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ABSTRACT Spectrum-sparse signals are vital for wideband radar and wireless communication applications.
A high-speed analog-to-digital converter (ADC) with the capacities of tens of gigahertz sampling rates
is often required to acquire these signals. In this work, an enhanced photonic-assisted sampling approach
with the combination of the photonic-assisted time-interleaved ADC and compressed sensing techniques is
presented, which enables the measured signal to be reconstructed through very few samples by utilizing the
sparsity of the spectrum-sparse signal. An ultrahigh spectral resolution Fourier dictionary was introduced
to suppress the spectrum leakage and obtain the actual sparse expression of the spectrum-sparse signals.
Moreover, a layered tracking orthogonal matching pursuit signal recovery algorithmwas employed to reduce
computational complexity and enhance processing speed. The performance of the proposed approach has
been investigated via simulations and laboratory experiments by varying the applied spectrum-sparse signals
over 100 times. The experimental results demonstrate that the proposed method can capture the blind-
frequency spectrum-sparse signal at an equivalent sampling rate of 1 GS/s by utilizing four parallel ADCs
with a sampling rate of 50MS/s. It is proven that the proposed approach achieves∼5 times higher equivalent
sampling rate than that of the conventional PTIADC at the same sampling rate. This work provides a valuable
method for acquiring spectrum sparse signals in practical applications.

INDEX TERMS Photonics-assisted ADC, compressed sensing, time-interleaved, signal recovery algorithm.

I. INTRODUCTION
Spectrum-sparse signals are crucial formanymodern applica-
tions, including multi-frequency signals detection, wideband
radar, wireless communication, advanced instrumentation,
etc. [1], [2]. In these applications, the frequency component of
these signals may be sparsely spread over a broad spectrum,
and there is little prior knowledge of their frequencies. When
the signal contains high-frequency components, a high-speed
analog-to-digital converter (ADC) is required to realize the
acquisition with the traditional Nyquist-Shannon sampling
theory [3], [4]. However, it is challenging for a single ADC
to achieve several tens of gigahertz sampling rates due to
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the inherent bandwidth bottleneck associated with electronic
techniques [5], [6].

Time-interleaved ADC architecture is a well-known sam-
plingmethod to overcome the bottleneck of high-speedADCs
[7]–[9]. Different sampling clocks have the same sampling
rates and equally-spaced phases in this system. All outputs
of multiple ADCs are recombined at the combiner to obtain
a digital result, whose equivalent sampling rate is increased
by a factor of M (M is the number of parallel ADCs).
It should be noted that timing jitter and clock skew would be
introduced by the electronically sampling clocks and environ-
mental variations. To improve clock skew and timing jitter,
a photonic-assisted time-interleavedADC (PTIADC) scheme
is proposed [9], [10]. In the PTIADC system, optically stable
clocks work as sampling clocks, and an array of electronic
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ADCs electronically quantizes the measured analog signal.
Since the time jitter of optically sampling clocks is orders of
magnitude better than that of electronic ones, and the phase
of optically sampling clocks can be conveniently adjusted
by utilizing the variable optical delay lines (VODLs), the
PTIADC method enables better performance of sampling the
measured analog signal [11], [12].

The emergence of compressed sensing (CS) technology
provides a promising solution to improve the performance
of the photonic-assisted ADC scheme. CS theory points out
that if the signal itself or in a transform domain is sparse,
the measured signal can be reconstructed through much
fewer projections by utilizing the signal recovery algorithm
[13]–[15]. The idea of CS is that the spectral information
of these sparse signals is much less than their bandwidth,
and few projections carry all the useful information of the
original signal [16]–[18]. In 2011, Nicholsa et al. proposed
a compressively sampled photonic link to sample 20 GHz
sparse signals, which employs a 40 GHzMach-Zehnder mod-
ulator(MZM), a Pseudo-RandomBinary Sequence (PRBS) at
a Nyquist rate of 40 GHz for random modulation, and with a
4 GS/s, 8-bit electrical digitizer on the output [19]. In 2012,
Liang et al. demonstrated a photonic-assisted 8-channel CS
system for Radio Frequency (RF) signal acquisition, which
adopts a PRBS to generate a random measurement matrix
to compress RF spectrum, and an MZM to realize multi-
channel signal mixing [20]. In 2017, Guo et al. implemented
a photonics-assisted CS system for wideband spectrum sens-
ing. This four-channel CS system enables the acquisition of
multi-tone signals with frequencies up to 5 GHz by using
120-MHzADCs, PRBS, and intensitymodulators [21]. These
photonics-assisted CS schemes enable the perfect reconstruc-
tion of the spectrum-sparse signal. However, the measured
signal must be mixed with PRBS at or above its Nyquist
rate, which may be a challenge in these applications with
ultrahigh bandwidth. Several schemes have been reported to
overcome this challenge based on the approaches of opti-
cal mixing and photonic time-stretch [22]–[24]. In 2022,
Yang et al. demonstrated a broadband signal acquisi-
tion with an ultrahigh sampling compression ratio based
on continuous-time photonic time stretch and CS. The
continuous-time photonic time-stretch stage can slow down
the input signal and provide an unlimited sampling time aper-
ture. Thus, the rate of PRBS can be significantly reduced [24].
However, the implementation of such a photonic time stretch
module may significantly raise the system’s complexity and
cost.

