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ABSTRACT The sheer increase in interconnected devices, reaching 50 B in 2025, makes it easier for
adversaries to have direct access to the target system and perform physical attacks. This risk is exacerbated
by the proliferation of Internet-of-Battlefield Things (IoBT) and increased reliance on the use of embedded
devices in critical infrastructure and industrial control systems. Existing anti-tamper designs protect against
limited forms of attacks and have deterministic tamper responses, which can undermine the availability
of systems. Advancements in physical inspection techniques have enabled stealthier attacks. Therefore,
there is a pressing need for more intelligent defenses that ensure a longer operational time while keeping
up with the expected increase in the capabilities of adversaries. This study proposes to enhance existing
physical protection methods by developing an intelligent anti-tamper using machine learning algorithms.
It uses an analytic system capable of detecting and classifying multiple types of behaviors (e.g., normal
operation conditions, known attack vectors, and anomalous behavior). The system also has a layered
response mechanism and recovery scheme, which reduces false alarms and prolongs the operational time.
An experimental platform was constructed and used for data collection and machine learning model training.
This study also explored the impact of adversarial learning attacks on the proposed system and subsequently
developed a countermeasure. The final prototype was capable of recognizing two types of normal operating
conditions (sheltered and exposed environments) and four types of physical attacks. It also has adaptive
response and recovery mechanisms.

INDEX TERMS Anti-tamper design, internet of battlefield things (IoBT), machine learning algorithms,
adversarial machine learning, physical attacks, hardware security.

I. INTRODUCTION
This Surviving physical attacks in a hostile environment is
of utmost importance for nowadays electronics. This need
becomes increasingly pressing with the rapid growth of the
Internet of Battlefield Things (IoBT) or Battlefield Manage-
ment Systems. It is expected that the market size world-
wide of these systems will exceed 26 billion U.S. dollars by
2027 [1]. One example of such a systems is an unmanned
autonomous vehicle (UAV). The latter allows for safer oper-
ations in enemy territories without risking human lives,
in addition, autonomous coordination can give greater pre-
cision, endurance, and reliability than humans. To exploit
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the UAV potential in military operations, these vehicles must
satisfy demanding requirements concerning robustness relia-
bility, and security. In fact, the need for ‘‘physical end-point
protection’’ was highlighted as a core security requirement
for these systems in a report by the Norwegian Defence
Research Establishment (FFI) [2]. The need for physical
protection is also crucial in numerous commercial applica-
tions such as payment terminals, military Network encryption
devices, and Pay-Tv [3].

In general, tamper protection mechanisms consist of a
combination of Tamper Detection (e.g. using sensors to
detect tampering attempts), Tamper Evidence (e.g. logging
the occurrence of a tamper event), and Tamper Response
(i.e. actions taken to protect the system upon the detection
of an attack) [4]. Tamper detection systems can be either in
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the form of switches that can recognize whether the enclo-
sure of the device has been breached and whether a special
module of the device has been displaced, or sensors capable
of noticing changes in the normal operating environment or
even circuitry. A plethora of sensors can be used for Tamper
detection, including temperature, light, voltage, pressure, and
probe sensors, with each sensor type capable of detecting a
specific attack [5]. Although defines mechanisms at the chip
level are available, these are not included in every chip of
a device due to the costly and long process of integrated
circuits development [6]. Therefore, multiple chips systems
that require a high level of security are placed in a physically
secure enclosure [6], [7]. These security boxes encompass
the whole system and protect it from physical attacks such
as drilling, etching, and probing. One example of this type
of defences is the tamper-proof envelope developed in [8],
which consists of a multi-layer mesh of conductive traces that
surrounds the system. The enclosed device performs contin-
uous measurements of this mesh to detect any open circuits,
which subsequently triggers a tamper response that consists
of zeroization of critical security parameters (CSPs) such as
cryptographic keys. The underlying assumption here is that
physical tempering is going to destroy the tracks. However,
this approach suffers from twomain issues. First, themonitor-
ing circuitry relies on static signals, which means, an attacker
could potentially force the expected voltage from an exter-
nal source, hence avoiding detection. A second drawback is
the deterministic nature of the tamper response, which may
hinder the operation of the device (e.g. accidental damage to
the tracks will trigger an unnecessary response, leading to the
removal of CSP and suspension of the device’s operations).

The above approach requires a separate battery for
the tamper detection system, therefore alternatives designs
of security boxes have also been developed for energy-
constrained applications, most notably the recent work of
Immler V et al in [9], which relies on the use of physically
unclonable functions [10]. Similar to [8], the PUF approach
in [9] uses an envelope with a fine mesh of electrodes, how-
ever, the integrity of the mesh is only checked if a crypto-
graphic key is needed. Subsequently, if the system has not
been tampered with, the correct key will be derived from the
envelope by measuring the capacitances of the mesh. This
will be next used to decrypt and authenticate the firmware
of the enclosed host system. On the other hand, a tamper
event that leads to a change in the electrical characteristics
of the envelope (e.g. removal of some tracks) will prevent the
generation of the correct value of the key, which means the
CSP remains encrypted.

