides less perturbation compared to FGSM [24], yet it has
higher success rates under the same norm objective in a white-
box setting [24]. Therefore, AEx generated with FGSM are
used to introduce OOD attacks. We expect the AEx to be
close to the original samples and be imperceptible to a human.
Nevertheless, the same AEx are often misclassified by a
variety of classifiers with different architectures or trained on
different subsets of the training data [24], [60].

E. DEFENCES AGAINST ADVERSARIAL ATTACKS

Bendale et al. [69] introduced “‘reactive” and ‘‘proactive”
countermeasures against adversarial attacks. The former
deals with detecting AEx after an ML model is deployed.
Examples include adversarial detecting, input reconstruction,
and network verification. The latter is about making an ML
more robust before an adversary generates and introduces
an attack. Examples include network distillation, adversarial
(re)training, and classifier robustifying. We employed only
the adversarial retraining and input reconstruction, as shown
in fig 4.

1) PROACTIVE MEASURE: ADVERSARIAL RETRAINING

We add noises in all input modalities with zero mean and
standard deviations of 0-200% (k) of i per level average
(ui), or N(0, k) per feature. This helps models learn robust
features with little variation, which we hope to improve the
generalization for multimodal learning scenario. Although
introducing minor noises to the input helps improve model
generalization, adversarial retraining is also necessary to
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FIGURE 4. Workflow for the reactive and proactive measures against
adversarial attacks at inference time.

improve the consistency of the model.!? For model f : RP —
{1,... ,k},11 assuming f(x) = argmax; (z(x);), where z(x) €
RF is the final layer output, and z(x); is the prediction score
w.r.t. the i™ class. Similar to the literature [76], the objective
is formulated as the following optimization problem w.r.t.
finding the minimum perturbations [76]:

argmin {d (x, x9) + cL(f(x), y)}, 17

where d(-, -) is a distance measure ¢, (i.e., Euclidean dis-
tance), L(-) is the CE loss function and c is a balancing factor.
However, searching for possible AEx is an expensive and
non-trivial problem. The projected gradient descent is a com-
monly used method, which searches for the minimum pertur-
bation from the test set of allowable perturbations § € RP as
follows [76]:

X = Ts (¢ +asgn (VL (fa=(x), y)) . (18)

The above relation holds until x’ is misclassified by the
model. As the £>-norm perturbation distance is averaged over
n test samples by taking greater effort for an attacker to evade
detection, the larger the average perturbation, the more robust
the model is [24], [76].

2) REACTIVE MEASURE: INPUT RECONSTRUCTION

Kistner et al. [23] state that evaluating the robustness at
inference time is the most plausible usage scenario, i.e.,
checking whether a prediction made by a deployed ML
model is robust. Depending upon the data generation plat-
form (e.g., human methylation 450K vs. 27K), adversarial
samples would be slightly different from original samples.
Thus, we assume that an adversarial sample (i.e., after the
transformation) will not be able to affect the prediction of a
trained model very severely. Research [77] has shown that

10AEx are mostly added with higher perturbations.

UFora gradient-based classifier, e.g., f] or f>, the robustness of each con-
tent moderation model is measured by the minimum perturbations required
for an input sample to evade detection.
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AEx can be transformed to corresponding clean input via
reconstruction, e.g., Meng et al. [77] trained a denoising AE
to reconstruct from the AEx the original samples by removing
the added adversarial perturbations. The deep contractive
autoencoder is proposed by introducing a penalty to both
first-order and second-order derivatives of the mapping. This
helps to improve the stability of the learned representations
around training points w.r.t. classification errors [78].

Song et al. [79] showed that the reconstruction of a cleaner
version of an adversarial sample is possible in case of minor
perturbation added, where PixelCNN is proposed to recon-
struct the AEx back to the training distribution. Inspired by
these measures, we formulate the reconstruction robustness
such that it can generate meaningful predictions by correcting
or reconstructing a clean representation of the input AEx. For
aperturbed input x’, we reconstruct a cleaner version x¢ using
PixelCNN. The cleaner version is then used for classification
using model f : X" — Y (e.g., either f; or f> for multimodal
inputs and CNN for unimodal input). Model f maps instance
x from a feature space X with m input features to label y
in a target space Y, where f(x) = y denotes the decision y
predicted by f.

3) REACTIVE MEASURE: OUT-OF-DISTRIBUTIONS
DETECTION

Similar to literature [21], we consider an input (x, y) to be
OOD if y ¢ Y (i.e., class y does not belong to any of ID
classes). Subsequently, we formulate the OOD detection task
is to accurately predict if x is of OOD or not [21], [22],
[65]. Assuming each sample consisting of 3 modalities (i.e.,
GE, CNV, and miRNA) and numeric input profiles x; € R,
the OOD detection capability of a model is performed w.r.t.
UMCD and the contrastive self-supervised learning approach
SSD [63].

