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ABSTRACT Existing malicious device detection preprocessing ignores the topological similarity of node
neighborhood structures in the network. According to the structural equivalence hypothesis, devices with
approximately local symmetry in the device-account graph have similar topological embeddings after
preprocessing. In order to improve the performance of malicious device detection, we propose the Graph
Structural-topic Similar Subgraph Merging, abbreviated GraphSTSGM, to extract topological similarity
between nodes. GraphSTSGM extracts approximate local symmetry features by adding local neighborhood
structural patterns merge to Graph Structural-topic Neural Network (GraphSTONE). In this algorithm,
we build a device-account relationship graph G with devices and accounts as nodes, build an edge between
associated devices and accounts, and then calculate the approximate local symmetry of each device via the
merge-similar-substructures-based anonymous walk in G. Then, the approximate local symmetry features
and device features of the nodes are aggregated through Graph Convolutional Network (GCN). We use the
above algorithm as a preprocessing method to enhance the ability of malicious device detection by accurately
characterizing the approximate local symmetry features of nodes. Finally, the obtained aggregated features
are used as the input of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) model
for malicious device detection. Experiments based on Alibaba Cloud Security data show that the proposal
outperforms the state-of-the-art algorithms by 3.6% with respect to the AUC of malicious device detection.
In addition, experiments based on the graph dataset Cora show that the proposal outperforms the state-of-
the-art algorithms by 2.6% with respect to the AUC of node classification.

INDEX TERMS Approximate local symmetry features, anonymous walk, automatic preprocessing, graph
representation, graph structural topic neural network, local neighborhood structural patterns, malicious
device detection.

I. INTRODUCTION
With the development of the Internet, many businesses will
attract users by issuing coupons and other marketing activ-
ities on terminal devices, such as: Android Phone and iOS
Phone [1], [2]. However, these marketing activities also
attract a lot of malicious users, who usually profit from
malicious behaviors such as registered spam accounts and
account theft. However, this kind of malicious behavior will
cause the merchants to invest a lot of money in marketing
activities without really attracting users and causing a lot of
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losses. Therefore, how to accurately detect malicious users’
devices has become an important issue.

The malicious device detection algorithm mainly includes
the rule-based malicious device detection algorithm, machine
learning-based malicious device detection algorithms and the
graph-based malicious device detection algorithm [3]. Rule-
based malicious device detection algorithms have high detec-
tion efficiency for known malicious. Machine learning-based
malicious device detection algorithms are able to detect
unknown attacks. However, a common disadvantage of the
above algorithms is that they cannot detect malicious devices
that are not in the extracted features. Users of malicious
devices invent new malicious patterns and continuously
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change their strategies to avoid detection. In order to detect
new malicious attacks, it is necessary to continuously add
features extracted by expert experience. The effect of con-
tinuously increasing individual feature engineering is a loga-
rithmic curve, but the cost is an exponential curve. Therefore,
how to automatically detect malicious devices that are not
covered by features becomes a problem. The graph-based
malicious device detection algorithm is a good solution to the
above problem. The attacker’s resources such as devices and
accounts are limited, and there are usually close associations
between several devices and some accounts [3]. The asso-
ciation between the attacker’s several devices and accounts
is different from that of normal users. Therefore, we need
to detect devices that have similar device and account rela-
tionships to known attackers in the device-account graph.
Structural equivalence [4] is a good way to solve the above
problem.

Graph-based malicious device detection algorithms are
able to extract the structural equivalence to detect devices
with similar functions in the graph. Structural equivalence [4]
means that the substructures that reconstruct the local neigh-
borhood of two nodes are the same or similar. Two nodes
with structural equivalence are considered to have local sym-
metry. Local symmetry includes complete local symmetry
and approximate local symmetry. In detail, complete local
symmetry means the substructure of the reconstructed local
neighborhood of two nodes is exactly the same. Approxi-
mate local symmetry means the substructures that reconstruct
the local neighborhood of two nodes are similar. According
to the structural equivalence hypothesis [4], devices with
approximately local symmetry in the device-account graph
have similar topological embeddings after preprocessing. The
more similar the topological structures within the node neigh-
borhood, the more similar the functions the two nodes have.
As shown in Figure 1, complete local symmetry cannot char-
acterize the similarity of local neighborhoods, and approxi-
mate local symmetry can characterize the similarity of local
neighborhoods. Existing graph-basedmalicious device detec-
tion can extract completely local symmetric features, but
cannot extract approximate local symmetric features. The
device preprocessing methods suffer from low performance
due to the lack of approximate local symmetry features in the
extracted features [5]. Therefore, we introduce approximate
local symmetry to characterize the similarity of the neighbor-
hood structure between devices.

In order to improve the performance of malicious device
detection, we propose the Graph Structural-topic Similar
Subgraph Merging, abbreviated GraphSTSGM, to extract
topological similarity between nodes. GraphSTSGM extracts
approximate local symmetry features by adding local neigh-
borhood structural patterns merge to Graph Structural-topic
Neural Network (GraphSTONE).

The motivation of introducing a graph representation
algorithm for device preprocessing to obtain approximately
locally symmetric features of nodes is as follows. An inter-
esting analogy is that in every company there is the role of the

boss, and in each company the boss has many employees, and
each employee has only one boss. The interpersonal topology
of each boss is similar, and the interpersonal topology of
each employee is also similar. As shown in Figure 2, the
neighborhood structure of the boss relationship in most com-
panies is shown in (a), and the neighborhood structure of the
boss relationship in a few companies is shown in (b). The
v1 node in Figure 2(a) and the v4 node in Figure 2(b) have
complete local symmetry. The v1 node in Figure 2(a) and
the v2 node in Figure 2(b) have approximate local symmetry.
The v3 and the v5 have approximate local symmetry. Existing
graph representation learning algorithms have the ability to
find nodes with complete local symmetry and consider nodes
with the same neighborhood structure to have the same func-
tion, but cannot find nodes with approximate local symmetry.
Therefore, existing graph representation learning algorithms
cannot distinguish whether v3 and v5 have the same function.
In addition, existing methods are also unable to distinguish
whether the red node is a boss or an employee.In fact, the
neighborhood structure of the red node in (b) is similar
to that of the v3 node in (a). The two nodes are approx-
imately locally symmetrical. Therefore, it is necessary for
us to distinguish whether nodes have the same function by
whether their local neighborhoods are approximately locally
symmetric. The stronger the approximate local symmetry
of a node’s neighborhood structure topology is, the more
similar the node’s embeddings are [6]. It can be concluded
that analyzing the similarity of node neighborhood topol-
ogy has the ability to detect malicious devices more flexi-
bly and accurately. Moreover, effective preprocessing is the
basis for improving malicious device detection performance,
because the preprocessing directly affect the final perfor-
mance of malicious device detection. Therefore, this paper
proposes the GraphSTSGM learning algorithm to preprocess
the device neighborhood structure. The algorithm prepro-
cesses the neighborhood structure of the device to obtain an
approximately locally symmetric embedding.

The main contributions of this paper are as follows.
1) In order to improve the performance of malicious

device detection, we propose the GraphSTSGM algo-
rithm to extract topological similarity between nodes.
GraphSTSGM extracts approximate local symmetry
features by adding local neighborhood structural pat-
terns merge to GraphSTONE. We use feature embed-
dings as input to Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) for mali-
cious device detection. The system is named by
GraphSTSGM-DBSCAN.