The PUF approach removes the need for a separate battery
to power the tamper detection mesh; however, accidental
damage to the envelope has a more severe consequence in this
case because it will lead to a deviation of the PUF response
from what is expected, preventing the authentication of the
firmware, hence rendering the device non-functional.

Overall, existing solutions for secure physical enclo-
sure solutions [11] have several shortcomings. First, their

deterministic tamper responses may undermine the availabil-
ity of the device if detection circuitry triggers a false alarm.
Furthermore, the advancement in physical inspection instru-
ments means it can no longer be assumed that the adversary
does not know the structure of the mesh; this means breaking
into security boxes that mesh-type implementation is going
to become easier. Finally, passive monitoring techniques are
only capable of detecting attacks with known symptoms (e.g.
a tampering attack that causes an open circuit), therefore these
approaches are inherently incapable of detecting new forms
of attacks (e.g. drilling a hole without destroying the mesh or
sustained heating of the device to cause functional errors).

The above discussion shows that to withstand physical
attacks in the future, electronics systems require additional
layers of protection to keep up with expected advances on
the attackers’ side. To the best of our knowledge, none of the
existing approaches for the detection of physical tampering
attacks incorporates the use of machine learning algorithms.
The latter are increasingly used in hardware security to con-
struct defines mechanisms that are more effective. Examples
of this trend include enhanced detection of hardware Tro-
jan in [12], which uses features extracted from the design
netlist or from an on-chip measurement of electrical param-
eters to construct a machine-learning model that indicates
whether the chip has a Trojan. For example, the sensors-
based approach [13], relies on the fact that a Hardware Tro-
jan induces a range of abnormalities when activated, which
affect various on-chip data sources (performance-counters,
data streams, and current measurements).

Another example is the use of machine learning to detect
IC counterfeits [14], [15]. For example, the authors of [14]
demonstrated a technique that can identify recycled chips
through the collection of parametric measurements from on-
chip sensors, which are subsequently analysed and classi-
fied using a one-class support vector machine(SVM). This
approach relies on the fact that recycled chips have dif-
ferent electrical characteristics due to the aging of CMOS
devices [16]. Our previous work on anomaly detection has
shown the feasibility of using machine-learning techniques
to detect different form of physical attacks on embedded
devices [17].

This work proposes to enhance existing physical protec-
tion methods by developing an intelligent anti-tamper system
capable of identifying attack types and responding accord-
ingly. The proposed system can also provide tamper evi-
dence by storing attack-related data. The main contributions
are:
1) A security architecture that uses machine-learning algo-

rithms to detect a range of physical attacks, and an
comparative analysis of the performance of machine
learning algorithms and their efficacy in modeling typ-
ical environments of electronic devices and detecting
tamper events.

2) A layered tamper response mechanism that ensures
the availability of system while mitigating the risks of
physical attack.
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3) A new adversarial learning attack and a mitigation tech-
nique

4) A proof of concept hardware implementation
The remainder of this paper is structured as follows.
Section 2 explains the threat model adopted here.
Section 3 outlines the security objectives and the system
architectures of the proposed solution. Section 4 explains
the design rationale of the intelligent detection mechanism,
including a comparative analysis of the performance of
machine learning algorithms used to build this scheme.
Section 5 presents the details of the proposed tamper
response mechanism. Section 6 discusses the resilience
of the proposed approach to adversarial learning attacks.
Section 7 summarises the testing results of the hardware pro-
totype. Section 8 provides a comparative analysis of existing
methods. Finally, conclusions are drawn in section 9.

II. THREAT MODELING
It is vital to establish an unambiguous threat model to iden-
tify the possible attack scenarios one might anticipate that a
system will encounter during its operation. The threats can
be classified as deliberate or accidental. An adversary insti-
gates deliberate threats while accidental threats may occur
naturally, for example, when there are changes in the oper-
ating environment. Deliberate threats are further divided into
known and unknown. The former type includes previously
encountered attacks mechanisms such as drilling, cold boots,
and temperature attacks [18]. Unknown attacks are unpre-
dictable and dependent on the attacker’s capabilities and the
functionality of the targeted system. The remainder of this
section outlines the attack mechanisms considered in this
work and explains the assumed capabilities of the expected
adversaries.