On the other hand, we construct a two-head neural network
architecture based on UMCD, which has a multimodal feature
extractor, unlike the original network in [71]. The feature
extractor module E takes inputs xj, or Xy and produces the
latent representation for each input modality, where X,,; signi-
fies unlabeled samples. The classifier module consists of rwo
classifiers f1 and f>, where each classifier takes features from
E and maps them into one of K classes. Training the whole
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network consists of a pre-training step and two repeating
fine-tuning steps. In the pre-training step, labeled ID samples
{Xin, Yin} for individual modalities are used, out of which
the network learns discriminative features before classifying
the ID samples by optimizing the CE loss that maintains the
manifold of ID samples [71]:

2
1
L=~ 7> log (i Ginlxin)) . (19)

Xin €Xip i=1

Once the network converges, fine-tuning is performed
in order to detect OOD samples. During these steps, both
{Xin, Yin} and unlabeled samples X,; are used to train the
network for separating ID and OOD samples while keeping
the correct classification of ID samples. In order to enable the
network to classify the labeled ID samples correctly by super-
vised learning, we maintain the manifold of ID samples by
optimizing eq. (19). In the next alternating step, the network is
trained to increase the discrepancy in an unsupervised manner
in order to make the network detect the OOD samples without
having support of the ID samples, where the unsupervised
loss is computed as follows [71]:

D exy 4 (01 (V1Xa) , p2 (y|Xu1)) 0
IXul| ’ ’

L, = max (m —
(20)

where m is the margin used to prevent overfitting.'> Overall,
this step involves combining and joint optimization of super-
vised and unsupervised losses [71]:

L=L+L, 1)

During inference time, to distinguish between ID and OOD
samples, the discrepancy is computed w.r.t. the L; distance
between f] and f, classifier’s outputs:

K
> lp1 Gilx) = p2 (ilx)| > 8. (22)
i=1
where x is a unimodal or multimodal input. When the distance
is above a detection threshold §, we consider the sample to be
OOD. We compute the discrepancy loss as the measure of the
divergence between the two softmax class probabilities for an
input [69]:

d (p1(y[x), p2(yIx)) = H (p1(yIx)) — H (p2(yIx)) ,  (23)

where H(-) is the entropy over the softmax distribution, and
p1(y|x) and py(y|x) are K dimensional softmax class prob-
abilities. We train the model to maximize the discrepancy
loss such that the model pushes OOD samples outside the
manifold of ID samples. For an input x, classifiers f| and f>
yield an output of a K dimensional vector of logits for each
classifier. Since f] is optimized to maximize the discrepancy
loss, its output entropy tends to maximize, whereas f>’s output

121f the average discrepancy of unlabeled samples is greater than the
margin m, the unsupervised loss tends to zero [71].
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entropy tends to be minimized. Consequently, f> is expected
to predict a high probability of one class by pushing OOD
samples outside the support of the ID samples. In the case of
OOD samples, the discrepancy between model outputs, e.g.,
/1 and f> would be much larger.

On the other hand, inspired from the fact that con-
trasting between instances using self-supervised learning is
effective at outlier detection without labels [63] and since
instance-based contrastive training by incorporating labels
further improves the learned representations, we follow to
incorporate labels in contrastive self-supervised setting of
SSD to improve the quality of learned representations (in
multimodal data setting) and OOD detection. In the con-
trastive self-supervised setting, instead of jointly optimizing
supervised and unsupervised losses, we optimize the NT-Xent
loss function proposed by Chen et al. [80]. The NT-Xent loss
function is parameterized by a temperature variable t [80].

IV. EXPERIMENT RESULTS
In this section, we discuss and analyse the results of quanti-
tative as well as qualitative experiments.

A. DATASETS

Multi-omics data covering CNVs, miRNA, and GE profiles
of 9,074 patients from the Pan-Cancer Atlas project covering
33 tumour types are considered. The preprocessed version
of the dataset contributes to 15 GB of data.'> The sample
distribution across modalities is shown in table 1.

B. EXPERIMENT SETUP
Throughout several experiments, we assess the following:

o Which uni- and multimodal input combinations are more
suitable for cancer susceptibility prediction?

o Can the MCAE model detect if a supplied input is nor-
mal samples or of adversarial examples?

« Can the robust MCAE model reconstruct a cleaner ver-
sion of an AEx example from its noise input?

o Which neural network architecture is more robust
against different adversarial attacks?

« What types of countermeasures are useful for a model
trained on multimodal genomic data?

Keras with the TensorFlow backend was used to imple-
ment all neural network architectures.'* The MCAE clas-
sifier has two modules: the autoencoder and the classifier.
For both MCAE |, and MCAE ;- architecture, the CAE head
is a 20-layer network. We use batch normalization before
non-linearities (i.e., convolutional and dense layers), ReLU
activation function in hidden layers, and softmax activation
function in the fully-connected layer. A convolutional layer
of the encoder calculates the feature map by taking the max-

13Dye to a data sharing agreement, we cannot make publicly available the
data. However, the first author can be contacted to receive the data for review
and research purposes.

14https://github.(:om/rezacsedu/Adversary_Aware_Multimodal_Neural_
Networks.
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FIGURE 6. Supervised pre-training and unsupervised fine-tuning steps for the 00D
detection method, which we extended for multimodal scenarios, based on [71]. The
network consists of an extractor E and two classifiers f; and f,. Step A: supervised
training to classify ID samples correctly. Step B: f; and f, learn to maximize the
discrepancy in an unsupervised manner to detect 0OD samples.

imum value in each non-overlapping sub-region. The CAE
part has the following layer-wise structure:

« Input layer: each input sample (e.g., CNVs) is reshaped

from 1 x 20, 736 to 144 x 144

« Convolutional layer: 32 x 20, 736 (i.e., 144 x 144)

« Batch normalization layer: of size 32 x 20, 736

« Convolutional layer: of size 32 x 20, 736

« Batch normalization layer: of size 32 x 10, 368

o Max-pooling layer: of size 32 x 10, 368

« Convolutional layer: of size 64 x 10, 368

« Batch normalization layer: of size 64 x 10, 368

« Convolutional layer: of size 64 x 10, 368

« Batch normalization layer: of size 64 x 10, 368

« Convolutional layer: of size 128 x 10, 368

« Batch normalization layer: of size 128 x 10, 368

« Convolutional layer: of size 128 x 10, 368

« Batch normalization layer: of size 128 x 10, 368

« Convolutional layer: of size 128 x 10, 368

« Batch normalization layer: of size 128 x 10, 368

« Convolutional layer: of size 64 x 10, 368

« Batch normalization layer: of size 64 x 10, 368

o Upsampling layer: of size 64 x 20, 736

« Convolutional layer: of size 1 x 20, 736.