2) In this algorithm, we use anonymous walks to auto-
matically extract the substructures that constitute the
neighborhood structure of each device, and then merge
similar substructures to obtain a set of similar sub-
structures. In order to get the topic substructures of
the node neighborhood more accurately, the device
neighborhood structure is reconstructed using the topic
substructures to obtain a structure embedding for each
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device. Finally, we use cluster detection to obtain
malicious devices with similar structural embeddings
to known malicious devices. In addition, abnormal
nodes are identified by finding that the node neighbor-
hood structure cannot be reconstructed with the topic
substructures. This method is superior to the existing
methods that require manual experience to pre-define
abnormal structures, and then obtain the abnormal
structures through structure matching.

3) In this paper, the penalty-based similar substructure set
merging is added on the basis of the existing graph rep-
resentation algorithm GraphSTONE [6]. This method
is able to merge substructures that appear infrequently
and are similar to frequently occurring substructures.
Therefore, this method has the ability to extract the
approximate local symmetry features of the device
more accurately, and thus more accurately describe the
neighborhood structure similarity relationship between
the devices.

4) The approximate local symmetry features of the
device can be accurately extracted by GraphSTSGM.
When the merge threshold η in GraphSTSGM is
infinite, the GraphSTSGM algorithm is equiva-
lent to GraphSTONE. Experiments show that the
GraphSTSGM algorithm with the addition of sim-
ilar substructure merging has better performance.
In the best case, the AUC and the recall of
GraphSTSGM-DBSCAN reached 89.2% and 87.1%,
respectively. In the worst case, the AUC and the
recall of GraphSTSGM-DBSCAN reached 86.5% and
86.6%, respectively. In the worst case, the proposed
algorithm achieves the good performances regarding
the AUC exceeding those of the other state-of-the-art
algorithms by 0.9%.

5) An empirical formula, i.e., the benefits of combining
substructure h

(
si, sj

)
-penalty for merging substructure

g
(
si, sj

)
>=threshold η, is designed to calculate the

whether the two substructures should be merged. The
experimental results show that the calculation of this
formula has the ability to obtain better malicious device
detection performance.

Section 2 describes related work. Section 3 introduces the
malicious device detection based on device preprocess using
GraphSTSGM-DBSCAN. Section 4 introduces the experi-
ment. Section 5 discusses the results. Section 6 concludes the
paper.

II. RELATED WORK
A. MALICIOUS DEVICE DETECTION ALGORITHM
The malicious device detection algorithm mainly includes
the rule-based malicious device detection algorithm, machine
learning-based malicious device detection algorithms and
the graph-based malicious device detection algorithm
[3]. In detail, the rule-based malicious device detection
algorithms are generally considered to be based on user
profiling and feature engineering. The rule-based malicious

device detection algorithm has high detection efficiency for
known malicious. Machine-learning based malicious device
detection algorithms are able to detect unknown attacks.
In recent years, there have been some studies based on
machine learning for malicious device detection. Machine-
learning based malicious device detection algorithms mainly
include Support Vector Machines (SVM) [7], [8], tree-based
models [9], [10] and neural networks [11]-[13], etc. In 2015,
Manjula [8] detected malicious devices by finding outliers
and then using Support Vector Machines (SVM) to classify
the outliers; In 2021, Sun et al. [10] use an optimized boost-
ing model to detect malicious devices by combining prior
knowledge and feature importance analysis. The method is
interpretable; In 2021, Benchaji et al. [13] used the histor-
ical behavior information of accounts as features. First, the
algorithm normalizes the features. After that, a Long Short-
Term Memory (LSTM) model is trained using historical
behavioral sequence data. Finally, the algorithm uses LSTM
on the predicted data to detect malicious devices; A common
disadvantage of the above algorithms is that they cannot
detect malicious devices that are not in the extracted features.
Malicious device users invent new malicious patterns and
continuously change their strategies to avoid detection [13].
In order to detect new malicious attacks, it is necessary to
continuously add features extracted by expert experience.
The effect of continuously increasing individual feature engi-
neering is a logarithmic curve, but the cost is an exponential
curve. Therefore, malicious device detection algorithms need
to transform from rule-based and machine learning-based
feature engineering to global network engineering [3]. Mali-
cious device detection in the network needs to obtain features
that accurately describe the topology similarity of the device
neighborhood structure. We usually detect malicious devices
based on graph algorithms.

In recent years, there have been some graph-based mali-
cious device detection algorithms. In 2021, Motschnig [14]
et al. used the heuristic Louvain algorithm for community
grouping. Louvain algorithm can obtain the division method
with the largest community modularity, but this method only
considers the structural association information, and does
not consider the structural topological similarity of nodes
in the network; In addition, the time complexity of this
method is too high, and it cannot run in the case of hun-
dreds of millions of points and billions of edges; In 2020,
Santra et al. [15] proposed a community definition for Het-
erogeneous MultiLayer Networks (HeMLNs) that preserves
semantics and structure. In 2017, Pandhre et al. [16] proposed
a method that detects novel outlier graph nodes by taking
into account the node and edge simultaneously to detect
anomalies. This method can find outliers in heterogeneous
graphs with multiple edge relationships, but the disadvantage
of this method is that only abnormal nodes can be detected,
and devices similar to known malicious devices cannot be
detected.

The common disadvantage of the above methods is
that the preprocessing only considers the tightness of the
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connection between the current node and surrounding neigh-
bor nodes, but ignores the local symmetric relationship
between nodes [17], resulting in a low AUC for malicious
device detection. Therefore, we introduce a graph represen-
tation learning algorithm to solve the above problem.

B. GRAPH REPRESENTATION LEARNING
Graph representation learning can automatically extract
structural topology information between nodes [17], such as
local symmetry, etc. This algorithm has been widely used in
recommender systems, e-commence networks [16], etc. The
existing graph representation learning algorithms are mainly
the following, such as: struc2vec [17], ComE [18], Metapath
[20]. In 2017, the ComE [18] method was proposed. This
method uses structural information, but lacks approximate
local symmetry features; The Struc2vec [17] algorithm dis-
tinguishes whether two nodes have similar structure only by
the degree of node neighborhood structure. This method can
roughly distinguish whether the neighborhood structures of
nodes are similar, but ignores the approximate local symme-
try of nodes, resulting in low AUC. Metapath [20] can extract
the structural topology information between heterogeneous
graph nodes, but this method requires manual experience to
pre-define the random walk paths to obtain the pre-defined
substructures, and cannot automatically capture abnormal
substructures;

The common disadvantage of the above algorithms is
that they do not have the ability to automatically distin-
guish the structural topology between malicious nodes, and
require manual experience or feature engineering skills to
process the structural information between nodes. Graph-
STONE [6] has the ability to automatically distinguish the
structural topology of malicious nodes. GraphSTONE uses
anonymous random walks to obtain substructures to char-
acterize the topological similarity of nodes. GraphSTONE
is able to extract the complete local symmetry of nodes,
but this method ignores the similarity between substructures,
so it cannot extract approximate local symmetry of nodes.
GraphSTONE ignores approximate neighborhood symmetry
features that characterize the similarity between substruc-
tures. Therefore, GraphSTONEmay cause nodes with normal
neighborhood structure to be mistakenly considered abnor-
mal nodes. Our proposed algorithm has the ability to auto-
matically extract approximate local symmetry features that
characterize the structural similarity of node neighborhoods.
Finally, the approximate local symmetry features and the
original information of nodes are obtained as the input of
DBSCAN.