A. ATTACK MECHANISMS
Three types of attack mechanisms are considered for the
development of the proof of concept:

1) TEMPERATURE ATTACKS
This approach consists of running an electronic device out-
side the range of its operational temperature. In this context,
one can differentiate between two types of attacks.

a: HEATING ATTACK
This consists of using extensive heating as a fault injec-
tion technique, which has been experimentally demonstrated
in [19], wherein the authors showed how to successfully
compromise the security of an RSA decryption. Memory
blocks are also vulnerable to this type of attack, as the
extreme temperature can induce errors in both volatile and
non-volatile implementations [20]. This attack can also be
performed relatively cheaply, assuming the adversary has
sufficient knowledge of the system under attack. It should be
mentioned here that other types of fault injection mechanisms
also exist such as the use of electromagnetic radiation, laser
beam, or power supply glitches [20].

b: FREEZE ATTACK
This consists of inducing a significant reduction of the
temperature of random-access memory (RAM) to steal the
data. This type of memory retains data for several minutes
after being powered down when a freezing attack is per-
formed [21]. The latter is done by cooling the RAM with
a cooling agent such as liquid nitrogen [22]. A static RAM
(SRAM) will require a temperature as low as −20 ◦C to
perform a freezing attack, in some cases; the adversary can
expose the RAM to ionizing radiation to burn in the retained
memory permanently after freezing the drive. This allows
more time for the attacker to extract sensitive information
inside. These attacks became increasingly simple as the phys-
ical size of the design shrunk.

2) DRILL ATTACKS
This attack applies to enclosed devices and aims to drill a hole
into the protective enclosure, which, in turns, facilitates more
advanced physical attacks. A common scenario, in this case,
is for the adversary to wage a subsequent freezing attack by
pouring liquid nitrogen through the opening.

3) OPEN DEVICE
This attack applies to devices that are placed in protective
enclosures. The aim here is to expose the underlying hard-
ware and carry out further invasive attacks.

In practice, these types of security enclosures can be bro-
ken into using a mechanical drill as described above or using
other methods such as thermal drilling, which can be detected
using temperature or vibration sensors. Nevertheless, it is
vital to have a mechanism in place (i.e. light sensors) to detect
if the enclosure was opened, which acts as the last protection
layer if everything else fails.

B. CAPABILITIES AND GOALS OF THE ADVERSARY
There are two types of applications, wherein anti-tamper
design is mostly needed.

i. Critical infrastructure means buildings, systems, and
other assets whose destruction or disruption would have
a major negative impact on national security, public
health, and the economy. Internet o things technology is
increasingly being deployed for monitoring, control, and
data collection in various areas of critical infrastructure
such as power plants, water supply systems, and smart
grids. Physical security is required in this case to prevent
services disruption and protect sensitive information.

ii. Military systems in a contested environment include a
wide range of electronic devices used for espionage and
undercover activities.

In both of the above cases, it is reasonable to assume that the
adversary is either a large criminal organization or a state-
funded actor, as they are the most likely beneficiaries of
attacking such systems [23].

Therefore, this work assumes the attacker has physical
access to the target system and can wage several sophisticated
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tamper attempts. It is also assumed that they have full
knowledge of the internal system architecture, including the
encryption algorithms, security protocols, and communica-
tion infrastructure.

Based on the above discussions, the adversary can have one
of the following three objectives:

1) Undermining the integrity of the system by inducing
faulty behavior, which subsequently leads to a malfunction.

2) Stealing the sensitive information stored on the device
3) Sabotaging the entire system, hence undermining its

availability.

III. PROPOSED COUNTERMEASURE
A. SECURITY OBJECTIVES
The first step to designing secure systems is to define clearly
the security objectives based on the most likely threats
and related attack mechanisms. Based on the discussion in
section 3, themain objectives of the proposed countermeasure
are:

1) CONFIDENTIALITY
This is to ensure the protection of sensitive information and
critical security parameters. This is a vital requirement given
the fact that the systems are operating in hostile territories
(e.g. a drone can have secret data that must not fall in the
hands of the enemy such as origin, mission, and likely desti-
nations).

2) INTEGRIT
This is to ensure the system continues to operate correctly and
provide protection against tamper attempts.

3) AVAILABILITY
This is to ensure the system remains functional for the
expected duration of its operation. The proposed counter-
measure aims to ensure availability by mitigating the impact
of accidental threats (i.e. those that occur naturally such as
changes in the environment). However, the availability of
the systems can also be undermined by a deliberate physical
attack, such a risk cannot be completely removed given the
assumption that the adversary can access the target system,
and destroy it or shut it down.

To deliver the above objectives, this work develops an
anti-tamper architecture that combines the use of a secure
enclosure with additional data analytics ability, which gives
the system the capabilities of filtering out false alarms,
and distinguishing between different attacks scenarios, hence
deploying more effective defenses.