After pre-training the whole MCAE network, only the
encoder part is used for the classification. On top of the
encoder, a flattening layer, followed by a fully-connected
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layer of size 128, and a Softmax output unit of 33 (i.e., the
number of classes) are added. The whole MCAE network is
trained on an Nvidia Titan Xp GPU for 500 epochs in a similar
cosine annealing cycling by setting the batch size to 128. The
activity regularization term X is set between [0.001, 0.005],
while the regularization weights of the loss function are
set as o, = 0.1, and o = 0.25. Further, the effect of
minor noise (using Gaussian noise layers) and dropout reg-
ularization is observed. The Gaussian noise parameters are
empirically set to a standard deviation of 0.1 and a mean
of 0. In case of the pre-training phase of MCAE during the
adversarial study, the learning rate is set to 0.1 and dropped
by a factor of 10 at 50% and 75% of the training progress over
200 epochs. Each fit is iterated for 50 epochs during the fine-
tuning, by setting margin m = 1 : 2 for the OOD detection.

To provide a fair comparison, we consider MCAE g, and
DOF , as baselines against the MCAE ;. model to provide
comparative analysis. As shown in fig 7, we customized the
DOF , model for the classification setting. We perform pre-
training using MMO loss for the multimodal fusion, followed
by supervised fine-tuning of the network. Unlike the Cox
Partial Likelihood Loss used in DFO, we optimize categorical
CE loss in a multiclass classification setting. In the case
of unimodal input, we provide a comparative analysis with
GE-based diagnosis approaches by Mostavi et al. [33] and
Lyu et al. [10].
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TABLE 1. Sample distribution across tumour types: rows: tumour type, column: data types [81].

Cohort CNVs | miRNA | Gene expression | Carcinoma type

ACC 345 332 227 Adrenocortical carcinoma

BLCA 164 143 71 Bladder urothelial carcinoma

BRCA 578 501 495 Breast invasive carcinoma

CESC 198 187 179 Cervical and endocervical cancers
CHOL 310 309 303 Cholangio carcinoma

COAD 126 121 96 Colon adenocarcinoma

DLBC 457 442 431 Lymphoid neoplasm diffuse large B-cell lymphom
ESCA 511 497 333 Esophageal carcinom

GBM 357 365 355 Glioblastoma multiforme

HNSC 577 454 581 Head and neck squamous cell carcinoma
KICH 887 870 817 Kidney chromophobe

KIRC 422 407 192 Kidney renal clear cell carcinoma
KIRP 198 187 179 Kidney renal papillary cell carcinoma
LAML 310 309 303 Acute myeloid leukemia

LGG 126 121 96 Brain lower grade glioma

LIHC 457 442 431 Liver hepatocellular carcinoma

LUAD 511 497 333 Lung adenocarcinoma

LUSC 357 365 355 Lung squamous cell carcinoma

MESO 577 454 581 Mesothelioma

oV 887 870 817 Ovarian serous cystadenocarcinoma
PAAD 422 407 192 Pancreatic adenocarcinoma

PCPG 577 454 581 Pheochromocytoma and paraganglioma
PRAD 887 870 817 Prostate adenocarcinoma

READ 422 407 192 Rectum adenocarcinoma

SARC 198 187 179 Sarcoma

SKCM 310 309 303 Skin cutaneous melanoma

STAD 126 121 96 Stomach adenocarcinoma

TGCT | 457 442 431 Testicular germ cell tumors

THCA | 511 497 333 Thyroid carcinoma

THYM | 357 365 355 Thymoma

UCEC 577 454 581 Uterine corpus endometrial carcinoma
ucCs 887 870 817 Uterine carcinosarcoma

UVM 422 407 192 Uveal melanoma

For consistent comparison of OOD detection performance,
we compare UMCD [71] and self-supervised SSD [63]
approaches. For consistency, we re-implement contrastive
self-supervised learning in multimodal data setting. As omics
data are significantly different from imaging data, we focus
on a five-shot OOD detection such that the SSD model have
access to 5 instances from each class of the targeted OOD
datasets. Further, as NT-Xent loss requires a much larger
batch size compared to the supervised cross-entropy loss
function in order to contrast with a large number of negatives,
the model was trained with a batch size of 512. Previous stud-
ies found that the performance of OOD detection degrades'>
with alower temperature. Therefore, an optimal selection of T
has a significant effect on the OOD detection capability of the
model, e.g., the OOD detection accuracy and AUROC scores
was found to be highest when t was set to 0.1 or 0.5, across
a number of datasets. Therefore, we experiment by setting t
value in the range of [0.1, 0.5].