In this work, a CS-enhanced PTIADC scheme is proposed.
Unlike other PTIADC methods, the phase differences
between sampling clocks are unequal-interval and ran-
domly selected. Furthermore, an ultrahigh spectral resolution
Fourier dictionary is introduced to suppress the spectrum
leakage and obtain the actual sparse expression of spectrum-
sparse signals in the frequency domain. In addition, a layered
tracking orthogonal matching pursuit (OMP) signal recovery
algorithm is advanced to reduce computational complexity.

The advantage of the proposed method is a higher effective
sampling rate by utilizing CS technology to reconstruct the
original signal without the requirement of PRBS and the
need to change the overall structure of the PTIADC system.
Experimental results show that the proposed method achieves
a 1 GS/s equivalent sampling rate by employing four sub-
ADCs with sampling rates of 50MS/s, which is ∼5 times
higher than the conventional PTIADC. These results are
promising in the acquisition of spectrum-sparse signals.

II. SYSTEM CONFIGURATION AND
THEORETICAL ANALYSIS
A. SAMPLING ARCHITECTURE
An illustrative scheme of the proposed CS-enhanced
PTIADC sampling method is shown in Fig. 2, which
comprises four parallel sampling channels (sub-ADC1,
sub-ADC2, sub-ADC3, and sub-ADC4) and an optical clock
module (clk1, clk2, clk3, and clk4). First, the measured spec-
trum sparse analog signal E(t) is concurrently sampled by
four parallel ADCs clocked at the same low sampling rates
with the given phase differences to obtain four sampling
sequences E1, E2, E3, and E4. Then these samples are
re-sequenced into a set of sampling sequences Y (namely
observation signal Y). Subsequently, the original signal is
recovered from the observation signal Y by utilizing the
signal recovery algorithm of CS technology.

FIGURE 1. Scheme of the proposed CS-enhanced PTIADC sampling
method.

Set the sampling duration of the measured signal as T ,
and the sampling rate of four low-rate ADCs as fs. Let the
expected high sampling rate of the recovered signal be fe, thus
the equivalent sampling time interval of the recovered signal
is Te (Te = 1/fe), and Te has the following relationship with T

Te =
T
N
, (1)

where N is the number of samples of the expected high
sampling rate recovery signal.

LetE denotes the samples of themeasured signal quantized
at the equivalent sampling rate, which can be expressed as

E[m] = E(mTe), 1 ≤ m ≤ N . (2)

The sampling sequencesE1,E2,E3, andE4 are obtained by
four low-rate ADCs samples with the given phase differences,
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which can be expressed as
E1[m] = E(mTs), 1 ≤ m ≤ M1

E2[m] = E(mTs + τ21), 1 ≤ m ≤ M2

E3[m] = E(mTs + τ31), 1 ≤ m ≤ M3

E4[m] = E(mTs + τ41), 1 ≤ m ≤ M4,

(3)

where M1, M2, M3, and M4 are the numbers of samples
obtained from sub-ADC1, sub-ADC2, sub-ADC3, and sub-
ADC4, respectively. τ21, τ31, and τ41 are the time differences
with the first sampler, respectively. The proposed sampling
method obtains M (M = M1 + M2 + M3 + M4) non-
uniform sparse samples. Therefore, the sampling duration of
the measured signal T meets

T = N/fe ≈ M/(4fs) (4)

The observation signal Y in the sampling duration of T can
be expressed as Y = [E1

T,E2
T,E3

T,E4
T]T.