B. SYSTEM ARCHITECTURE
The envisioned solution consists of an intelligent tamper
detection SCHEME and a layered response mechanism.
To design, such a system one needs to measure the parameters
of the environment, analyse the data and trigger an appropri-
ate defines.

The monitoring part of the system requires the use of
sensors, whose type and specifications are dependent on the

FIGURE 1. An illustration of the architecture of the proposed defense
system.

operating conditions and the type of attacks to be detected.
This work considers two types of working environments;
sheltered and exposed. The former may apply to network
encryption devices while the latter applies to espionage and
related military devices.

The attacks listed in section 2 require temperature, pres-
sure, movement, vibration, and light sensors, respectively.
These are also sufficient for environmental monitoring pur-
poses. The specifications of chosen sensors have been identi-
fied based on the characteristic of each attack. For example,
the temperature sensors have a range of−40 to 85 ◦C, which
allows them to detect both forms of temperature attacks (heat
and freeze).

The second part of the system is responsible for data ana-
lytics and attack detection. This is achieved through building
machine-learningmodels of attacks mechanisms based on the
output of the sensors’ array. Section 4 will explain the experi-
mental setups and the procedures used for data collection and
training of the machine learning models.

The third part of the system is the response mechanism,
which implements defences suitable for the type of attack
detected. Ideally, such a system can also have tamper evi-
dence capabilities such as recording attack data.

An illustrative diagram of the proposed defines is shown in
figure 1. It consists of a secure enclosure that surrounds the
whole system, sensors that are located in relevant locations on
the target system, and the data analytics and response mech-
anisms. In addition, the proposed countermeasure requires a
backupmemory to mitigate the risk of power failure. External
tamper-proof memory is also required to store attack-related
data and critical security parameters if needed.

IV. ATTACK DETECTION AND CLASSIFICATION SYSTEM
A. DESIGN RATIONALE
II. The purpose of the detection part of the system is to
analyze incoming data from the sensors to establish whether
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FIGURE 2. Principles of the proposed anomaly detection/classification
scheme.

there is an attack. One approach to designing such a system is
to use a multinomial machine learning approach [24], capable
of classifying multiple behaviors. However, this approach
on its own is not reliable because this type of algorithm is
very likely to misclassify data points, corresponding to new
types of attacks due to the known bias effect. Another design
approach is to use outlier algorithms [25], which are excellent
at identifying the important features that are associated with
specific behaviors. However, the use of the outliers modeling
approach, on its own, means that some data points can fall
into an unknown zone, where none of the outlier models can
account for them. This is because the constructed models
are ignorant of the other behavior types leading to decision
boundaries overlapping and resulting in contested data points,
which may cause misclassification errors.

III. Based on the above considerations, it has become clear
that the detection system cannot be constructed using only a
multinomial classification or an outlier modeling approach.
Therefore, this work adopts an architecture for the detection
scheme, wherein the outlier models are used initially to detect
known behaviors, subsequently, a multinomial classifier is
invoked to resolve contested points. Figure 2 illustrates the
working principles of the proposed data analysis and behavior
classification scheme.

Training the outlier models can be done using a multiclass
algorithm, and giving it two sets of training data, behavior,
and non-behavior data points, which generates very accurate
models that would create gap-less classification; however,
this would suffer from the same known bias issue as themulti-
nomial algorithms. Therefore, a better approach to training
these models is to use outlier algorithms, where the only
training data given is the behavior that it is being modeled

(e.g. the data points are the output of the sensors under a
specific attack scenario). The latter approach was adopted in
this work.

B. EXPERIMENTAL SETUPS
To select the appropriate machine algorithm for the data
analytics part of the system, an experimental platform was
constructed. The latter consists of a Raspberry Pi4 device
incorporated with an array of sensors that monitor light,
temperature, pressure, altitude sensor, humidity, and move-
ment. A motion sensor was also used to control the response
mechanism as will be explained later. The system was placed
in an opaque protective enclosure, as shown in figure 1.

Next, data were collected for the following cases:

a) Normal operating conditions. Two scenarios have been
studied, sheltered (i.e. indoor) and exposed (i.e., outdoor)
environments.

b) The device is under attack, wherein four attack scenar-
ios are considered, heating, freezing, open device, and
mechanical drill. The attacks have been carried out in
a secure lab environment. Three replicas of the exper-
imental platforms had to be created to account for the
destructive nature of such attacks.

For each of the above cases, a Python program was created
to run on the Raspberry Pi when data was to be collected.
The program records the sensors’ measurements for each case
into a CSV file for later analysis. These files were prefaced
with information related to the test (duration and scenario of
the test, the refresh rate of the sensors, etc.). The following
features were subsequently extracted from the sensors read-
ings: temperature, pressure, humidity, total light, visible light,
infrared, full-spectrum light, as well as theX-axis, Y-axis, and
Z-axis accelerations. For each experiment, 10000 data points
were collected.