Results based on random search and 5-fold cross-
validation are reported with macro-averaged precision and
recall. We did not report F1 scores since they are significant
only when precision and recall are very different, whereas
it is important for cancer diagnosis to have both high pre-
cision and recall [82]. Further, since the dataset is moder-

15A smaller value of temperature quickly saturates the loss, discouraging
it to further improve the feature representations.
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ately imbalanced, Matthews correlation coefficient (MCC)
scores are reported. As Kaistner et al. [23] recommended
evaluating the average robustness of a model for arbitrary
inputs as the global robustness measure, the robustness of
the models is computed in terms of Empirical Robustness
Metric (ERM) [62] and CLEVER [83] scores over the test
set for each adversarial crafting attack. The ERM, which is
equivalent to computing the minimal perturbation that the
attacker must introduce for a successful attack, is formulated
as [62]:

. 1 70l oo
Pan() = =Y ———, (24)
Dl = "llxlloo
where 7(x) is computed using DeepFool (with p = ©0)

and FGSM, respectively. The higher the ERM value, the
higher is the classifier. The CLEVER score, proposed by
Weng et al. [83], is attack-agnostic and computationally
feasible for large neural networks, as it is aligned with
the robustness indication measured by the £, and f
norms of AEx from powerful attacks. We compute the
CLEVER score in a non-targeted attack scenario, while false-
positive rates (FPR) (at a 95% true positive rate), detection
error (DE), Area Under the Receiver Operating Characteristic
curve (AUROC), Area Under the Precision-Recall (AUPR),
are computed to assess the robustness against OOD
attacks.
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TABLE 2. Class-specific classification results for MCAE ., DOF o, and MCAE g, classifiers.

MCAE, (89.75%) DOF, (92.32%) MCAE . (96.25%)

Type Precision Recall ~MCC Precision Recall MCC Precision Recall MCC

BRCA 0.8785 0.8612  0.7564 | 0.8815 0.8775  0.7667 0.9437 0.9511  0.8465
LGG 0.9254 0.8926  0.8330 | 0.9292 0.8996  0.8413 0.9311 0.9402  0.8421
UCEC 0.8753 0.8819  0.7835 | 0.8823 0.8869  0.7887 0.9562 0.9429  0.8445
LUAD 0.8235 0.8354  0.7136 | 0.8316 0.8394  0.7195 0.9865 0.9823  0.8624
HNSC 0.8520 0.8743  0.7851 | 0.8617 0.8811  0.78892 | 0.9730 0.9822  0.8765
THCA 0.8528 0.8323  0.7275 | 0.8623 0.8421  0.7333 0.9138 0.9154  0.8125
PRAD 0.8827 0.8778  0.7847 | 0.8911 0.8817  0.7911 0.9233 0.9347  0.8207
LUSC 0.8726 0.8634  0.7625 | 0.8817 0.8722  0.7712 0.9434 0.9472  0.8524
BLCA 0.8956 0.9037  0.8075 | 0.9013 0.9079  0.8135 0.9656 0.9537  0.8475
STAD 0.8253 0.8156  0.6932 | 0.8279 0.8271  0.7015 0.9653 0.9556  0.8532
SKCM 0.8853 0.8711  0.8025 | 0.8916 0.8819  0.8055 0.9046 0.9136  0.8168
KIRC 0.8967 0.9123  0.8237 | 0.9047 0.9183  0.8273 0.9578 0.9689  0.8531
LIHC 0.8194 0.8085  0.6945 | 0.8243 0.8113  0.7011 0.9572 0.9664  0.8537
COAD 0.8368 0.8245 0.7679 | 0.8436 0.8287  0.7754 0.9776 0.9690 0.8514
CESC 0.8785 0.8743  0.7964 | 0.8832 0.8792  0.8017 0.9873 0.9885  0.8664
KIRP 0.8254 0.8032  0.7043 | 0.8312 0.8092  0.7133 0.9681 0.9782  0.8430
SARC 0.8753 0.8671 0.7835 | 0.8841 0.8743  0.7915 0.9365 0.9435  0.8421
oV 0.8825 0.8733  0.7936 | 0.8911 0.8821  0.8011 0.9725 0.9773  0.8262
ESCA 0.8913 0.8719  0.7951 | 0.8978 0.8851  0.8017 0.8956 0.8834  0.8076
PCPG 0.8537 0.8611  0.7875 | 0.8661 0.8695 0.7918 0.9875 0.9987  0.8735
PAAD 0.9629 0.9567  0.8407 | 0.9681 0.9612  0.8455 0.9452 0.9500  0.8325
TGCT 0.8736 0.8722  0.7825 | 0.8832 0.8775 0.7911 0.9890 0.9724 0.8434
GBM 0.8952 0.8845  0.8075 | 0.9046 0.8931  0.8153 0.9362 0.9453  0.8436
THYM | 0.9255 0.9123  0.8232 | 0.9285 0.9135  0.8284 0.9775 0.9678  0.8622
READ 0.6795 0.6857  0.6225 | 0.6854 0.6919  0.6255 0.8874 0.8733  0.7525
LAML 0.8697 0.8567  0.8237 | 0.8842 0.8673  0.8311 0.9576 0.9632  0.8513
MESO 0.8991 0.9028  0.8076 | 0.9067 0.9078  0.8114 0.9534 0.9456  0.8457
UVM 0.8765 0.8623  0.7979 | 0.8855 0.8715 0.8033 0.9136 0.9089 0.8184
ACC 0.9217 0.9345 0.8225 | 0.9279 0.9395 0.8317 0.9623 0.9731 0.8611
KICH 0.9335 0.9475  0.8425 | 0.9392 0.9515  0.8483 0.9690 0.9625 0.8439
UCsS 0.9157 0.9064 0.8125 | 0.9198 0.9111  0.8180 0.8726 0.8675 0.7869
DLBC 0.8678 0.8729  0.7005 | 0.8772 0.8782  0.7045 0.9347 0.9421  0.8389
CHOL 0.8838 0.8975 0.7979 | 0.8934 0.9033  0.8017 0.8455 0.8342  0.6821
Average | 0.8975 0.9065  0.8052 | 0.9232 0.9278  0.8217 0.9625 0.9542  0.8453