According to the CS theory, if the signal itself or in a
transform domain (9 is the sparse basis matrix) is sparse,
the high-dimensional signal E can be projected onto a low-
dimensional space by constructing an eligible observation
matrix 8 to obtain the low-dimensional observation sig-
nal Y, and then the signal recovery algorithm can be used
to reconstruct the measured signal precisely. Therefore, the
critical technology of applying CS theory in the proposed
PTIADC sampling method involves the following three key
technologies: the construction of sparse basis matrix 9, the
construction of observation matrix8,and the design of signal
recovery algorithm, which is described as follows.

B. CONSTRUCTION OF ANTI-SPECTRAL LEAKAGE
FOURIER DICTIONARY
Mathematically, the spectrum-sparse signalE can be sparsely
represented in its Fourier transform domain, i.e.

E = 9 · X, (5)

where 9 is the Fourier dictionary, X is the sparse coefficient
of Y in 9. Set a column of the matrix as an atom of the
dictionary. The spectral resolution of the dictionary to the
spectrum depends on the number of atoms. The number of
atoms in the traditional Fourier dictionary is the number of
samples N . The traditional Fourier dictionary 91 can be
expressed as

91

=
1
√
N


1 1 · · · 1
1 ej2π/N · · · ej2π×(N−1)/N

1 ej2π×2/N · · · ej2π×2×(N−1)/N
...

...
. . .

...

1 ej2π×(N−1)/N · · · ej2π×(N−1)×(N−1)/N

.
(6)

In Eq. (6), the traditional Fourier dictionary is com-
posed of N atoms with different frequency character-
istics, each atom represents a frequency characteristic
(0, fe/N , . . . , (N-1)fe/N ), and the spectral resolution is fe/N .

As N is finite, some energy of the signal may leak out of
the original signal spectrum into other frequencies, which
shows up as a series of ‘‘lobes’’ with the phenomenon of
‘‘spectral leakage’’. At this time, the measured original sig-
nal characteristics need to be characterized by more atoms
of the dictionary. Thus, to suppress the spectral leakage,
an ultrahigh-frequency resolution fine Fourier dictionary is
addressed, which can be expressed as

92

=
1
N


1 1 · · · 1
1 ej2π/(pN )

· · · ej2π×(pN−1)/(pN )

1 ej2π×2/(pN )
· · · ej2π×2×(pN−1)/(pN )

...
...

. . .
...

1 ej2π×(N−1)/(pN )
· · · ej2π×(N−1)×(pN−1)/(pN )

,
(7)

where p is the multiple of spectral resolution coefficient. The
spectral resolution of the fine dictionary 92 is fe/(pN), and
it would be closer to the actual sparse coefficient in the fine
dictionary 92 than in the traditional Fourier dictionary 91.

C. CONSTRUCTION OF OBSERVATION MATRIX
The physical meaning of observation matrix 8 indicates
the way of sparse sampling. The high-dimensional signal E
obtained at the expected high equivalent sampling rate fe is
mapped to the sparse signal Y from four sub-ADCs by an
eligible observation matrix 8, namely

Y = 8 · E, (8)

The observation matrix 8 can be constructed based on
the detailed physical observation process in the proposed
method. According to the Whittaker–Shannon interpolation
theory, E(t) can be represented by the sampling value E(nTe)
(n = 1, 2, . . . ,N ) under the condition that the samples are
quantized at the expected high equivalent sampling rate fe, i.e.

E(t) ≈
N∑
n=1

E(nTe) · sin c
(
t
Te
− n

)
. (9)

Take Eq. (9) into Eq. (3), then Eq. (3) can be rewritten as

E1[m] ≈
N∑
n=1

E(nTe) · sin c
(
mTs
Te
− n

)
, 1 ≤ m ≤ M1

E2[m] ≈
N∑
n=1

E(nTe) · sin c
(
mTs + τ21

Te
− n

)
,

1 ≤ m ≤ M2

E3[m] ≈
N∑
n=1

E(nTe) · sin c
(
mTs + τ31

Te
− n

)
,

1 ≤ m ≤ M3

E4[m] ≈
N∑
n=1

E(nTe) · sin c
(
mTs + τ31

Te
− n

)
,

1 ≤ m ≤ M4

(10)
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From Eq. (10), it can be seen that high-dimensional sig-
nal E at a high sampling rate can be mapped to the low-
dimensional sampling sequences E1, E2, E3, and E4 at the
low-rate samplers through a certain mapping relationship,
namely 