C. COMPARATIVE ANALYSIS OF OUTLIER ALGORITHMS
Several outlier algorithms have been evaluated to identify
the most accurate anomaly detection algorithm for each type
of behaviour. Evaluation metrics have been computed using
the scikit-learn python library [12]. The outlier algorithms
required a contamination value, which represents the propor-
tion of outliers present in the training dataset, and this has
been evaluated to be 0.1.

1) NORMAL BEHAVIOUR IN AN INDOOR ENVIRONMENT
A model of the normal environment was created based on
the data collected as described above. Three testing sets
have been employed; one containing only tamper data, one
containing a mixture of normal data and attack data, and
a third set containing only normal data. In each case, the
accuracy, recall, precision, and the F1 score have been cal-
culated for each algorithm. Accuracy determines the per-
centage of correct predictions. When assessing the different
machine learning models using the test set containing only
tamper data, the classification accuracy obtained for all tested
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FIGURE 3. Performance comparison of outlier algorithms or normal
behaviour indoor using a test set containing normal data only.

FIGURE 4. Performance comparison of outlier algorithms for normal
behaviour indoors using a test set containing a mixture of normal and
tamper data (tamper analysis).

algorithms was 100%. The accuracy of the machine learning
algorithms was comparable in the remaining data sets, except
for the isolation forest algorithm, which seems to have lower
accuracy, as shown in figures 3 and 4 respectively. Accuracy
is not the only metric that should be considered. Precision
(i.e. number of true positives divided by the sum of true pos-
itives and false positives) and recall (i.e. the number of true
positives has been determined divided by the total number of
points that should have been classified as true positives) are
also important. F1 score combines both precision and recall.
A precision value of ‘‘1’’ suggests the classification algorithm
does not generate false positives (i.e. no attack points are
classified as normal behaviour). A recall value of ‘‘1’’ suggest
the algorithm has no false negatives (i.e. no normal points are
classified as an attack). The results obtained from the above
analysis indicate the one-class support vector machine has
slightly better overall accuracy (96%), so it was chosen to
model the normal behaviour of the system. The experiment
above was also carried out in an exposed environment (i.e.
the device was placed outdoor). It was also found that the
one-class support vector machine provided the best overall
results.

2) ATTACK SCENARIOS
The outlier detection models for each considered attack have
been constructed similarly. Two test sets have been employed,

FIGURE 5. Performance comparison of outlier algorithms for freezing
attack using a test set containing a mixture of normal and tamper data.

FIGURE 6. Performance comparison of outlier algorithms for the heating
attack using a test set containing a mixture of normal and tamper data.

one containing only data representing the tamper event under
test (inlier test set), one containing normal behaviour data.
A 100% classification score was again obtained for all algo-
rithms when assessed with the test set containing normal
environment data. The results of the inlier test are depicted in
figures 5, 6, 7, and 8 respectively. It can be observed that the
one-class support vector machine models produce marginally
better accuracy in the case of the freezing, open device, and
drill attacks, respectively, therefore it was chosen for these
cases. For the heating attack, the isolation forest model was
chosen as it has the best overall results.

3) COMPARATIVE ANALYSIS OF MULTICLASS ALGORITHMS
The multinomial algorithm is employed to settle disputes
between the outlier models, as shown in figure 2. Therefore,
it is not expected to be trigged frequently so algorithms that
are more complex can be employed in this case. The machine
learning models have been constructed based on the data
collected previously, which include typical behaviours and
attack scenarios. The testing used a python script that was
developed based on the scikit-learn package, which included
all the algorithms being considered. Three evaluation metrics
are used, accuracy, F1 score, and the lowest accuracy. The
latter is the lowest precision value associated with a single
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FIGURE 7. Performance comparison of outlier algorithms for an open
device attack using a test set containing a mixture of normal and tamper
data.

FIGURE 8. Performance comparison of outlier algorithms for an open
device attack using a test set containing a mixture of normal and tamper
data.

FIGURE 9. Performance comparison of multiclass algorithms.

class, this metric allows for insight into whether the algorithm
is reliable at its worst. The results, shown in figure 9 show that
K-nearest, the Decision tree, and the random forest have the
best performance in this case.

V. TAMPER RESPONSE DESIGN AND IMPLEMENTATION
The purpose of the tamper response scheme is to deploy
defences mechanisms appropriate for the detected attacks and

ensure the continued operation of the device in case of false
alarms.

A. DESIGN RATIONALE OF THE LAYERED TAMPER
RESPONSE
This work has adopted a layered approach for designing
the response mechanism, wherein the system can recognize
distinct risk levels and respond accordingly. The advantage
of such an approach is twofold:
• It allows the system to modulate its response depending
on the risk level, preventing undue severe measures
owing to false alarms.