C. ANALYSIS OF SUSCEPTIBILITY PREDICTION
We analyse the performance of individual models, cover-
ing both multimodality input combinations. The analyses
will lead us to select the best model and input modal-
ity combination for providing a more reliable diagnosis.
We observed a mean precision of 89.75%, 92.32%, and
96.25% for MCAE;,, DOF,, and MCAE},, models, respec-
tively. However, as classes are moderately imbalanced, we
report class-specific classification reports along with corre-
sponding MCC, precision, and recall scores in table 2 and
fig 9. As shown, precision and recall for the majority of cancer
types were high in which the MCAE),, model performed
consistently better than that of both MCAEj;, and DOF, mod-
els. Notably, the MCAE},. model classifies BRCA, UCEC,
LUAD, HNSC, LUSC, THCA, PRAD, BLCA, STAD, KIRC,
LIHC, COAD, CESC, KIRP, SARC, OV, PCPG, TGCT,
GBM, READ, LAML, MESO, and DLBC cancer cases with
higher confidence, whereas, both MCAE;, and DOF, model
classify PAAD, CHOL, and UCS cancer cases more accu-
rately than MCAE},., except for some misclassifications.
According to the confusion matrix in fig 8, MCAE},. clas-
sifies HNSC and LUSC tumour samples accurately in only
79% and 81% of the cases, while the MCAEj;,, model made
more mistakes, particularly to classify STAD, HNSC, LUSC,
and LGG tumour samples. Overall, both classifiers performed
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moderately well except for certain types of tumour cases such
as STAD, HNSC, BLCA, THCA, UCEC, LUAD, LUSC, and
LGG. As observed, the ROC curves for the MCAE},, model
show that AUC scores are consistent across the folds showing
stable predictions, which shows about a 5% boost in AUC
scores for the MCAE}, model. This performance increase
signifies that predictions made by the MCAE),, model are
much better than random guessing. Further, class-specific
MCC scores of the MCAE},. model are 4% higher than the
MCAE;, model, which suggests that the predictions were
strongly correlated with the ground truth, yielding a Pearson
product-moment correlation coefficient higher than 0.70 for
all the classes except for the CHOL tumour samples. The
downside is that both classifiers made a number of mistakes,
e.g., MCAE},, can classify ESCA, READ, UCS, and CHOL
tumour cases in only 89% of the cases accurately, while the
MCAE;, model made more mistakes for the READ, LUAD,
LIHC, KIRP, COAD, and STAD samples.

To show the effectiveness of our approach, we provide
fair comparison between MCAEj., MCAEy,, and DOF,
models, covering both multimodal and unimodal settings.
The MCAE},, model clearly outperforms both MCAE;, and
DOF, models w.r.t. precision (scores of 0.8975, 0.9217, and
0.9625 for the MCAE},., MCAEy,, and DOF, model, respec-
tively) and MCC (scores of 0.8052, 0.8235, and 0.8453 for
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FIGURE 7. The DOF model based on Braman et al. [17], where the output
of fusion based on MMO is used as the input to fully-connected
classification layer.

the MCAE},., MCAEj;,, and DOF, model, respectively). The
MCAEj; model performed worst for every combination of
input modalities, as shown in fig 10 and fig 11, irrespective
of reconstruction loss and f1-score. On the other hand, the
GE+4+miRNA input combination gave the highest f1-scores
than GE4-CNV, GE4+CNV+miRNA or CNV+miRNA input
modalities. Our empirical study finds several potential rea-
sons for such low performance:

o The number of samples were increased from 1000 to
10,000, across individual modalities.

« Reconstruction errors for both multimodal architectures
based on CAE have decreased, while the MMO loss for
DOF, model also converged.

o Compared to MCAEj; model, both DOF, and MCAE};,
models learned more complex concepts from the
GE + miRNA multimodal features.

As deep architecture requires more training samples to
converge well [31], adding more training samples helps
increase the generalization of MCAE},. model by mitigating
bias, i.e., lowering the biases results higher training scores
than the validation scores for the maximum number of sam-
ples. The second and third reasons helped all the models
learn more abstract features towards improving the classi-
fication accuracy. Further, the Wilcoxon signed-rank test is
performed to compare both MCAE},, and MCAEj, classifiers
w.r.t. reconstruction losses and accuracies at a significance
level of 5%. Within each box plot in fig 10 and fig 11,
mean and median of reconstruction losses and fl-scores are
depicted with dots and horizontal lines. The GE4+miRNA
input combination yields the lowest reconstruction errors, '
whereas GE4-CNV+miRNA generates the highest errors.

16We did not include DOF, and SDD models in this comparison as
both use different types of loss called MMO loss and supervised contrastive
training loss, respectively.
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FIGURE 8. Confusion matrix for the CAE classifier when trained on GE
samples.

On the other hand, since the MMO loss forces unimodal
embeddings to provide independent and complementary
information to the fused prediction, the diagnosis prediction
performance was expected to surpass MCAE}, model. How-
ever, as our datasets consist of multi-omics data, with the sub-
tle difference between feature levels, the DOF model was not
befitted like the original study incorporating radiology, his-
tology, and genomic data. Yet, it consistently outperformed
the MCAE;, model across all the cancer types. Further, the
ROC curves of the MCAE},, model show consistent AUC
scores across the folds showing stable predictions, giving a
4% boost in AUC scores. This signifies that the predictions
by the MCAE},, model are: i) clearly better than random
guessing as well as both MCAE;, and DOF, classifier, ii)
strongly correlated with the ground truth, yielding a Pearson
product-moment correlation coefficient that is higher than
0.70 for all the classes.