E1 = φE
E2 = ϕE
E3 = γE
E4 = ηE,

(11)

where φ, ϕ, γ and η are the matrices motivated by four low-
rate sub-ADCs respectively, which can be expressed as

φ(m, n) = sin c
(
mTs
Te
− n

)
, 1≤m≤M1, 1≤n≤N

ϕ(m, n) = sin c
(
mTs + τ21

Te
− n

)
,

1≤m≤M2, 1≤n≤N

γ (m, n) = sin c
(
mTs + τ31

Te
− n

)
,

1≤m≤M3, 1≤n≤N

η(m, n) = sin c
(
mTs + τ41

Te
− n

)
,

1≤m≤M4, 1≤n≤N
(12)

From the perspective of CS theory, the essence of the obser-
vation matrix8 is mapping the signal from high-dimensional
space to low-dimensional space to get sparse observation
signal Y. Thus, the observation matrix 8 is the mathemat-
ical expression of the mapping relationship, which can be
expressed as

8 = [φT,ϕT, γ T, ηT]T. (13)

Some studies have proved that when the correlation coef-
ficient between the observation matrix 8 and the sparse
dictionary 9 is less than 0.2, the observation matrix 8 is
eligible [25]–[27]. The correlation coefficient between8 and
92 can be calculated by

µ(8,92) = max
∣∣〈ϕi,ψ2k

〉∣∣, (14)

where ϕi and ψ2k are any atom of 8 and 92, respectively.
The smaller the correlation coefficient is, the better the obser-
vation matrix performance is, and the observation signal Y
carries more information of the original signal E. To preserve
the integrity of the original data information, the number of
sparse samples should meet M ≥ 2K ln(N/K ), where K
is the sparsity of the original signal E [26]. By substituting
different N and K into this equation, the requirements of M
can be calculated. The larger the K value is, the larger M is
required.

To ensure less correlation of the observation matrix 8 and
the sparse dictionary 9, the phase difference is randomly
selected. In this work, τ21, τ31, and τ41 are randomly set as
3Te, 11Te, and 16Te, respectively. The results of the corre-
lation coefficient are shown in Tab. 1. As shown in Tab.I,

TABLE 1. Calculation results of correlation coefficient.

the correlation coefficient between8 and 92 under different
spectral resolution coefficients p is small than 0.1, which
shows that the constructed observation matrix is eligible.

D. DESIGN OF LAYERED TRACKING ORTHOGONAL
MATCHING PURSUIT ALGORITHM
Taking Eq. (5) into Eq. (8), the relationship between the non-
uniform samples Y of size M and the uniform equivalent
samples E of size N can be furthermore expressed by the
following matrix-vector representation

Y = 8 · E = 8 ·92 · X2 = A2 · X2, (15)

where A2 = 8 · 92 is the sensing matrix. As shown in
Eq. (15), the dimension of Y is much lower than that of
E(M < N ). Therefore, reconstructing E from Y is an ill-
posed problem, and there may be many possible solutions
to Eq. (15). To recover E, a signal recovery algorithm is
required. The purpose of the signal recovery algorithm is to
find the sparsest solution of X2 that contains the minimum
number of nonzero sparse coefficients in the following for-
mulation, i.e.

min ‖X2‖0 s.t. ‖r‖ 2 = ‖ A2 · X2 − E‖ 2 < ε, (16)

where r is the signal residual, ‖·‖ is the Euclidean norm, and
ε is the threshold of r.

In general, the signal recovery algorithms are divided into
two categories: convex relaxation algorithm and greedy algo-
rithm. Compared with the convex relaxation algorithm, the
greedy method is more efficient and easier to implement,
thus it has been widely used in engineering practice. One
of the fundamental greedy pursuit techniques is Orthogonal
Matching Pursuit (OMP) [28], [29], which has some variants
such as the regularized OMP (ROMP)[30], Stagewise OMP
(StOMP) [31], Subspace Pursuit (SP) [32], Compressed Sam-
plingMatching Pursuit (CoSaMP) [33], and batch-OMP [34].
They are the iterative algorithms that try to find the best
approximation of X2 after some iterations. However, when
the atoms of the fine dictionary 92 increase sharply with
spectral resolution coefficients p, the computational com-
plexity of these algorithms also increases rapidly. In 2021,
a binary matching pursuit (BMP) method was proposed to
recover the sparse binary signal [35]. However, the BMP
method is only suitable for sparse binary signals.