III. PROPOSED MALICIOUS DEVICE DETECTION
ALGORITHM
A. DEFINITION
Uniquemobile identity (alias name:Node/Device): It refers
to establishing a globally unique device ID for each operating
device to uniquely represent the device [19]. In the following,

FIGURE 1. An example illustrating that approximate local symmetry has
higher performance than complete local symmetry. The local
neighborhood structure of U5 in the account-device graph is the same as
that of U4, so U4 and U5 have complete local symmetry. The local
neighborhood structure of U6 in the account-device graph is similar to
that of U4, so U4 and U6 are approximate local symmetry. Existing
methods can detect devices U5 with complete local symmetry, but cannot
detect devices with approximate local symmetry. Complete local
symmetry is a special case of approximate local symmetry, and devices
U5 and U6 can be detected using approximate local symmetry. Therefore,
approximate local symmetry has higher performance than complete local
symmetry.

FIGURE 2. An example in social network of substructure similarity is the
same functional node. The neighborhood structure of the boss
relationship in most companies is shown in (a), and the neighborhood
structure of the boss relationship in a few companies is shown in (b).
Using the GraphSTONE algorithm, the neighborhood structure of the red
node in (b) will be considered an abnormal substructure, and it is
impossible to confirm whether the node is a boss or an employee. In fact,
the neighborhood structure of the red node in (b) is similar to that in (a).

the unique mobile identification is called the device or node;
Device-account graph: It refers to taking the device and the
account as nodes, and constructing an edge between the asso-
ciated device and the account to obtain the device-account
graph[21];
Local proximity(alias name: Local neighborhood): It
refers to capturing relationships within two hops from a
node, and it describes the neighborhood structure of a node.
In Figure 3, nodes v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12
are the local neighborhoods of vi [22].
Anonymous Walks [6]: It refers to sampling in the graph
by random walk [4], the sequence obtained by sampling is
‘‘v0-v9-v8-v11-v9’’, and the first node v0 that appears from
the left is marked as 0. We construct a dictionary S, store
v0 as the key and 0 as the value in S, S={v0:0}. The second
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FIGURE 3. K-order neighborhood graph [22].

node v9 appears, because v9 is not in S, so v9 is stored as key
and 1 is stored in S as value. At this time, S={v0:0, v9:1}.
And so on, until the sequence is traversed. Therefore, the
sequence ‘‘v0-v9-v8-v11-v9’’ can be obtained as ‘‘0-1-2-3-1’’
after anonymity. As shown in the Figure 4(a), it is the process
of anonymous walk.
Local Neighborhood Structural Patterns (alias name:
Substructure): It refers to the substructure obtained by
anonymous walks in the local neighborhood of a node. For
example, random walk can get sequence ‘‘v0-v9-v8-v11-v9’’
and sequence ‘‘v0-v9-v18-v19-v9’’; In detail, the sequence
‘‘v0-v9-v8-v11-v9’’ becomes ‘‘0-1-2-3-1’’ after anonymity,
the sequence ‘‘v0-v9-v18-v19-v9’’ is also ‘‘0-1-2-3-1’’ after
anonymity. The ‘‘1-2-3-1’’ sequence represents a triangle,
that is, a substructure of a triangle is extracted;
Topic substructure: It refers to selecting the top-N sub-
structures from the substructures that can reconstruct the
structure of most node neighborhoods. As shown in the
Figure 4(a).
Neighborhood Structure Reconstruction: It refers to the
use of topic substructure to reconstruct the neighborhood
structure of the node, and has obtained the embedding of the
neighborhood structure of the node.
Homophily hypothesis [4]: It means that the nodes in
the graph are highly interconnected. The more common
neighbors between two nodes, the stronger the correlation
between the two nodes. As shown in Figure 5(b), the
two red nodes in the figure are the nodes of homogeneous
equivalence;
Structural equivalence [4](alias name: Local symmetry):
It refers to that the substructures that reconstruct the local
neighborhood of two nodes are the same or similar. Nodes
of structural equivalence have the same function. Two nodes
with structural equivalence are considered to have local sym-
metry. Local symmetry includes complete local symmetry
and approximate local symmetry. In detail, complete local
symmetry means the substructure of the reconstructed local
neighborhood of two nodes is exactly the same. Approximate
local symmetry means the substructures that reconstruct the
local neighborhood of two nodes are similar. As shown in

Figure 5(a), node u and node v are structurally equivalent.
Importantly, unlike homophily, structural equivalence does
not emphasize connectivity; nodes could be far apart in the
network and still have the same structural role [4]. Figure 2
shows an example of a social network where nodes of struc-
tural equivalence have the same function. In every company
there are bosses and employees, each boss usually has many
employees, and each employee usually has only one boss.
In Figure 2, all pink nodes have only one parent node, and the
neighborhood structures of all pink nodes are similar. That
is, all pink nodes are employees, and employees have the
same function in every company. All pink nodes are structural
equivalence; In Figure 2, all purple nodes have many child
nodes, and the neighborhood structure of all purple nodes is
similar. That is, all purple nodes are bosses, and bosses have
the same function in every company. All purple nodes are
structural equivalence.
Complete local symmetry: It means that the substructure
of the reconstructed local neighborhood of two nodes is
exactly the same. Complete local symmetry is one type
of local symmetry. Nodes with complete local symme-
try have the same function. The v1 node in Figure 2(a)
and the v4 node in Figure 2(b) have complete local
symmetry;
Approximate local symmetry: It means that the substruc-
tures that reconstruct the local neighborhood of two nodes
are approximately the same. That is, approximate local sym-
metry can characterize the topological similarity between the
neighborhood structures of two nodes. Approximate local
symmetry is one type of local symmetry. Nodes with approx-
imate local symmetry have the same function. The v1 node in
Figure 2(a) and the v2 node in Figure 2(b) have approximate
local symmetry;
Approximate local symmetry feature: It refers to extract-
ing embeddings that can characterize the approximate local
symmetric relationship between nodes.
Automatic preprocessing: It refers to the automatic extrac-
tion of features that can characterize nodes. This method does
not require any manual experience and feature engineering
skills;
Malicious Device Detection: It refers to the detection of
malicious terminal devices or abnormal terminal devices.
In detail, the malicious devices in this article refer to devices
that are similar to known malicious devices and anomalous
devices that differ from most normal devices. It is worth
noting that in the device-account graph, we reconstruct the
neighborhood structure of the device and account neighbor-
hoods to obtain device embeddings, and cluster the embed-
dings to detect malicious devices.