• This makes it feasible to keep the system in sleep mode
when the risk is perceived to be low, thereby preserving
energy.

Therefore, the system was constructed to include the follow-
ing risk levels:
Level 0: this is the lowest level of risk, wherein the system

remains largely in a sleep mode and only the motion sensor
is active. This stops the detection algorithm from constantly
running and wasting energy.
Level 1: this level is activated as soon as the motion sensor

is triggered, indicating that a potential adversary is approach-
ing. Upon reaching this level, the system wakes up, reads the
output of the sensors, and runs the detection algorithm. It will
subsequently, move back to level 0 if there is no attack or
level 2 if an attack is detected. In the latter case, appropriate
countermeasures are deployed.
Level 2: this is the highest level of risk, wherein the attack

detection is run again to confirm the attack is still being
carried out before triggering the last layer of defences.
Recovery Mode: the system moves to this state if no more

attacks are detected after the deployment of level 1 defences.
Recoverymeasures are implemented to ensure the system can
go back to a normal operational mode.

B. DESIGN RATIONALE OF THE PROPOSED DEFENCES
The description and rationale for each of the defences of the
tamper response mechanism are explained below.

1) INFORMING THE SYSTEM OWNER
This work has used a GSMmodule to transmit SMSmessages
to the owner when an attack is detected or a false alarm is
raised. This defines provides tamper evidence and allows the
owner to take extra measures if needed.

2) SUSPENDING ALL SENSITIVE OPERATIONS AND MOVING
THE CSP TO THE TAMPER-PROOF MEMORY
This is deployed in the first phase of the level 1 response to a
heat/unknown attack to prevent the adversary from waging a
fault injection attack that reveals the encryption key.

3) OVERWRITING ANY CSP STORED IN RAMs
This is deployed in the first phase of the level 1 response to
freezing/drill or open device attacks. It is designed to prevent
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a scenario wherein the adversary opens the device’s enclosure
and pours liquid nitrogen onto the SRAM block. In this case,
overwriting all the sensitive data stored in the SRAMmemory
will render such an attack less effective [26].

4) DELETION OF CSP FROM THE EXTERNAL MEMORY
This is deployed in the first phase of the level 2 response
to heart/unknown attacks. This zeroization process [27] is
designed to prevent the adversary, who is assumed to have
broken the device enclosure, from obtaining the encryption
key through further invasive attacks.

5) STORAGE OF SENSORS DATA IN A TAMPER-PROOF
MEMORY
This is deployed in the first phase of the level 1 response to
unknown attacks. It is designed to allow future analysis of the
data and update the detection model with new attack vectors.

6) POWERING DOWN THE DEVICE
This is deployed in the second phase of the level 2 response
to all attacks. It is designed to prevent the adversary, who is
assumed to have broken the device enclosure and have access
to the system, from carrying out any further analysis.

7) RECOVERY ACTIONS
These measures are designed to ensure the device can
recover from a failed attack or a false alarm. The steps
taken depend on the attack that was detected initially. For
heart/unknown attacks, the system will retrieve the CSP from
the tamper-proof memory and resume its operations. For
other types of attack, a new CSP will need to be obtained
through a secure key provision scheme.

Figure 10 includes a detailed diagram of the tamper
response mechanism, which shows where each of the above-
mentioned defences is invoked. The responsemechanismwas
implemented using Python and was subsequently integrated
with the detection scheme presented in section 3.

VI. RESILIENCE TO ADVERSARIAL LEARNING ATTACKS
Adversarial machine learning refers to a set of attacks tech-
niques against intelligent systems, wherein the adversary
aims to perturb, poison, or seal the underlying machine learn-
ing models [28], [29]. These types of attacks are of particular
concern in safety-critical applications [30].

This section explores the use of this mechanism to under-
mine the operations of the proposed tamper-proof detection
mechanism and develops a countermeasure to enhance the
security of our solution.

A. THREAT MODEL
The threat model and assumptions in section 2 are still valid in
this case. However, these may not be sufficient for an attacker
to devise an adversarial machine learning attack. Therefore,
this section assumes the adversary has the following addi-
tional capabilities:

FIGURE 10. Tamper response flow.

1) White-box knowledge of the tamper detection archi-
tecture, which is the functionality of the tamper detection
system as well as all the machine-learning models and their
respective parameters.
2) While-box knowledge of the tamper response

mechanisms.
The primary goal of the adversary is to deceive the detec-

tion system, hence bypassing the defences.
To achieve their objectives, the attacker has two possible

routes, either poison the training data or spoof the system.
The first approach is highly unlikely to succeed for the type
of applications being considered (e.g. defines, critical infras-
tructure), this is because these systems are normally devel-
oped and trained in secure locations. Therefore, this work
explores alternative approaches to wage adversarial learning
attacks, as will be explained next.