The precision plot (ref. fig. 12a), outlining the relation
between the predicted probability (that an index belongs to
the positive) and the percentage of the observed index in
the positive class. As seen, the fraction of positive increases
with the predicted probability. The observations get binned
together in groups of roughly equal predicted probabilities,
and the percentage of positives is calculated for each bin.
While a perfectly calibrated model would show a straight line
from the bottom left corner to the top right corner, a better-
fitted model would classify most observations correctly with
close to 0% or 100% probability. This indicates that the
MCAE},, model would be more suitable fora more reliable
diagnosis, giving a precision score of 0.968. The lift curve
for the MCAE},, model (ref. fig. 12b) shows the percentage
of positive classes when observations with a score above the
cutoff are selected vs. random selection: the model is able
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FIGURE 10. Comparison of reconstruction losses for MCAE;,. and MCAEj;, during pretraining.

to identify 95 observations accurately out of 100, whereas
only 17 observations are correctly predicted when done with
random selection.!” Overall, both MCAE},, and MCAEj,
models gave competitive results for the majority of the cancer
types. However, it turns out that GE + miRNA expression
input combination gives the best results.

For the comparative analysis, we pick the GE modal-
ity for the CAE classifier. That is, when trained on GE
data, the CAE model slightly outperforms the approach of
Boyu et al. [10] and is about 6.5% better than the approach by
Yuanyuan et al. [28], yielding that the model predicts 96.25%
of the cases accurately. Besides, it reduces the misclassi-
fication rate for READ, UCS, ESCA, and CHOL tumour
samples. Against 35%, 81%, 77%, and 56% of the correctly
predicted cases by [10], the CAE classifier predicts 88.74%,
87.26%, 89.56%, and 84.55% of cases correctly, outlin-
ing a significant improvement. In contrast, the CAE classi-
fier slightly underperforms than [10] at classifying BRCA,
THCA, and PRAD. However, the CAE classifier shows
consistent performance for the majority of cancer types,

e, MCAE]},, model is much better than random guessing.
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indicating potential high generalizability for unseen GE
data.

We investigate the reasons why the CAE model out-
or underperforms existing approaches across certain cancer
types. Mostavi et al. [33] have outlined that samples from the
kidney (KICH, KIRC and KIRP), liver (CHOL and LIHC),
lung (LUAD and LUSC) or digestive systems (ESCA and
STAD) are clearly grouped together. As their model probably
learns to recognize tissues of origin, the major classification
errors (44 and 42 kidney and lung-related instances were
misclassified) are also within kidney, lung, colon, and rectum
adenocarcinomas. In contrast, only 28 and 30 kidney and
lung-related instances were misclassified in our approach.
Our approach made only 64 and 15 misclassification for
the READ and STAD samples, their approach made 84 and
18 mistakes. This indicates significant improvement, at least,
for some selected classes. The downside of our approach,
however, is that against 1 misclassification, our approach
made 6 mistakes in classifying USEC cancer types. For
the READ tumor samples, our approach managed to reduce
the confusion too, making only 75 mistakes (in contrast to
85 mistakes made by [33]).
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Like other omics data, GE is very high dimensional, where
a significant number of genes have a small or no effect on
cancer, making them very weak features [18]. Our study
suggests that CAE-based RL can be more effective at learn-
ing hierarchical features from such high dimensional data
than CNN-based approaches. To qualitatively analyse why
CAE model outperforms these approaches for certain cancer
types, we observe whether learned representations express
biological characteristics of cohorts. We plot both embed-
dings and raw GE profiles in fig 13. Since plotting the same
for all the cancer types would be cumbersome, we provide the
t-SNE plots for breast carcinoma (BRCA), renal kidney carci-
noma (KIRC), colon adenocarcinoma (COAD), and prostate
adenocarcinoma (PRAD) cancer types only. Further, as each
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input modality has a high dimension, the association between
each feature is considered. We can observe moderately high
distinctive patterns among these cancer patients in fig. 13a,
which, however, are not clearly visible for raw GE profiles.
BRCA and COAD patients are clearly separated, even though
PRAD and KIRC patients are moderately mixed and hence
did not separate well. The latent space of CAE is slightly bet-
ter than the abstract feature representation with CNN, hence
the CAE classifier tends to achieve slightly better separability
of the GE profiles, which is reflected in the classification
results. This is an indication that both CAE and MCAE
models have learned the latent molecular properties better
in coded form than that of patient raw expression profiles.
Overall, our study suggests that CAE-based RL can be more
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FIGURE 13. t-SNE plots of different stages of classification using hybrid-2D CNN and CAE architectures.

effective at learning hierarchical features than CNN-based
approaches.

D. ADVERSARIAL ROBUSTNESS
We analyse the performance of adversarially retrained models
against adversarial and OOD attack scenarios.

1) ROBUSTNESS AGAINST ADVERSARIAL ATTACKS
Table 3 reports the fo robustness to adversarial per-
turbations for 4 different models based on DeepFool
and FGSM with 90% of misclassification. The retrained
MCAEg,, DOF,, and MCAE}. models exhibit higher
robustness compared to their originally trained versions.
Although every model tend to achieve the smallest
foo distortion for individual sample for ¢ € {0.01,
0.02, 0.03, 0.04,0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, the
retrained MCAE},. model shows higher robustness than that
of one with SLR or MMO loss. Classifier MCAE},. was found
robust even when € is increased up to 0.4, giving up to 85%
accuracy. In contrast, MCAE;, shows fragile performance,
giving a drastic reduction of the accuracy by 25%. As a higher
ERM value indicates a more robust classifier, MCAE},. was
found more robust to DeepFool and FGSM attacks. While
DOF, exhibits moderately high robustness, MCAEy;,- found
to be fragile against these attacks.