B. FLOWCHART
Malicious device detection is mainly divided into three parts.
The first part is to generate unique mobile identity for each
traffic using the method in [19], each unique mobile identity
represents a unique device. The second part is automatic
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FIGURE 4. Schematic diagram of the GraphSTSGM algorithm. GraphSTSGM consists of two major components: (a) graph Anchor LDA with similar
substructure merging, (b) structural topic aware multi-view GCN.

preprocessing to obtain the features of each device. In this
part, we use the GraphSTSGM algorithm to preprocess to
obtain the features of the device by combining the original
features of the device and the approximate local symmetry
features of the neighborhood structure. In the third part, the
features obtained by the preprocessing are used as the input
of the DBSCAN for malicious device detection.

Data preprocessing is the basis for improving the per-
formance of the entire malicious device detection, because
the device features obtained by data preprocessing directly
affect the final performance of themalicious device detection.
Existing data preprocessing for malicious device detection
usually uses manually pre-defined random walk paths to
obtain substructures [20]. Existing algorithms cannot directly
obtain abnormal substructures, resulting in low AUC.

C. EXTRACT APPROXIMATELY LOCALLY SYMMETRIC
FEATURES BY USING THE GraphSTSGM ALGORITHM
1) PREPROCESSING OF THE GraphSTSGM ALGORITHM
Figure 6 is the process of generating a Unique Mobile
Identity, abbreviated umid, for each traffic and building a

FIGURE 5. Graph of structural equivalence and homophily equivalence.
(a) Node graph with structural equivalence neighborhood structure.
(b) Node relation graph with homophily equivalence neighborhood
structure.

device-account graph. First, we generate umid from net-
work traffic following the algorithm in Reference 19. The
calculation method of umid is detailed in Reference 19,
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which will not be repeated in this article. Traffic flow refers
to the information of the traffic generated by each opera-
tion of the device, including sip, account id, and informa-
tion required by the device to generate umid [19]. Unique
Mobile IDentity refers to establishing a globally unique
device ID for each operating device to uniquely represent
the device [19]. After calculating the umid using the algo-
rithm of Reference 19, if the information of this device
has appeared before, the previous umid will be returned.
If the information for this device has never appeared,
the newly generated umid is returned. We perform the
above processing on each device traffic to obtain device
traffic with umid. After that, a device-account bipartite
graph G(V,E) is constructed with devices and accounts as
nodes.

2) OVERVIEW OF GraphSTSGM
First, a device-account bipartite graph G(V,E) is constructed
with devices and accounts as nodes. The set of nodes is V =
({Vumid1, . . . , Vumidi}, { Vaccountid1, . . . , Vaccountidi }).
Edge is connected between the associated device and accoun-
tid, and the set of edges is E =

[
eij
]n. Then, perform an

anonymous random walk of length l for each vi ∈ V in
G to obtain Wl . Finally, the sequence set M ∈ Rm∗|wl | of
the original random walk and the corresponding anonymous
random walk sequence set M̄ ∈ Rm∗|wl | are obtained.
Each anonymous walk sequence represents a substructure,

so we can get the set sub − G ∈ Rm∗|sub−G| of the node-
to-node relationships of m substructures corresponding to
the random walk sequence set M . Therefore, the AW-SGM
algorithm is used to merge the substructures in M̄ whose
similarity is greater than the threshold η to obtain a set
sub − G′ ∈ Rn∗|sub−G| containing n substructures and the
corresponding anonymous walk sequence M̂ ∈ Rn∗|wl |. The
resulting M̂ is the set of substructures of various types that
characterize the anonymous walk representation. This step
will be detailed in Section 3.3.2.

Then, we formulate topic modeling on graphs. We select
the k substructures with the most occurrences as the struc-
tural topics of the graph. The top-k substructures that are
selected to be the node neighborhood graph are also called
‘‘anchors.’’ A topic model on graphs aims to learn the fol-
lowing parameters.

(1)A node-topic matrix R ∈ R|V |×K , where a row Ri
corresponds to a distributionwithRik denoting the probability
of node vi belonging to the k−th structural topic [6].

(2)A walk-topic matrix U ∈ RK×|Wl | where a row Uk is a
distribution overWl andUkw enotes the probability ofw ∈ Wl
belonging to the k-th structural topic [6].
In addition, we define the set of anonymous walks starting

from vi as Di, with Di = N as the number of walks to
sample. we define the walk-walk co-occurrence matrix [6]
M̂ ∈ R|Wl |×|Wl |,with Mi,j =

∑
vk∈V I

(
wi ∈ Dk ,wj ∈ Dk

)
,

and adopt non-negative matrix factorization (NMF) [23] to
extract anchors. In detail, M̂ is the walk-walk co-occurrence

matrix of anonymous walk sequences after merging similar
substructures.

H ,Z = argmin ‖M̂ − HZ‖2F ,

s.t. H ,ZT ∈ R|Wl |×α,H ,Z ≥ 0, (1)

Finally, we get anchor Ak = argmax (Zk) , k = 1, . . . α.
In detail, A is the matrix of anchor and Zk is the first k rows
of matrix Z . The anchor node obtained at this time is the
potential topic. Based on the anchors we found, we proceeded
to learn the walk-topic distribution U . We get U ∈ RK×|Wl |

through optimizing.

argmin
U

DKL

(
Qi‖

∑
k∈A

Uikdiag−1(
−→
Q1)QAk

)
, (2)

where Q is the re-arranged walk co-occurrence matrix with
anchors A lying in the first α rows and columns, and QAk is
the row of Q for the k-th anchor [6].
In addition, we define the node-walk matrix Y ∈ R|V |×|Wl |

with Yiw denoting the occurrences of w in Di. We then get
the node-topic distribution R through R = YU†, where U†
denotes pseudo-inverse [6].

Structural-topic Aware Aggregator. We use neighborhood
aggregation to illustrate structural equivalence, which means
that nodes with similar neighborhood connections have sim-
ilar effects on surrounding neighborhoods;

h(k)i = AGGREGATE

({
RTi Rj∑
j R

T
i Rj

h(k−1)j , vj ∈ N (vi)

})
,

(3)

In detail, where h(k)i denotes the output vector for node
vi from the k-th layer. We aggregate neighborhood informa-
tion with Graph Sample and aggregate (GraphSAGE)[24] for
added flexibility.

We use two parallel Graph Convolutional Networks
(GCNs), one focusing on structural topics and the other
on node features correspondingly [6]. Where h(k)i,n and h(k)i,s ,
k = 1, . . . ,L denote the outputs of the two GCNs for
node vi at layer k . After that we use a nonlinear neural
network layer on the two output vectors. As shown in
Figure 4(b).

h(L)i =

(
W · tanh

([
h(L)i,n ⊗ h

(L)
i,s

])
+ b

)
, (4)

In detail, h(L)i is the final output of muti-view GCN to
node vi, ⊗ is the concatenation operation.
The initialization h(0)i consists of two parts, one is h(0)i , n =

Xi of node vi, and the other is node h(0)i,s This part is obtained
by splicing the distribution of node vi at anchor node A and
the node-topic distribution Ri.

L = − log
[
σ
(
h(L)Ti h(L)j

)]
−q · Evn∼Pn(v) log

[
σ
(
h(L)Ti h(L)n

)]
, (5)
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FIGURE 6. Preprocessing for building a device-account graph. This is the process of generating umid for each device traffic and building
a device-account graph. First, we generate umid for each device traffic according to the algorithm in [19]. After that, build a
device-account graph according to the relationship between accounts and umids in device traffic. It is worth noting that in the process
of constructing the device-account graph, no duplicate edges are constructed between umid and account. That is to say, if there is
multiple traffic between umidi and account idi, only one edge is retained in the device-account graph.