In this work, a layered tracking OMP algorithm is pro-
posed. The traditional Fourier dictionary 91 is used as the
index dictionary, 91 is a subset of 92, and 91 has far fewer
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atoms than 92. Eq. (15) can be rewritten as{
Y = 8 · E = 8 ·91 · X1 = A1 · X1 (1)
Y = 8 · E = 8 ·92 · X2 = A 2 · X2 (2),

(17)

where A1 and A2 are the high-frequency resolution and low-
frequency resolution sensing matrices, respectively. In the
process of signal reconstruction, the approximate spectrum
range of the signal is firstly determined through the index
dictionary 91, and then a corresponding partial interval of
the fine dictionary 92 is used to make the further sparse
expression in the spectrum range. In this way, the sparse
expression of the high-frequency resolution of the signal is
realized, and the total number of atoms required to project the
signal is significantly reduced. The flowchart of the proposed
layered tracking OMP algorithm is shown in Fig.2, which can
be illustrated as follows.

FIGURE 2. The flowchart of the layered tracking OMP algorithm.

Definition: u1 denotes the correlation coefficient matrix
with the low spectral resolution, while u2 denotes the correla-
tion coefficient matrix with high spectral resolution. r denotes
the residual vector, i denotes the number of iterations,
si denotes the index set at the ith iteration, Bi denotes the
column set of sensing matrix A2 corresponding to the index,
λ denotes the foot mark value of the column vector of A2
corresponding to the largest correlation coefficient selected.
Input: The sensing matrix with low spectral resolution

A1, The sensing matrix with high spectral resolution A2, the

observation matrix Y from four sub-ADCs, and the relative
error ε.
Output: The approximation X2

# of X2.
Step 1: Initialize the index set s0, the column setB0 and the

approximation X2
# to an empty set, and the residual r to Y.

Set a pre-determined threshold relative error ε = 4∗10−2, the
number of iterations i = 1.
Step 2: Compute every column of the correlation coeffi-

cient matrix u1 with the low spectral resolution, which can
be expressed as

u1 =

{
u1j

∣∣u1j =
〈
A1j

T, r
〉∥∥A1j

T
∥∥ ‖r‖ |j ∈ [l1,h1]

}
. (18)

Find the maximum coefficient column number pos of A1
corresponding to u1, and calculate the column range [l1, h1]
of A2 required to be projected according to pos:

l1 =
pN
q
(pos− 1)

h1 =
pN
q
(pos+ 1) .

(19)

Step 3: Compute every column of the correlation coeffi-
cient matrix u2 corresponding to the column range [l1, h1]
of A2, i.e.

u2 =

{
u2j

∣∣u2j =
〈
A2j

T, r
〉∥∥A2j

T
∥∥ ‖r‖ |j ∈ [l1,h1]

}
. (20)

Select the largest correlation coefficient, store the corre-
sponding foot mark to λ, and update the index set si, i.e.,
si = si−1 ∪ {λ}. Then renew the column set Bi by the
union of the corresponding column of sensing matrix A, i.e.
Bi =

[
Bi−1,A2λ

]
, and set the corresponding column vector

A2λ to 0.
Step 4: Calculate the approximation coefficient X2

# by
the least square method at this iteration by the least square
method, i.e.

X2
#
= (BiTBi)−1BiTr. (21)

Then update r by subtracting the contribution of the
existing X2

#, namely

r = Y− BiX2
#. (22)

Step 5: Repeat Steps 2–4 until the Euclidean norm of the
updated residual r meets a pre-determined threshold ε.
At last, we can obtain the approximation X2

# of X and
reconstruct the original signal through Eq. (17). In this way,
the total number of projection atoms increases little, and the
projection effect of the fine dictionary 92 is achieved. Also,
some parallel eigenvalue algorithms by using rank-structured
matrix techniques can be used to compute the correlation
coefficient matrix to accelerate our algorithms [36], [37].
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FIGURE 3. (a) Waveform of original signal. (b) Locally enlarged images.