Table 4 outlines the average untargeted CLEVER scores
and distortion based on the FGSM and DeepFool untar-
geted attacks. As a lower CLEVER score indicates a more
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TABLE 3. ERM scores (ﬁ:fiv ) for different models based on DeepFool and
FGSM.

Classifier DeepFool | FGSM
MCAE;. 0.29 0.09
DOF, 0.23 0.07
MCAEg, 0.21 0.05

TABLE 4. Untargeted CLEVER scores vs. distortion for different models
based on DeepFool and FGSM.

DeepFool FGSM
Classifier lo loo 12 oo
MCAE;,.. | 83.21 | 82.32 | 86.16 | 85.37
DOF, 85.17 | 84.45 | 85.22 | 84.43
MCAFEg, | 89.25 | 87.54 | 89.25 | 87.54

robust classifier, MCAE},, was found more robust against
both DeepFool and FGSM attacks. While DOF,, exhibits
moderately high robustness, MCAEj;, is found fragile against
both DeepFool and FGSM attacks as the CLEVER scores
are smaller than the distortions of adversarial samples in
most cases. Since CLEVER is independent of attack algo-
rithms, reported CLEVER scores roughly indicate the distor-
tion of the best possible attack w.r.t. a specific £, distortion.
CLEVER scores can be considered as a security checkpoint
for unseen attacks. In addition, there are significant gaps in
the distortion between the CLEVER score and the attack
algorithms considered, suggesting that there is a more effec-
tive attack that can fill the gap [83].

Further, adding Gaussian noises during retraining helped
both classifiers gain minimal robustness against minor
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TABLE 5. Results of distinguishing ID and 00D of two different classifiers w.r.t. DE, FPR, AUROC, AUPR In (AUPRI) and AUPR out (AUPRO); the 1 indicates
larger value is better, while the | indicates lower value is better; FPR* at 95% TPR shows the FPR at 95% TPR.

DOF,

S$SD MCAE;,.

Modality FPR*| DE| AUROCt AUPRIt AUPRO? FPR*|

DE|

AUROC? AUPRIT AUPRO? FPR*| DE, AUROCt AUPRIt AUPRO?

GE 0.61 0.85  0.91 0.92 0.91 0.55

0.83

0.93 0.95 0.94 0.53 0.82 0.94 0.96 0.95

miRNA 0.69 0.81 0.82 0.88 0.87 0.65

0.82

0.89 0.90 0.89 0.62 0.84  0.91 0.92 0.90

CNV 0.85 0.88  0.85 0.83 0.84 0.77

0.90

0.86 0.85 0.85 0.73 0.92  0.87 0.87 0.86

GE+miRNA 0.81 0.69 0.79 0.78 0.77 0.77

0.71

0.87 0.86 0.85 0.72 0.73  0.89 0.88 0.87

GE+CNV 0.85 0.86 0.79 0.77 0.81 0.87

0.90

0.79 0.85 0.82 0.89 0.92  0.82 0.87 0.84

miRNA+CNV 0.58 0.87  0.76 0.81 0.79 0.92

0.96

0.78 0.82 0.81 0.95 0.97  0.79 0.83 0.82

GE4+miRNA+CNV 1.37 1.55  0.75 0.76 0.75 1.11

1.17

0.76 0.77 0.76 0.70 1.25  0.74 0.73 0.74

perturbations. This makes the Pixel CNN moderately effective
at reconstructing cleaner versions of the AEx. The reason is
that the MCAE},, model learns more abstract features from
the reconstructed inputs from PixelCNN than both MCAEy;,
and DOF, models, which helps in the overall classification
task.

2) ROBUSTNESS AGAINST OOD ATTACK

Owing to high confidence in cancer susceptibility prediction
and higher adversarial robustness, the MCAEj;, is excluded
from the OOD detection test. The results of the OOD detec-
tion performance of MCAE},., DOF,, and SSD models are
reported in table 5. As shown, our approach w.r.t. MCAE},,
model can distinguish ID samples from OOD with mod-
erately high confidence. The histogram of the maximum
softmax and ID/OOD detection scores of the classifiers are
shown in fig. 14, which shows that the distribution of the
score is moderately different w.r.t. whether a sample is an
ID or OOD after the fine-tuning. We observed moderately
high disagreement between two classifiers’ outputs, which is
based on unlabeled ID and OOD samples after training the
model on labeled ID samples in a supervised way. Further, the
discrepancy loss of ID samples is smaller than OOD samples
in all settings.

The DE is lower when the difference between the discrep-
ancy loss of ID and OOD samples is larger, which means that
the divergence between two classifiers’ output can separate
ID and OOD samples. Since this method needs to fine-tune
the classifiers to detect the OOD samples, the decision bound-
ary changed slightly. A significant drop in accuracy (by 8%)
compared to the original score signifies that the GE and
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miRNA are more sensitive to making changes compared
to CNV, which reflects in the GE, miRNA, GE+miRNA
modalities. As demonstrated, more test samples help decrease
both DE, ID/OOD discrepancy losses, up to a certain point,
e.g., when we evaluate the models on 1,800 samples, all the
3 metrics increased, which is probably because of higher
discrepancy loss.