Algorithm 1 Algorithm of GraphSTSGM-DBSCAN
Require: network traffic flow fi, f contains the traffic of q devices, each of which has a device;
Ensure: the type to which the q device belongs;
1: Step 1: Build a multidimensional relationship graph between devices
2: A device-account relationship graph is constructed with the device and account id as nodes, and an edge is constructed

between the associated device and account id to obtain graph G;
3: Step 2: Extract topological relation representations using GraphSTSGM
4: M ← Walkco− occourences(G) (M = M1,M2, . . ., Mm);
5: Form M̄ =

{
M̄1, M̄2, . . . , M̄m

}
, Anonymous walk ofM ;

6: M̂ ← AW− SGM
(
M̄i, M̄j

)
, M̄i and M̄j belongs to M̄ , M̂ =

{
M̂1, M̂2, . . . , M̂n

}
. (Eq. 9, 10 merging similar graphs);

7: A← LDA(M̂ , K);
8: U ,R← RecoverLatentTopic(M ,A)(Eq.2)
9: 8← Structure-topic aware GCN(G,U ,R); (Eq. 3, 4, and 5)

10: Get a vector representation of the device’s neighborhood structure Vec consists of q devices of network traffic, each device
vector (veci1, veci2,,, vecir );

11: Step 3:Clustering to get topologically similar sets of nodes
12: Use DBSCAN clustering to obtain a set of topologically similar nodes to obtain a cluster of q devices after clustering;
13: Cluster(q)← DBSCAN (Vec(q));
14: return Cluster(q) after clustering of q devices;

where σ (x) is the sigmoid function, vj co-occurs with vi in
random walks, and Pn(v) is the noise distribution for negative
sampling.

Algorithm 1 is the pseudocode of the GraphSTSGM algo-
rithm. Figure 7 shows the algorithm flow of GraphSTSGM
based on graph representation with similar substructure
aggregation.

3) AW-SGM: ANONYMOUS WALK BASED ON SIMILAR
SUBSTRUCTURE MERGING
The existing method uses the device-account graph obtained
by anonymous walk to represent the neighborhood struc-
ture of the device M as the input of the Graph Anchor
Latent Dirichlet Allocation (LDA) [25] to select the topic
substructure. Anonymous random walk is a method to obtain
the representation of the neighborhood structure, which
has the ability to obtain all the neighborhood structure

representations in the graph. The neighborhood structure
representations of nodes with similar functions are similar.
Therefore, we hope that similar structures in the process
of preprocessing to get the neighborhood structure repre-
sentation M are grouped into same category, as shown in
Figure 3(a). However, existing graph representation learning
algorithms do not have the ability to identify whether sub-
structures are similar, which leads to the use of Graph Anchor
LDA for topic substructure selection to obtain anchorA, some
substructures are not selected into anchor set A. These
substructures appear infrequently, but are similar to fre-
quently occurring substructures. When the substructure
reconstructs the node neighborhood structure, the nodes
whose neighborhood is reconstructed by the substructure
with few occurrences will be mistakenly regarded as abnor-
mal nodes. Therefore, existing algorithms using anchor set
A have no ability to accurately detect nodes with abnormal
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FIGURE 7. GraphSTSGM algorithm flow chart based on graph
representation with similar substructure aggregation.

substructures. In detail, the neighborhood structure represen-
tationM obtained by preprocessing is the basis for obtaining
accurate substructure nodes with abnormality. However, the
neighborhood structure representation M obtained by exist-
ing algorithms has no ability to merge similar substructures.
In order to merge similar substructures through the neighbor-
hood structure representationM , we introduce an anonymous
walk algorithm based on A∗ SGM similar substructure merg-
ing, which is called AW-SGM. This algorithm is equivalent
to merging anonymous walk sequences with high similarity
inM . Anonymous walk sequences are merged to obtain n sets
of similar substructures. An anchor node is selected from each
set of the n substructure sets and is stored in M̄ ∈ Rn∗|wl |

on behalf of the set. In detail, the substructures in the same
set represent the same type. Then the resulting M̄ is the set
of all the different substructure types that characterize the
anonymous walk representation. That is to say, we use the
AW-SGM algorithm to combine the substructures of the same
type in the substructure set into one representation. Two basic
steps of the AW-SGM learning algorithm are as follows.

First, the A∗ SGM based on anonymous walk(AW-SGM)
is used to merge similar substructure s to obtain the similar
substructure set S = {s1, . . . , sn}. The specific process is as
follows. (1) The substructure obtained by anonymous walk is
M̄ =

{
M̄1, M̄2, . . . , M̄m

}
. Store each substructure in M̄ into

a similar substructure set to get S = {s1, . . . , sm}, that is, the

only element in the similar substructure set si is the substruc-
ture M̄i. Then, the similar substructure merging algorithm
Merge(s) based on A∗ is used to merge the substructure s;
(2) In the process of merging similar substructure s in each
step, the A∗-based similar substructure merging algorithm
Merge(s) is used to find substructure s in si ∈ S, i.e. satisfy
(current merged gain - current merged loss)≤η as candidate
substructure, that is, to find the substructure of h

(
si, sj

)
≤η;

The algorithm flow is detailed in Section 3.3.3. (3) We select
a substructure set to be merged in the next step from the
candidate substructure, which is equivalent to simulating
the Alias sampling with time complexity O(1) according to
the h

(
si, sj

)
. We merge the substructure sj selected in the

candidate substructure with the current substructure si to
obtain the merged substructure set si =

{
si ∪ sj

}
; (4) The

above steps (2) and (3) are repeated until no substructure s can
be merged; Finally, we get the set of similar substructure S =
{s1, . . . , sn}. In detail, si contains one or more substructure s,
and the similarity between multiple substructure s in each si
is high.
We select the central node M̄i representing the similar

substructure set si ∈ S from each similar substructure set si
to obtain M̂ =

{
M̂1, M̂2, . . . , M̂n

}
. The specific process is

as follows. (1) We calculate the sum of edit distances [26]
dnow of each substructure M̄now ∈ si from other substructure
s in the set in si ∈ S the calculation method is as shown
in (6); (2) We repeat the above step (1). We respectively
calculate the sum of edit distances [26] between substructure
s in si and other substructure s, and save them to the set
dsi = dnow1, . . . , dnowp. The center M̄center of the similar sub-
structure set si is the substructure corresponding to the node
with the smallest graph edit distance from other substructure
s in dsi, the calculation method is as shown in (7); (3) We
repeat the above steps (1) (2), and calculate the center M̄center
of each si ∈ S in S = {s1, . . . , sm}, and save the center M̄center
corresponding to each si into M̂ .

dnow =
M̄i∈si∑
i=0

D
∣∣M̄i, M̄now

∣∣ , (6)

M̄center ofsi = min (dsi) , (7)

It is worth noting that the central substructure of each
similar substructure set si is considered to be the graph rep-
resenting the set of substructure s.