III. NUMERICAL SIMULATION AND ANALYSIS
A. SIMULATION PARAMETER SETTING
In this simulation, the multiple spectral resolution coefficient
is set as p = 20. The expected high equivalent sampling rate
of the reconstructed signal is set as fe = 10 GS/s, and the
sampling duration of the measured signal is set as T = 200ns.
Thus, the equivalent sample of the reconstructed signal is
N = 2000. The number of frequency components of the
spectrum-sparse signal is set as j = 5. Thus, the sparsity
of the measured signal K is larger than 5, as the possible
spectrum leakage. As illustrated in ‘‘Section 3’’, the number
of sparse samples should meet M ≥ 2K ln(N/K ), where K
is the sparsity of the measured signal. To make room for the
possible increase of the sparsity K, the sparse sample M is
set as 400 (M1 = M2 = M3 = M4 = 100), and the
sampling rate of four sub-ADCs is fs = 500 MS/s calculated
through Eq. (4).

B. SIMULATION RESULT AND ANALYSIS
A spectrum-sparse signal is used to demonstrate the proposed
CS-enhanced PTIADC scheme, which can be expressed as

E(t) =
j∑

i=1

Ei cos(2π fit − pi), (23)

where Ei, fi, and pi represent the amplitude, frequency, and
phase of each frequency component, respectively. E1, E2, E3,
E4 and E5 are randomly set as 0.91, 0.34, 0.86, 0.72 and
0.47, respectively. f1, f2, f3, f4 and f5 are randomly set as
1.558143066 GHz, 0.185463435 GHz, 1.94794244 GHz,
0.000089598 GHz and 0.87573014GHz, respectively. p1, p2,
p3, p4, and p5 are randomly set as π /12, 37π /40, −2π /3,
−π /30, and−π /5, respectively. τ21, τ31 and τ41 are randomly
set as 0.3ns, 3.3ns, and 4.8ns, respectively. The waveform of
the spectrum-sparse signal and its locally enlarged image are
shown in Fig. 3.

First off, according to Eq. (4), four sampling sequences
are captured and re-sequenced into the sparse observation
signalY by four parallel sub-Nyquist ADCs, which are shown
in Fig. 4.

Moreover, the index Fourier dictionary91 and fine Fourier
dictionary 92 are achieved by Eq. (6) and Eq. (7). As an
index Fourier dictionary, 91 has 2000 atoms with the length

of 2000 and divides fe into 2000 frequency bands, the spectral
resolution of 91is fe/2000 = 5 MHz; As a fine Fourier
dictionary, 92 has 40000 atoms with the length of 2000 and
divides fe into 40000 frequency bands, while the spectral
resolution of 92 is fe/40000 = 0.25 MHz. The observa-
tion matrix 9 would be constructed through Eq. (12). After
that, we reconstruct the signal by the proposed layered OMP
algorithm described in ‘‘Section 2’’, which is illustrated as
follows.

FIGURE 4. (a) Schematic diagram of photonic time-interleaving ADC.
(b) Sampling clocks.

The high and low spectral resolution sensing matrices A1
and A2 are calculated by Eq. (16). In the first iteration, the
projection result of the signal residual r in A1 is shown in
Fig. 5 (a). As shown in Fig. 5 (a), the column with the largest
projection coefficient in A1 is column 313. From this, it can
be calculated that the corresponding column range required
to be projected in A2is columns 6220∼6260. The projection
result of the signal residual r in columns 6220 ∼ 6260 of A2
is shown in Fig. 5 (b). As shown in Fig. 5 (b), the column
with the largest projection coefficient in A2is column 6234.
Thus the best 92 atom represented the characteristics of the
original signal in the first iteration is the 6234th atom. The
correlation coefficient is updated by subtracting the contri-
bution of the selected 6234th atom in ‘‘Step 4’’, which is
shown in Fig. 5 (c). Repeat the iteration process, and the
approximation X2

# of X2 would be achieved to reconstruct
the signal until the Euclidean norm ofr is lower than the pre-
set threshold ε (see Fig. 5 (d)).