All the models show moderately high robustness at
OOD detection task when the attacks are introduced with
DeepFool, where MCAE;,, and SSD models outperformed
both MCAEj;, (result based on SLR is not shown in the
table, though) and DOF, models. On the other hand, all the
models show quite limited robustness when the OOD attacks
are introduced with FGSM. The reason is that DeepFool
introduces weaker adversarial attacks as it provides fewer
perturbations, while FGSM provides much stronger attacks as
it provides much higher perturbations than DeepFool. In par-
ticular, the UCMD (based on MCAE},.) and SSD achieve
per or comparable performance across individual pairs of in
and out-distribution datasets. In particular, using labels in the
instance-based contrastive training improves (i.e., combining
SSD with a five-shot OOD detection method) further brings a
gain of 2.0 in the average AUROC. However, owing to subtle
differences among modalities in our multi-omics data, the
DOF model was not befitted much during the representation
learning stage.

Consequently, UCMD based on DOF turns out to be
adversarially weakest than MCAEj, and SSD. Overall,
self-supervised representations found to be quite effec-
tive to boost the OOD detection performance compared to
CAE-based representations. To investigate why contrastive
self-supervised learning is effective in OOD detection,
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we focus on the NT-Xent loss function, which is parameter-
ized by the temperature variable r. When experimented by
setting the value of 7 between 0.1 and 0.5, a temperature value
of 0.4 turns out to be the optimal parameter, which helped
pull positive instances such that different transformations of
sample instances together while pushing away from other
instances.

V. CONCLUSION AND OUTLOOK

We proposed an adversary-aware MCAE classifier for cancer
susceptibility prediction from multi-omics data. Experiment
results show, covering both single modality and multimodal-
ity, that omics data are useful at predicting different cancer
types with high confidence w.r.t. precision score (of up to
96.25% for single modality and 92.45% for GE+miRNA
input combination, respectively). The MCAE model is also
found effective at tackling the curse of dimensionality of
high dimensional omics data. Our approach also suggests
that multimodal models (e.g., MCAE}., MCAEj;,, and DFO,
models, in our case) may surpass the MAE model with the
right combination of input modalities (e.g., GE + miRNA
multimodality combination is found to be more suitable for
cancer type prediction). This is supported by the fact that
the learned representations from the GE 4+ miRNA input
modality can express biological characteristics of cohorts,
which is reflected in the classification results.

Further, we made multimodal models adversarially robust
by introducing different attacks on it, followed by taking
proactive and reactive countermeasures. Besides, we trained
two classifiers to detect OOD samples that are far from ID
samples’ support. Overall, our approach can identify if the
supplied samples are of AEx, ID, or OOD with moderately
high confidence. We outline some potential limitations of our
study: i) our study is hindered due to the limited amount
of labeled data used for training the multimodal models,
while neural networks typically require many samples to
converge well towards generalization, ii) although DL-based
approaches are useful in cancer diagnosis and subsequent
treatment recommendations, due to high non-linearity and
higher-order interactions among a large number of features,
complex DNN models are perceived as black-box meth-
ods [44], iii) a tricky drawbacks of multimodal embedding
is that different types of data are conflated into a single
representation in the semantic space [44], hence the learned
representations from autoencoder architectures are not easily
interpretable [19], iv) using a black-box model would not
allow tracing how and why inputs are mapped to certain
decisions [44].

This makes interpretability an essential requirement to
provide insights into what features were captured during
the RL and what sample attributes are the classifier based
on [44]. On the other hand, a well-interpretable white-box
model that can identify statistically significant features, can
be used to explain the way they affect the model’s out-
come and whether they interact. Interpretable ML techniques
are getting more adoption in many healthcare use cases.
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In particular, perturbing (e.g., sensitivity analysis and feature
interactions), probing (e.g., Grad-CAM/++ [35], layer-wise
relevance propagation (LRP) [84], and attention mechanism),
and model surrogation strategies can be applied in order to
generate insights on why and how a certain prediction has
been made by the model (e.g., identifying important biomark-
ers that exhibit shared characteristics, which may help in
recommending more reliable treatments and drug reposition-
ing [85]. Nevertheless, explaining diagnosis decisions with
plots and charts is helpful for exploration and discovery, but
interpreting them may be difficult for non-domain experts and
patients, unless they are not explained in natural languages or
human-interpretable way (e.g., decision rules). Holzinger et
al. [86] have shown that multimodal embeddings and interac-
tive explainability can provide the foundations for effective
human-Al interfaces. Since causal links between features can
be defined using graph structures, they outlined, by construct-
ing a multimodal feature space of images, text, and genomics
data, that graph neural networks (GNNSs) can be useful for
enabling information fusion for multimodal causability.'8

Further, neuro-symbolic reasoning techniques can be
employed to explain the decision for the cancer diagnosis
with domain knowledge. This can be achieved by combin-
ing a neural network (e.g., MCAE) with a domain-specific
knowledge graph (by integrating domain knowledge, scien-
tific literature, and omics data) [44]. Inspired by these tech-
niques and methods, we intend to focus on: i) semi-supervised
learning to reduce the need for a large number of labeled
examples and instead utilize unlabeled ones, ii) employing
the model ensemble method by training multiple model snap-
shots during a single training, followed by combining their
predictions to make an ensemble prediction.'® iii) improv-
ing the interpretability of diagnosis decisions by identifying
biologically relevant biomarkers (i.e., genes) and providing
both global and local explanations (e.g., identification of
biomarkers based on relevance/importance and ranking of top
genes across cancer types) in the future.
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