4) A∗: PENALTY-BASED SIMILAR SUBSTRUCTURE SET
MERGING ALGORITHM
Existing graph representation learning algorithms do not have
the ability to combine similar substructures set, resulting in
some substructures that are not selected into anchor set A
when using Graph Anchor LDA to select topic substruc-
tures to obtain anchor A. Therefore, we propose a simi-
lar substructure merging algorithm of A∗ to merge sets of
substructures. The specific process of the A∗’s similar sub-
structure set merging method is as follows. First, we use
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formula (9), as shown at the bottom of the next page, to
calculate the gain h

(
si, sj

)
for merging between similar sub-

structure sets si and sj. Then, formula (10), as shown at
the bottom of the next page, calculates the loss g

(
si, sj

)
of merging between sets of similar substructure s. Finally,
when formula (11) is satisfied, the substructure sets si and
sj can be merged. Several key operations involved in the
A∗’s similar substructure set merging methods are described
below.
Search Bias h

(
si, sj

)
: h

(
si, sj

)
is used to compute the

similarity between sets of substructures s. At the same time,
h
(
si, sj

)
is considered to be the yield of the merge between

similar substructure sets si and sj. In detail, h
(
si, sj

)
is equiv-

alent to using dynamic programming to calculate the simi-
larity between substructure sets si and sj. When M̄m = si
and M̄n = sj, it is equivalent to calculating the similarity
between substructure M̄m and substructure M̄n. Essentially,
it calculates the sum of the number of nodes and edges
in substructure M̄m and the number of nodes and edges
in substructure M̄n, and then subtracts the graph edit dis-
tance [26] D

∣∣M̄m, M̄n
∣∣ between M̄m and M̄n; h

(
si, M̄n

)
refers

to calculating the similarity between the similar substructure
set si and the substructure M̄n, that is, calculating the sum
of the similarity between each substructure in the similar
substructure set si and M̄n. Similarly, h

(
M̄m, sj

)
refers to

calculating the similarity between the substructure M̄m and
the set of similar substructure sj. h

((
si − M̄m

)
, sj
)
refers to

calculating the similarity between the set of substructure s
after removing M̄m in si and sj. h

(
si, (sj − M̄n)

)
refers to

the similarity between the set of substructure s formed by
removing M̄n from sj and si. In detail, the more similar si and
sj are, the higher the value of h

(
si, sj

)
.

The calculation method of search bias h
(
si, sj

)
is shown

in (9), where num
(
M̄m

)
refers to the sum of the number of

nodes and edges in the substructure M̄m. D
∣∣M̄m, M̄n

∣∣ refers
to the graph edit distance between M̄m and M̄n.
Penalty g

(
si, sj

)
: g
(
si, sj

)
is the penalty term for merging

between similar substructure sets, also known as the loss of
merging between similar substructure sets.

The calculation method of penalty g
(
si, sj

)
is shown

in (10), where n is the number of substructure s involved,
and wi is the total number of substructure structures in the
ith substructure;
Penalty-Based Weight n

(
si, sj

)
): n

(
si, sj

)
is a penalty-

based weight, also known as the probability of merging sets
of similar substructure s. The penalty basedweight n

(
si, sj

)
is

calculated in (8), as shown at the bottom of the next page. The
penalty-based weight n

(
si, sj

)
is the penalty g

(
si, sj

)
minus

the biased weight h
(
si, sj

)
. The substructure sets si and sj can

be merged when (current merged gain - current merged loss)
is greater than a threshold η. That is, when formula (11) is
satisfied, the substructure sets si and sj can be merged; If
the threshold η = max

(
num

(
M̄i
))
, and M̄iεM̄ , the Graph-

STSGM algorithm is the GraphSTONE [6] algorithm; That
is to say, when the selected threshold is the largest number
of nodes and edges of the substructure in M̄ , no substructure

TABLE 1. Dataset statistics and properties.

can be merged in the graph. At this time, the GraphSTSGM
algorithm is the GraphSTONE [6] algorithm.

D. DBSCAN FOR MALICIOUS DEVICE DETECTION
We use the vector obtained by GraphSTSGM as the input
of DBSCAN to get the clustering result. We consider that
there are malicious devices in a cluster, then other devices in
the cluster are also malicious devices. At the same time, the
abnormal device in the reconstruction of the neighborhood
structure is also determined as a malicious device. In detail,
the abnormal devices during neighborhood structure recon-
struction are outliers after DBSCAN clustering.

IV. EXPERIMENTS
In this section, we perform experiments to evaluate the model
GraphSTSGM on Alibaba Cloud data and the public dataset
Cora. First, we introduce the experimental setup. Specifically,
our experiments include:

(1) Comparing the model effect when preprocessing with
GraphSTSGM and GraphSTONE;

(2) Parameter evaluation, including model parameter anal-
ysis and so on;

(3) We verified the effect of the model on Alibaba Cloud
data, and proved the generality of the algorithm on public
dataset Cora;

A. DATASET
The proposed algorithm and existing algorithms are com-
pared in the following two datasets.

1) CORA DATASET
The dataset [27] has a total of 2708 samples, each sample is
a scientific paper, and all samples are divided into 8 types.
Each paper cites at least one other paper, or is cited by other
papers. That is, there are connections between the samples
and no isolated nodes. If we treat the samples as nodes in the
graph, then this is a connected graph and there are no isolated
nodes.

2) ALIBABA CLOUD DATASET
Alibaba Cloud dataset is the correlation data between devices
and accounts, and it is used to detect malicious devices.

B. EVALUATION METRICS
Weuse thewidely adoptedmetric tomeasure the performance
of malicious device detection, namely AUC [28] and Recall.
The formulas are as follows. The meanings of True Positive
(TP), False Positive (FP), False Negative (FN), and True
Negative (TN) [22] are shown in Table 4.
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Algorithm 2 AW-SGM Learning Algorithm

Require: M̄ =
{
M̄1, M̄2, . . . , M̄m

}
, the normalized rows of M , the original structure G of each substructure in M , and the

nodes V and edges E in G, Threshold η;
Ensure: De-duplicate the substructure s with high similarity in the substructure set in M̄ to get M̄ ′ =

{
M̄1, M̄2, . . . , M̄m

}
;

Similar substructure set S = {s1, . . . , sn}. s̄1 =
{
M̄1, M̄2, . . . , M̄t

}
,. . . ,s̄n =

{
M̄i, . . . , M̄r

}
, in detail M̄ = s1 ∪ . . . ∪ sn;

1: Initialize s =Deepcopy(M̄ );
2: for each graph mi ∈ M̄ do
3: is_graph_merge = h

(
si, sj

)
− g

(
si, sj

)
4: if is_graph_merge ≤η then
5: si =

{
si ∪ sj

}
;

6: end if
7: end for
8: Obtain Similar substructure set S = {s1, . . . , sn}.
9: InitializeM ′ to Empty;

10: for each si ∈ s do
11: for each M̄now ∈ si do
12: dnow =

∑M̄i∈si
i=0 D

∣∣M̄i, M̄now
∣∣

13: end for
14: Obtain si in dsi = {dnow1, . . . , dnownn}
15: M̄center of si = min (dsi)
16: Append M̄center of si into M ′

17:

18: end for
19: return M ′,s;

TABLE 2. Confusion matrix.