B. ADVERSARIAL ATTACK DESIGN
A closer inspection of the layered response mechanism in
figure 10 indicates that the best way to bypass the defences is
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FIGURE 11. Principal component analysis of multiclass classifier training
data.

to trick the detection system into classifying a serious attack
as normal behaviour or even a mild attack.

There are two ways the adversary can achieve this goal.
The first approach is to cause the outliers models to misclas-
sify an ongoing attack. This was deemed highly unlikely as
thesemodels amount to a series of decision boundaries, which
can only bemanipulated by poisoning the training data, which
is not possible. A second method is to target the second phase
of the detection system i.e. the multi-nominal classifier.

To explore the feasibility of this approach, principal com-
ponent analysis (PCA) was conducted to visualize how
the different attack behaviours were distributed in space,
as shown in figure 11. It was found that all but one defined
attack behaviour, the open lid attack, are closely packed in
one cluster. This means it may be possible to cause the
multi-nominal models to misclassify a serious attack, hence
triggering an incorrect or ineffective response. It was subse-
quently observed, from the response mechanisms in figure
10, that the only effective approach is to get the system to
misclassify a drill attack as a heating attack. This is because
the level 1 response to a heating attack does not delete the
critical security parameters from the RAM, which may give
the attacker the time required to drill a hole into the box
and freeze the memory before the system has a chance to
overwrite its sensitive contents.

To achieve this goal, there is a need to create ‘‘combined
data points’’ wherein the temperature sensor represents a
heating attack while the remaining sensors’ outputs represent
a drill attack. This was achieved by waging a simultaneous
heating and drilling attack.

The combined data points have been created using a gener-
ative adversarial network, which was constructed and trained
based on the approach in [31] as illustrated in figure 12.

FIGURE 12. Adversarial attack data generation process.

TABLE 1. The impact of adversarial data on detection accuracy.

The real adversarial data attack was based on the combined
attack points described previously (a heating and drilling
simultaneous attack). A linear neural network architecture
was used for the generator. A similar structure was used
for the discriminator, wherein an additional linear layer and
an increased number of neurons in the middle layers were
added. In both models, Pytorch’s ‘‘Dropout’’ layer was used
to reduce the risk of overfitting our models. The hyperactive
parameters used in this case are as follows. A learning rate of
0.00001, a batch size of 50, and 1000 epochs for training. The
training process is as follows. The generator generates new
data points based on information from previous epochs and
random noise. These ‘‘fake’’ points are subsequently passed
to the discriminator along with the real data. The prediction
error is fed back to each model. The process is repeated until
the specified number of epochs has been reached.

Next, the trained generator model was used to create
50,000 adversarial data points. The latter was then applied
to the detection algorithm from section 2. The results are
summarised in Table 1.

The results indicate that 8% of the adversarial data points
are misclassified, all of which have invoked the multiclass
classifier according to the description of the detection system
in figure 2. This reduction in the detection accuracy shows
that it may be possible in a small number of cases to deceive
the detection system. This may not be acceptable in certain
applications; therefore, next section develops a countermea-
sure for this type of attack.

C. COUNTERMEASURES FOR ENHANCED PROTECTION
FROM ADVERSARIAL ATTACKS
The previous section has demonstrated that the adversarial
attack was successful in 8% of the cases. To remove such
risk, the design of the detection system should be enhanced to
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reduce such probability to 0%. This was achieved by retrain-
ing the with adversarial examples included in the dataset as
suggested in [32]. To implement this approach, the adver-
sarial data points were added to the training dataset of the
Random Forest algorithm used for the multi-nominal clas-
sifier. The latter was re-trained and tested using a test set
that included a mixture of adversarial data points and real
attack data. The newly trained model was able to classify all
adversarial data points correctly.

VII. PROTOTYPE DEVELOPMENT
A prototype of the anti-tamper design was built to test the
fully integrated system. This was constructed using the same
experimental platform described in section 3 and consists
of the external enclosure, detection system, and the tamper
response mechanism as depicted in figure 1. The system was
tested for the following behaviours. Normal operating con-
ditions: the device was placed indoors and the output of the
detection algorithm and response mechanism was monitored.
The system was initially placed in a sleep mode. Next, the
system was awakened by triggering the motion centre and
was able to detect successfully normal operating conditions.
For the heating attack, the ambient temperature was slowly
increased, until it hit around 60 ◦C. At the start and end of
the test, the behaviour classification program gave the correct
output. At the start of the test, the system detected a normal
operating condition. At the end of the test, a heating attack
was detected, which triggered the response mechanism to
initially move the encryption key to the external memory and
subsequently delete it (level 2 response). Next, a mechani-
cal drill was used to create a hole in the metal enclosure.
This was also detected correctly and led to overwriting the
non-volatile memory initially. The attack continued to test
level 2 defines, which resulted in a power shut down of
the device. The open device attack was emulated by lifting
the cover of the enclosure, which triggered the light sensors
and activated the corresponding response mechanism. To test
the design’s capability of detecting unknown behaviour, the
enclosed device was repeatedly shaken. This behaviour was
not learned previously. This was classified as an unknown
attack; the corresponding sensor data have also been stored
in the external memory. Finally, a freeze attack was emulated
with a deep freeze aerosol spray that cools down to −51 ◦C,
which triggered the overwriting process. Overall, the test
results have shown that the prototype satisfies the design
requirements.