Fig. 6 shows the reconstructed and original waveform of
the spectrum-sparse signal and its locally enlarged image,
respectively. As shown in Fig. 6, the time interval between
two adjacent points of the reconstructed signal is 10−10 s,
which means that the equivalent sampling rate of 10 GS/s
has been achieved. The sampling rate of four parallel ADCs
is 500 MS/s, which is lower than one-twentieth of the equiva-
lent sampling rate of the reconstructed signal. Moreover, the
reconstructed waveform is well coincident with the original
waveform. The quality of the reconstructed signal can be
evaluated by the Signal-to-noise ratio (SNR), which can be
defined as

SNR = 20 · log10
‖E‖
‖E− E′‖

, (24)

VOLUME 10, 2022 55355



F. Lyu et al.: Enhanced Photonic-Assisted Sampling Approach for Spectrum-Sparse Signal by Compressed Sensing

FIGURE 5. The recovery process of the measured signal.

where E′ is the reconstructed signal. The SNR of the recon-
structed signal is calculated to be 60.8 dB, which means
that the original signal is well recovered. After replacing the
random values of amplitude, frequency, and phase in Eq. (23)
and reconstructing the corresponding signal, we can obtain
that the mean of the SNR values over 100 times is 61.2 dB.
Therefore, the feasibility of the proposed method has been
demonstrated.

FIGURE 6. (a) Waveform of recovery signal. (b) Locally enlarged images.

Moreover, the reconstructed effects for the signals com-
posed of infinite frequency components such as square wave
and triangular wave signals are investigated. The acquisi-
tion processes of these signals are similar to that of the
spectrum-sparse signal. Fig.7 shows the reconstructed and
original waveforms of square wave and triangular wave sig-
nals obtained by the proposed method. As shown in Fig.7,
the reconstructed signals are less coincident with the original
signals than in the case of spectrum-sparse signals. This is
because these signals have infinite frequency components in
the frequency domain and cannot be sparsely expressed by
the Fourier dictionary.

FIGURE 7. (a) The recovery waveform of the square wave signal. (b) The
recovery waveform of the triangular wave signal.

FIGURE 8. Average SNR of the recovery signal in the different noise levels.

Also, we evaluate the robustness of the proposed method
by adding Gaussian white noise to the original signal. When
the noise of the original signal increases from 10 to 70 dB,
the mean of the SNR values under each noise condition
are plotted in Fig. 8. As shown in Fig. 8, when the noise
is high, we can still recover the original signal very well.
This proves that the proposed sampling method has good
robustness against the Gaussian noise.

IV. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENTAL SET-UP
Fig. 9 shows the experimental set-up of the proposed
CS-enhanced PTIADC system, which consists of an optical
clock module and an electrical acquisition module. First, the
optical clock module is used to generate four sampling clock
signals of low-rate ADCs with a certain phase difference.
Then the measured spectrum sparse analog signal is concur-
rently sampled by four parallel low-rate ADCs to obtain the
observation signalY. At last, themeasured signal is recovered
by utilizing the proposed layered OMP algorithm.

In our experiment, the expected high equivalent sampling
rate of the reconstructed signal is fe = 1 GS/s, and the
sampling rates of sub-ADCs are fS = 50MS/s. The sampling
duration of the measured signal is T = 2µ s. The number
of the reconstructed signal is N = 2000, while the total
sampling number of sub-ADCs is M = 400. The time
differences with the first sampler τ21, τ31, and τ41 are 1.5ns,
5.5ns, and 8.0ns, respectively. In the electrical sampling
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FIGURE 9. Experimental set-up of the proposed sampling system.

module, the measured analog signal is commonly sampled by
four parallel low-speed sub-ADCs (AD9239s from Analog
Devices Inc.) clocked at 50MS/s, which is far lower than
the expected high equivalent sampling rate. The maximum
sampling rate of ADC (AD9239) can reach 170MS/s, and
the full-power Bandwidth (FPBW) is 780MHz. After the
acquisition, these samples are re-sequenced into a group
of low-speed sampling sequences, which act as the sparse
signal Y. Then, the measured signal would be reconstructed
by solving the optimization problem described by Eq. (12).
Simultaneously, the measured signal is also collected by a
wideband oscilloscope (DSO9254A from Agilent Inc.) as the
reference signal to evaluate the reconstructed signal.