DetectionRate(DR) =
TP

TP+ FN
,

Precision(P) =
TP

TP+ FP
, (12)

C. TWO WAYS TO PREPROCESS MALICIOUS DEVICE
DETECTION
There are two ways to preprocess network packets. In method
(a), we extract approximate local symmetry features of
devices using the GraphSTSGM algorithm, which adds a
penalty-based similar substructure set merging algorithm for
preprocessing devices. In method (b), the local neighbor-

hood structural features of the device are extracted using
the GraphSTSGM algorithm without similar substructure
set merging. The approximate local symmetry feature of
the device can characterize the neighborhood topology. This
feature can also characterize whether there is an abnormal
structure or similarity to a known malicious device. In detail,
extracting local neighborhood structure features of devices
without similar substructure merging, i.e., the threshold η =
max

(
num

(
M̄i
))
, and M̄iεM̄ , in (11), as shown at the bot-

tom of the page, is equivalent to extracting neighborhood
structure features using GraphSTONE [6]. From Table 3,
when the length of anonymous walk increases, the AUC
of both methods (a) and (b) decreases, but the AUC of
method (a) is still as high as 85.9%. From Table 3, we can
conclude that the AUC of method (a) is 2.7% higher than
the method (b). A possible explanation is that the lack
of merging of similar substructures when extracting topic

n
(
si, sj

)
= h

(
si, sj

)
− g

(
si, sj

)
, (8)

h
(
si, sj

)
=


h
((
si − M̄m

)
, sj
)
+ h

(
M̄m, sj

)
, M̄m ∈ si

h
(
si,
(
sj − M̄n

))
+ h

(
si, M̄n

)
, M̄n ∈ sj

num(M̄m)+num(M̄n)−2∗D|M̄m,M̄n|
2 , if M̄m = si and M̄n = sj

(9)

g
(
si, sj

)
=

∑p
i=0

∑q
j=0 wi ∗ wj ∗ D

∣∣M̄i, M̄j
∣∣∑p

i=0 wi +
∑m

j=0 wj
, (10)

h
(
si, sj

)
− g

(
si, sj

)
> = η, (11)
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TABLE 3. Compares the performance of GraphSTSGM and GraphSTONE
preprocessed under different random walk lengths in malicious device
detection (%).

TABLE 4. Compare the impact of different threshold values on the
performance of GraphSTSGM(%).

substructures in method (b) will lead to random walks to
obtain substructures that appear infrequently and are similar
to frequently occurring substructures. This method is easy to
cause the nodes with normal neighborhood structure to be
mistakenly regarded as abnormal nodes. Eventually, the AUC
of the method (b) is not high, and the approximate local sym-
metry features obtained by preprocessing with this method
cannot accurately describe the neighborhood topology of the
device. Therefore, in the following we use method (a) for data
preprocessing.

D. THE EFFECTIVESS OF SIMILAR SUBSTRUCTURE
MERGING IN GraphSTSGM PREPROCESSING BY DBSCAN
This section discusses the impact of similar substructure
merging threshold values on the performance of malicious
device detection in GraphSTSGM. Different thresholds for
merging similar substructures set will affect the selection
of topic substructures, which in turn affects the accuracy of
describing the structure embedding of each device’s neigh-
borhood. Therefore, it is necessary to evaluate the impact
of different thresholds of similar substructure merging on
the performance of GraphSTSGM-DBSCAN. We selected
the thresholds for merging similar substructures to be 100,
50, 20, 0, and -10 for evaluation. Table 4 shows the effect
of different thresholds on the performance of the Graph-
STSGM algorithm. It can be concluded from Table 4 that the
GraphSTSGM-DBSCAN preprocessing algorithm achieves
optimal performance when the threshold for merging similar
substructures is 20. When the threshold is -10, the perfor-
mance of malicious device detection is low. A possible expla-
nation is that the threshold for merging similar substructures
determines the substructures included in the topic substruc-
ture, which in turn affects the composition of the device
neighborhood structure reconstruction. This threshold cannot
obtain an approximate local symmetry feature that accurately
characterizes the neighborhood structure of nodes. When the
threshold is 100, the threshold selection in formula (11) is
too high, so that similar substructures are hardly merged.
This threshold cannot obtain an approximate local symme-
try feature that accurately characterizes the neighborhood

TABLE 5. List of parameters for AW-SGM in GraphSTSGM.

structure of nodes. Therefore, the effect of the algorithm is
similar to that of GraphSTONE. One possible explanation is
that GraphSTONE has the following two shortcomings. The
first shortcoming is that an infrequent substructure in the set
of substructures obtained by an anonymous random walk is
similar to a frequently occurring substructure. When using
the substructure to reconstruct the neighborhood structure
of a node, the node is mistakenly regarded as an abnormal
node. The second shortcoming is that this method can only
find nodes with the same neighborhood structure, but cannot
find nodes with similar neighborhood structures. Therefore,
potential malicious nodes with similar neighborhood struc-
tures to the determined malicious nodes are not divided into
the same cluster, which leads to a low AUC of malicious
device detection; When the threshold is -10, the threshold
selection in Eq. (11) is too low to cause dissimilar substruc-
tures to be merged into a set of substructure types. As a
result, when the device neighborhood structure is recon-
structed, devices with dissimilar neighborhood structures will
be misclassified into one class. Therefore, the obtained local
neighborhood structure vector does not have the ability to
accurately describe the similarity of the device neighborhood
topology;

Different thresholds for merging similar substructures set
affect the performance of GraphSTSGM-DBSCAN mali-
cious device detection. Therefore, other parameters also
affect the detection performance. Table 5 shows a list of
parameters for AW-SGM in GraphSTSGM.

E. COMPARISON WITH THE LATEST TECHNIQUES
Researchers have proposed graph-based or cluster-based
detection algorithms, such as: Graph Neural Networks with
Adaptive Receptive Paths (Geneipath) [28], Label Propaga-
tion Algorithm (LPA) [29], DBSCAN [30], Struc2vec [17],
Graph Attention Networks (GATs) [31], GraphSTONE [6],
etc. The experiment compares the performance of the pro-
posed algorithm with the existing algorithms. Table 6 and
Table 7 compare the effects of the latest existing methods and
current algorithms when using Alibaba Cloud data and Cora
dataset, respectively. It can be seen from Table 6, the AUC
of the proposed GraphSTSGM-DBSCAN algorithm is 3.6%
higher than that of other existing state-of-the-art algorithms.
We consider that the GraphSTONE-DBSCAN algorithm
is a GraphSTSGM-DBSCAN without similar substructure
merging.GraphSTONE-DBSCAN can extract complete local
symmetry features, but cannot extract approximate local
symmetry features. Therefore, GraphSTONE-DBSCAN is
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TABLE 6. Effects on Alibaba cloud data (%).

TABLE 7. Effects on Cora dataset (%).

considered to be the worst case for the GraphSTSGM-
DBSCAN algorithm. In the worst case, the proposed algo-
rithm achieves the good performances regarding the AUC
exceeding those of the other state-of-the-art algorithms
by 0.9%.