VIII. COMPARISON WITH EXISTING SOLUTIONS
Existing anti-tamper designs can be classified into two cate-
gories, Mesh-based and PUF based. Mech-based techniques
consist of a multi-layer mesh of conductive traces embed-
ded into the secure enclosure. The integrity of this mech is
constantly monitored to detect physical tampering [6], [8].
A PUF-based approach relies on the intrinsically unique char-
acteristics of a fine grid of connections that are embedded into
a secure enclosure [9]. This is used to generate a distinctive

TABLE 2. Comparative analysis with existing anti-tamper design of
security boxes.

digital identifier for each device, which is subsequently used
to derive a decryption key required to decipher sensitive
data stored on the device. Any damage to this grid by a
physical attack will make it impossible to generate the key;
therefore, the adversary will only have access to encrypted
data. Mesh-based approaches require an external battery to
run the continuous monitoring. On the other hand, PUF-
based techniques only check the integrity of the grid when the
system is required to walk up, which makes it more energy-
efficient, however, a PUF-based approach does not allow
information to be retrieved if the grid is damaged, as this will
prevent the generation of the correct key. Table 2 compares
the above-mentioned techniques with the proposed method.
The comparison is performed using three categories, the char-
acteristics of the anti-tamper design, the security properties,
and the energy requirements.

In terms of anti-tamper characteristics, the proposed
approach has a tailored responsemechanism that is dependent
on the attack type compared to the deterministic responses of
existing types, which makes it more effective. In addition, the
proposed solution defends against multiple forms of attacks.
Another point to highlight here is that the CSP is recoverable
in both the Mesh-based and the ML-based techniques, which
is not the case for the PUF method as explained above.
In addition, the proposed method provides tamper evidence
through the storage of attack data as explained in section 5.
In terms of security properties. The use of machine learning
makes it feasible for the system to recognize the normal oper-
ating environment and distinguish between different types of
attacks. As a result, the proposed solution can reduce the
number of false alarms and respond appropriately to differ-
ent types of attacks, which enhances the availability of the
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system. Existing tamper mechanisms can guarantee system
integrity for a specific attack scenario ( i.e. physical damage),
while the proposed solution can recognize and defend against
more types of attacks, in addition to its capability to recognize
new forms of behaviour.

Finally, in terms of energy requirement, the PUF-based
solution is the most energy-efficient approach.

IX. CONCLUSION AND FUTURE WORK
The proliferation of the Internet of Battlefield Things (IoBT)
combined with the increased reliance on the use of embed-
ded devices in the critical infrastructure and industrial
control systems have significantly increased the need for
anti-tamper design techniques, which protect electronics sys-
tems deployed in a hostile or physically exposed environ-
ment. Existing methods that rely on monitoring the electrical
characteristics of a mesh-based grid fitted onto a security
enclosure may not be sufficient, due to the limited forms of
threats they can mitigate, and the deterministic nature of their
responses, which undermine the system’s availability in case
of false alarms. Other approaches that use physically unclon-
able functions provide a more energy-efficient solution but
suffer from the same shortcomings, moreover, it may lead to
irrecoverable loss of data in case of accidental damage to the
enclosure. This work proposed an autonomous anti-tamper
design using machine learning algorithms. The essence of
this approach consists of using an analytic system capable
of detecting and classifying multiple types of behaviours
(e.g. normal operation conditions, known attack vectors,
and anomalous behaviour). The system also has a layered
response mechanism and a recovery scheme, which reduces
false alarms and prolongs operational time. An experimental
platform has been built and used to train the machine learn-
ing models and explore the efficacy of available algorithms.
Testing results of the final prototype have demonstrated the
capability of the system to indenting a range of known attack
mechanisms (e.g. temperature attack, mechanical drilling,
Device open. . .), in addition to its ability to record new forms
of attacks. This work has also investigated the impact of
adversarial learning attacks against the proposed system and
devised a mitigation technique. Future work will extend the
systems to include other forms of physical attacks such as
electromagnetic radiation and power supply glitches. It will
also explore the trade-off between performance and security
requirements, to reduce overheads.
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