B. EXPERIMENTAL RESULTS AND ANALYSIS
The optical clock module consists of a mode-locked
laser (MLL) as the optical pulse source, a dispersion compen-
sation fiber (DCF) as the dispersive medium, a 1× 4 optical
coupler, and three VODLs. Initially, an ultra-low-jitter pulse
with a duration of∼200fs is generated fromMLL, which has
extremely low noise with a repetition period of 20ns. After
the optical pulse propagates into DCF, the duration of the
optical pulse is stretched to nanosecond order, which can offer
sufficient time for the optical-electronic devices to respond.
Then the stretched optical pulse is evenly divided into four
channels by a 1 × 4 optical coupler. To get the pre-designed
phase delays, the parallel optical signals propagate via a set
of VODLs. Then the parallel optical clock signals with the
given phase differences would be obtained by high-speed PDs
and signal conditioning circuit. However, jitter degradation
inevitably exists because the optical clocks should go through
optic-electronic conversion as well as electrical condition-
stage before being fed into the ADCs. To evaluate the timing
jitter clock, we used the same oscilloscope to monitor the
clock signal in accumulationmode. Fig. 10 shows a histogram
on the falling edge of the clock output. The histogram mea-
sures the statistics of the time when this edge crosses a given
voltage, which is zero in this measurement. The root-mean-
square (RMS) jitter or one standard deviation of the histogram
was around 15.5 ps, which is acceptable for a 50M sampling
clock. And then, these clock signals flow into the electrical
acquisition module and act as the sampling clock signals of
ADCs.

FIGURE 10. Sampling clocks picture with the eye diagram.

In the cause of investigating the performance of the pro-
posed method, a multi-tone signal acted as the spectrum-
sparse signal is generated by the arbitrary signal generator,
which is shown in Fig. 11.

FIGURE 11. The waveform of the measured signal generated by the
arbitrary signal generator.

Firstly, four sampling sequences are captured by four par-
allel ADCs, and the sparse observation signal Yis obtained.
What’s more, the index Fourier dictionary 91 and fine
Fourier dictionary 92 are achieved by Eq. (6) and Eq. (7).
As an index Fourier dictionary, 91 has 2000 atoms with the
length of 2000 and divides fe into 2000 frequency bands,
the spectral resolution of 91 is fe/2000 = 0.5 MHz;
As a fine Fourier dictionary, 92 has 40000 atoms with the
length of 2000 and divides fe into 40000 frequency bands,
while the spectral resolution of 92 is fe/40000 = 25 kHz.
The observation matrix 8 would be constructed by using
Eq. (12). At last, the measured signal is reconstructed by
the proposed layered tracking OMP algorithm and dis-
played in our LabVIEW-based procedure, which is shown
in Fig. 12.

As shown in Fig. 12(b), the time interval between two
adjacent points of the reconstructed signal is 10−9 s, which
means that the equivalent sampling rate of 1 GS/s has been
achieved. The SNR of the reconstructed signal is calculated
to be 53.6 dB by Eq. (24), which indicates that the recovery
waveform is well coincident with the reference waveform
recorded by theOSC. Comparedwith the simulation results in
‘‘Section 3’’, the SNR of the recovery signal obtained by the
proposed system is smaller. The reason is that in the actual
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FIGURE 12. (a) Waveform of the recovery signal. (b) Locally enlarged
images.

sampling experiment, the sampling clock of four parallel
ADCs has a clock jitter, and the sampling results also have
deviation.

V. CONCLUSION
An enhanced photonic-assisted sampling approach based on
PTIADC and CS technology is proposed and validated. The
performance of the proposed method has been investigated
via simulations and laboratory experiments by varying the
applied spectrum-sparse signals. Simulations show that the
proposed method can achieve the equivalent sampling rate of
10 GS/s by four sub-ADCs with sampling rates of 500 MS/s.
By using an optical clock module, a proof-of-concept experi-
ment was carried out to demonstrate that the spectrum-sparse
signals with blind frequencies can be well reconstructed. The
ratio of the equivalent sampling rate to the average sampling
rate is 20, which is higher than that of the conventional
PTIADC system using four ADCs clocked at the same sam-
pling rates. These results are encouraging for the development
of the high-frequency spectrum-sparse signal acquisition in
practical applications. Moreover, some parallel methods to
improve the practicability and speed of the signal recovery
algorithm should be considered in our future work.
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