It can be seen from Table 6 and Table 7 that the AUC
obtained by the GraphSTONE algorithm preprocessing is
higher than the AUC obtained by the Struc2vec [17],
GAT [31] and other algorithms. Therefore, we add similar
substructure merging to the GraphSTONE algorithm, namely
the GraphSTSGM algorithm, to obtain better preprocessing
performance. GraphSTSGM can extract approximate local
symmetry features. The AUC of GraphSTSGM-DBSCAN
algorithm is higher than DBSCAN, so we conclude that
preprocessing with GraphSTSGM algorithm has better mali-
cious device detection performance than no preprocessing.
As can be seen from Table 6 and Table 7, the Struc2vec
algorithm has the lowest AUC and recall on Alibaba Cloud
data and Cora dataset. There is little difference between
GraphSage and GraphSTONE in Alibaba Cloud data and
Cora dataset. The performance of the GraphSTSGM algo-
rithm is the best. A possible explanation is that the Struc2vec
algorithm only considers the topological relationship of
the node neighborhood and does not consider the origi-
nal information of the node, thus resulting in poor perfor-
mance. The Struc2vec algorithm judges whether two nodes
have similar structures through the same degree of node
neighborhood structure. This method can roughly judge
the similarity of the neighborhood structure of nodes, and
this method describes the topological relationship of node
neighborhoods more roughly than GraphSTSGM. Struc2vec
ignores neighborhood topological similarity between devices
when preprocessing device extraction features. The algo-
rithm ignores the analyzed information resulting in low
AUC. The GAT and GraphSage algorithms consider both
the node neighborhood topological relationship and the
original information of the node, so the performance is

better than the Struc2vec algorithm. GraphSTONE can only
extract completely local symmetric features, but cannot
extract approximate local symmetric features, so the perfor-
mance is lower than the GraphSTSGM algorithm. The AUC
of the GraphSTSGM-DBSCAN algorithm in Table 6 and
Table 7 are all better than other existing state-of-the-art algo-
rithms. Therefore, it shows that the algorithm is superior
to the existing state-of-the-art algorithms in general graph
scenarios.

For training and testing time, all of my experiments were
able to run in 1h. On the Cora data, we use the GraphSTSGM
algorithm to preprocess and obtain the local neighborhood
structure features of the device, which can be completed
within 0.5h. After that, it takes 0.5h to use the obtained local
neighborhood structure features as the input of DBSCAN
for malicious device detection. In detail, our GraphSTSGM
algorithm uses GraphLearn for graph distributed computing.
Therefore, we could not find enough literature on training,
testing time, and memory size, and we were not able to
evaluate it.

V. DISCUSSION
In this paper, the GraphSTSGM learning algorithm is used
to obtain the approximate local symmetry features that
accurately describe the structural similarity relationship of
devices. Next, the features extracted by the GraphSTSGM
learning algorithm as input of the DBSCAN for malicious
device detection. This article focuses on the impact of struc-
tural similarity relationships between devices and accounts
on malicious device detection performance. Future work will
further explore the features of device obtained by preprocess-
ing. Device will be analyzed from multiple dimensions such
as device-ip, device-androidid.

The proposed algorithm achieves better results than state-
of-the-art algorithms on datasets such as Cora. We can con-
clude that the algorithm can be generalized in scenarios such
as graph detection-based community discovery.

In this paper, the neighborhood structure of nodes is recon-
structed by topic substructure for malicious device detection.
This approach is highly interpretable.

In order to highlight the novelty and contribution of
this paper, we compare the similarities and differences
between our algorithm and existing algorithms in Table 8 and
Table 9. Table 8 compares the differences between existing
graph-based malicious device detection algorithms and our
proposed algorithm. Our proposed algorithm is equivalent
to enhancing the existing features of nodes by adopting the
topological similarity of the node neighborhood structure.
From Table 8, we can conclude that the performance of the
existing Louvain and LPA algorithms only depends on the
connection strength of nodes in the graph, and the perfor-
mance of the Metapath algorithm depends on the features
extracted by manually experience. Our proposed algorithm
uses graph representation learning for automatic preprocess-
ing. At the same time, our proposed algorithm can distinguish
the neighborhood topology relationship of nodes in the graph,
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TABLE 8. Comparison with other existing graph-based malicious device detection algorithms.

TABLE 9. Comparison with other published graph representation learning algorithms.

which not only includes the connection strength information
of the node, but also includes the neighborhood topology
structure that can describe the function of the node. There-
fore, our proposed algorithm is more suitable for malicious
device detection. Table 9 compares the differences between
existing graph representation learning algorithms and our
proposed algorithm. Our proposed algorithm is capable of
automatically extracting approximate local symmetry fea-
tures that characterize the structural similarity of node neigh-
borhoods.

In this paper, the graph is constructed and updated in days,
and the algorithm will use near-line computing in the future.

Future researchworkmainly considers two aspects, includ-
ing analysis from multi-dimensional graphs and near-line
computation. Multi-dimensional graph analysis is to analyze
the neighborhood structure of devices for more dimensions
to detection malicious devices. The goal of near-line com-
puting is to detect malicious devices in quasi-real time and
improve computing and usage efficiency. We will continue to
research the application of graph representation learning in
the malicious device detection field with the hope of further
improving the malicious device detection performance.

VI. CONCLUSION
In this paper, the GraphSTSGM algorithm is used to prepro-
cess the device-account graph to obtain the approximate local
symmetry features that describe the topological similarity
of the device neighborhood. We use the features obtained
by GraphSTSGM as the input of DBSCAN for malicious
device detection. The experiment proves that our proposed
algorithms achieve higher AUC than three of the state-of-
the-art algorithms. In addition, it can be concluded from
the experiment that the formula, i.e., the gain of combining
substructure, h

(
si, sj

)
−g

(
si, sj

)
>= η, is designed to calcu-

late the whether the two substructures should be combined.
Experimental results show that merging similar substructures

by this formula has the ability to obtain more accurate mali-
cious device detection performance. In the best case, the AUC
of GraphSTSGM-DBSCAN reached 89.2%. In the worst
case, the AUC of GraphSTSGM-DBSCAN reached 86.5%
Experimental results show that in the worst case, the AUC of
the proposed algorithm is still higher than the existing state-
of-the-art algorithms.

We verify the proposed algorithm onmultiple datasets, and
experiments show that the algorithm outperforms the exist-
ing state-of-the-art algorithms. The algorithm achieves an
AUC of 89.2% on the Alibaba Cloud dataset. The algorithm
achieves an AUC of 98.9% on the Cora[27] dataset.

The proposed algorithm can be applied in other contexts,
such as citation networks, mining in academic social net-
works, and Protein-Protein Interaction (PPI) networks. Cita-
tion networks means that we can build a citation network
based on the citation relationship between papers, and detect
the same type of paper according to the citation relationship.
This paper uses the citation network dataset Core for exper-
iments. Experiments based on the graph dataset Cora show
that the proposal outperforms the state-of-the-art algorithms
by 2.6% with respect to the AUC of node classification.
This shows that our proposed algorithm is general in other
graph-based contexts. The proposed algorithm can be used in
the mining of domain experts in academic social networks.
We use paper information, paper citation, author information
and author collaboration to build an academic social network,
and mine experts of the same domain from the academic
social network. Furthermore, the proposed algorithm can be
used for the node classification task of Protein-Protein Inter-
action networks.
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